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ABSTRACT 

A detailed time-domain simulation is implemented to 

model the bowed cello string. Building on earlier simula-

tion models [1-3], several new features have been added 

to make the model more realistic. In particular, a large 

number of body modes, both transverse polarizations of 

the string motion, the longitudinal vibrations of the bow 

hair and the effect of the sympathetic strings are included. 

These additional features can be turned on and off in the 

model to evaluate their relative importance. To the best of 

our knowledge this is the first time that the second polari-

zation of the string and the effect of the sympathetic 

strings have been included in a bowed-string simulation. 

The compliance of the bow-hair was accounted for in 

previous studies but without considering its own vibra-

tion properties [4]. Different features of the model are 

turned on and the classic Schelleng minimum bow-force 

[5] is calculated for combinations of bow-bridge distance 

and different notes being played on the string. The main 

finding is that all features reduce the minimum bow-force 

to some extent. This reduction is almost frequency inde-

pendent for the case of the second polarization and the 

longitudinal bow-hair vibration, but clearly frequency-

dependent for the sympathetic strings case. 

1. INTRODUCTION 

The time-domain simulation of the bowed string has been 

the subject of many studies in recent years and as a result, 

many features of bowed strings have been explained 

qualitatively and to a certain extent quantitatively [6, 7]. 

Different mechanical details of the bowed string have 

previously been investigated in the hope of making the 

numerical models match the experimental measurements 

over a wide range of bowing gestures of musical interest. 

Among those details added to the model are torsional 

vibration of the string [8], bending stiffness of the string 

[9], effect of a close body resonance resulting in a “wolf 

note” [1], longitudinal bow-hair compliance [4], and the 

effect of the bow’s finite width [2]. This study is aimed at 

adding more such details to the model. Specifically, mod-

al properties of the body, dual-polarization of the string, 

longitudinal vibration of the bow-hair, and the effect of 

the sympathetic strings are taken into account. 

2. MATERIAL AND METHOD 

2.1 Basic model of the bowed string 

The simulation results in this paper are based on model-

ing the best-understood musical string, a cello D string 

(Thomastik ‘Dominant’). For this particular string a rea-

sonably complete set of calibration data is available, cov-

ering transverse vibration frequencies and damping fac-

tors, torsional frequencies and damping factors, and 

bending stiffness. In short, the characteristic impedance 

of the string in the transverse direction is    
     Ns/m and a constant Q-factor of 500 is assumed and 

implemented in the reflection functions using the method 

proposed in [8], which only reflects the intrinsic damping 

of the string. The reflection functions from the bridge 

side and the finger side are modified as suggested in [9], 

to take into account wave dispersion due to the bending 

stiffness of the strings. The string tension, bending stiff-

ness, and cutoff frequency [9] were respectively 111 N, 

3x10
-4

 Nm
2
, and 3x10

4
 Hz. Torsional vibrations are also 

taken into account and parameters were extracted from 

[8]. The torsional wave has the characteristic impedance 

of 1.8 Ns/m, constant Q-factor of 45, and propagation 

speed of 1060 m/s. The position of the bowed point on 

the string is denoted by the dimensionless quantity β, 

which is the fractional distance of the bow from the 

bridge (i.e.   
                   

             
). The time-step used 

for all simulations is 5x10
-6 

second. 

   All simulations of this study are done using the old ve-

locity dependent friction model (also known as Fried-

lander’s friction curve [10]) whose parameters are ex-

tracted from the constant slipping experiments reported in 

[11]. Although now known to be wrong in some respects, 

the friction-curve model has been so far remarkably suc-

cessful in describing, at least qualitatively, many ob-

served aspects of bowed-string behavior [3]. The physi-

cally more accurate visco-plastic friction model is more 

computationally demanding, and still involves unresolved 

research questions for its details [12].  Incorporating such 

a model is a topic for future research. 

2.2 Model of the body 

Calibrated measurements have been made on the C-string 

corner of two mid-quality cellos. A miniature hammer 

(PCB Model 086E80) and LDV (Polytec LDV-100) were 

used to make the full set of measurements in the bowing 

plane (i.e. X-X, Y-Y, X-Y, and Y-X where X represents 
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the bowing direction and Y is the direction normal to that 

in the bowing plane).   

  Compensation for the strings is made as described in 

[13] such that the admittances are adjusted to account for 

all strings. For a cello, each string has a vibrating length 

on both sides of the bridge, so that if all of these are 

damped then the sum should be taken over eight semi-

infinite strings. Equation (1) is used to deduce      ( ) 

from the measured   ( ). 
 

 ( )
 

 

     ( )
 ∑  

 

 (1) 

  Since both polarizations of the strings are taken into 

account, each admittance matrix (i.e.      ( ) and   ( )) 

is a 2x2 ideally symmetric matrix and ∑     in Equation 

(1) can be calculated as:  

∑     (√     √     √     √    ) [
  
  

], 
(2) 

where indices C, G, D, and A represent the different 

strings of the cello, ρ is the density of the strings with 

units kg/m and T is the tension of the strings.  

As discussed in [13], using Equation (1) will result in the 

admittances being compensated too generously since the 

strings cannot be perfectly damped with conventional 

damping methods. As expected, adding the compensation 

to the admittances has resulted in sharper peaks with 

higher Q-values. 

  Consequently, for Cello #1, which is used the most in 

the simulations, 89 modes were used to synthesize the 

admittance up to the frequency of 5 kHz; among these, 8 

were below 100 Hz. Those low frequency modes were 

included in the curve fitting process to keep their residual 

effect, but were later removed from the simulations as 

any relative bridge-corpus motion is unlikely over that 

low frequency range. The curve fitting process was per-

formed using ME’Scope, a commercial modal analysis 

package. Top priority was given to fit the X-X admittance 

as precisely as possible, the second priority was given to 

fitting the X-Y (or alternatively Y-X) data, and finally the 

Y-Y admittance was reconstructed according to the pa-

rameters enforced by X-X and X-Y and Equations (3) 

repeated from [14]. The measured admittances and their 

reconstructions are compared in Figure 1. 

   ( )  ∑
        

  (  
  
    

  
⁄    )

 

 

  (3.1) 

   ( )  ∑
        

  (  
  
    

  
⁄    )

 

 

  (3.2) 

   ( )     ( )  ∑
            

  (  
  
    

  
⁄    )

 

 

  (3.3) 

  The final result of the reconstruction is four 81-element 

vectors containing the natural frequencies, Q-factors, 

modal masses (m), and mode angles (θ) that were fed into 

the bowed-string model. The same procedure was applied 

to the measurements made on Cello #2 with a slightly 

different number of modes. It is noteworthy that θ indi-

cates the angle between the principal direction of vibra-

tion for each mode with respect to the bowing direction. 

This angle is deduced from the relative expression of 

each mode in the measured admittances of different di-

rections (calculated from Equations (3.1) to (3.3)).  

 

Figure 1: Measured admittances on the C-string side of 

the cello (solid green line) together with their recon-

struction with 81 modes (dashed red line). X represents 

the bowing direction and Y direction is perpendicular to 

that. (a) X-X measurement, (b) Y-Y and (c) X-Y (or al-

ternatively Y-X); for easier comparison some musical 

scales are also shown on X-axis. 

  The body modes are included in the bowed-string model 

using an IIR technique described in [14]. The time step 

used in our simulations allows for 40 time-samples in 

each period of the highest simulated body mode. Each 

(k
th

) mode is modeled as an independent resonator and its 

damped free oscillation is modified by the value 

      ( )       in each time step where h is the time 

step and       ( ) is the instantaneous force applied by 

the string(s), projected in the principal direction of mode 

k. 

         itself is a function of the incoming wave veloci-

ties from the bowed string in the X and Y directions (     

and     ) as well as the velocity of the bridge notch in the 

X and Y directions (         and         ) which can be 

approximated by their value at the previous time step as: 

            {∑   (      )   (  ) }   (4.1) 

            {∑   (      )   (  ) },  (4.2) 

where  (      ) is the complex vector of mode velocities. 

      , the vector of modal forces, can thus be calculated 

from  
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            (                   ) 

                (                           )

 (           )  

(5) 

which will reduce to the form of Equation (6) if we only 

consider a single polarization of the string (i.e. the bow-

ing direction): 

                                
      (           )  

(6) 

  In both Equations (5) and (6) the first term corresponds 

to the reaction force of the bridge resulting in the phase 

reversal of the reflected velocity wave of the bowed 

string and the second term allows for the fact that move-

ment of the bridge sends out velocity waves in all strings 

whether the strings are damped or not and regardless of 

the amount of incoming velocity wave from the strings. It 

is noteworthy that this effect was accounted for when the 

admittance was being measured with the strings damped 

but was taken out later by admittance compensation. The 

factor of two for the first term represents the difference of 

the incoming and outgoing waves and for the second term 

relates to the fact that a cello has strings extending on 

both sides of the bridge (as opposed to a guitar for exam-

ple). 

2.3 Second polarization of the string 

The movement of the bridge notch is not necessarily in 

the bowing direction for all body modes. Also, the bow-

hair is not rigid enough to suppress all the string vibra-

tions normal to it. As shown in Equation (5), the   and   

polarizations of the bowed-string are coupled together via 

the bridge. Incoming waves in the   and   directions add 

up to excite modes that are not necessarily lined up in 

either direction. Projected velocities of each mode in the 

  and   directions (        ( ) and         ( )) add, 

consequently, to the reflected waves at the bridge.   

  In this regard, the bow-hair needs to be flexible in its 

transverse direction to allow for this second polarization 

of the string motion. A pair of traveling waves is consid-

ered to model this bow hair transverse vibration. The bow 

hair ribbon is assumed to have mass per unit length 

0.0077 kg/m, length 0.65 m and total tension 60 N [15]. 

A Q-factor of 20 is used for the transverse waves as esti-

mated in [16]. This will result in a fundamental of 68 Hz 

for bow-hair vibrations in the transverse direction. The 

“bow β” (distance from the contact point to the frog di-

vided by the full length of the hair ribbon) is arbitrarily 

chosen to be 0.31 which does not change during the 

simulation as its dynamics are assumed to be much slow-

er than the dynamics of the string itself. 

  The transverse vibration of the bow-hair is excited by 

the normal-to-bow vibrations of the string; hence the bow 

and the string are coupled at the contact point. The con-

straint at the contact point is that they share a common 

velocity and apply the same amount of force to each other 

in opposite directions. To find the unknown common 

velocity and the mutual force, the velocity of the string 

and the bow are first calculated in the absence of the oth-

er one. These values, called VYh and VbTh, represent histo-

ry of the string velocity in the Y direction and history of 

the bow-speed in the transverse direction. With simple 

math it can be shown that the matched velocity (      ) 

will be equal to 

       
               

      
  (7) 

and the resulting fluctuating force in the contact region 

(     ) will be 

           (          )   (8) 

  This force is added to the nominal value of the bow-

force, supplied by the player, to give the effective bow-

force as in Equation (9). Since the bow-force is being 

dynamically updated for each time step, the friction curve 

should consequently be re-scaled. 

                (9) 

2.4 Longitudinal bow-hair vibration 

Bow-hair also has some degree of compliance in the lon-

gitudinal direction, which is excited by the fluctuating 

friction force between the bow and the string. The charac-

teristic impedance of the hair ribbon in the longitudinal 

direction (called    ) is about 10 Ns/m [4]; the wave 

speed in the longitudinal direction 2300 m/s [15]; and the 

Q-value approximated at 10 [16]. In the presence of bow-

hair longitudinal vibrations, the nominal bow velocity 

will be modulated by the velocity of the contact point on 

the bow-hair relative to the bow stick. This relative veloc-

ity can be found from: 

                          
  

     
  (10) 

and the effective bow speed can be calculated from 

                ,  (11) 

where    is the instantaneous friction force between the 

bow and the string,    is the nominal bow speed provided 

by the player, and          and           are the incoming 

longitudinal velocity waves, from the tip and the frog 

respectively, arriving at the contact point. It is noteworthy 

that since the friction curve is a function of bow speed, it 

should be reconstructed with       instead of    at each 

time step.  

 The effect of the bow-stick modes was also taken into 

account elsewhere [17]. Briefly, the interaction of the 

longitudinal and transverse bow-hair vibration with the 

stick modes can be implemented in a similar fashion to 

the string’s dual polarization motion with the body 

modes. The effect of the bow-stick modes was, however, 

negligible when compared to the effect of the transverse 

and longitudinal vibrations of the bow-hair itself. 

2.5 Sympathetic strings 

Under normal playing conditions the bow continuously 

excites one string and the other three are free to vibrate, 

their excitation being provided by the moving bridge. 

This certainly has an effect on the playability of a note, 

particularly when one or more of the coupled strings have 

harmonics matching those of the bowed string.  

  Physical properties of those three strings were extracted 

from [18] and their vibrations are simulated using the 

same method as for the bowed string. Only a single polar-

ization is considered for the sympathetic strings; howev-

er, their resistance against bridge vibration in the Y direc-

tion is also taken into account. The single polarization 

assumption is made based on the fact that most of the 
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body modes in the lower range of frequencies result in a 

rocking motion of the bridge which is approximately in 

the X direction for all strings. Based on the same assump-

tion, a single body admittance is used for all four strings. 

Equation (12) shows the modified version of Equation (5) 

for the case with sympathetic strings: 

            ((             )  

                     (             )      )  

               ∑      (                          

                                  )   

(12) 

  The single polarization assumption results in an under-

estimate of the sympathetic strings’ effect. 

2.6 Summary of the model 

The model of the bowed string allows for up to 6 differ-

ent types of motion, each of which is modeled with a pair 

of superposed traveling waves: 1) vibration of the bowed 

string in the bowing direction; 2) vibration of the bowed 

string in the direction perpendicular to the bow; 3) tor-

sional vibration of the string; 4) transverse vibration of 

the bow-hair; 5) longitudinal vibration of the bow-hair, 

and 6) single polarization vibrations of the three sympa-

thetic strings. It also uses 81 independent resonators to 

simulate body modes. The code adjusts the effective 

length of the bowed string based on the chosen funda-

mental frequency.  

3. RESULTS AND DISCUSSION 

Different combinations of the above mentioned degrees 

of freedom are allowed and their relative importance can 

be evaluated. Schelleng maps are calculated for each case 

to see the effect on the playability of the cello. Schelleng 

calculated formulae for the maximum and minimum 

bow-forces between which the Helmholtz motion of the 

string is possible, and plotted the results in the plane of 

force against bowing position on a log-log scale [19]. The 

following simulations are made on the first 13 semi-tones 

played on the D string, giving the possibility to study the 

note-by-note variations of the instrument. Each map stud-

ied in this paper is composed of a grid of 7800 time-

domain simulations, each 1 s long. The grid is formed by 

different combinations of the played note, β, and bow-

force (20 values for β and 30 values of bow force, all 

exponentially spaced). β ranged from 0.02 to 0.22 and 

force ranged from 0.0005 N to 2.5 N. The bow velocity 

was chosen to be 0.05 m/s in all cases, although varying 

that value might form an interesting study in its own right 

[19]. Motion of the string in the bowing direction was 

always initialized with a proper sawtooth wave. In all 

cases torsional vibration of the string and its bending 

stiffness were taken into account. Each time domain 

waveform is automatically classified into Helmholtz, 

double slip, constant slipping, ALF [20] and Raman 

higher types [21] using the method proposed in [3] and 

modified in [12]. A separate function automatically cal-

culates the minimum bow-force for each combination of 

played note and β. The result is a surface similar to the 

one shown in Figure 2. Slices of this surface in the fre-

quency and β directions are comparable to the lower limit 

of the classic Schelleng diagram and to a sampled version 

of the minimum bow-force proposed in [22]. Another 

interesting possibility with this 3-D Schelleng diagram is 

to find the geometric mean of the minimum bow-force 

when averaged over frequency or over β to see more 

global effects (see for example Figure 3). 

3.1 The body effect 

The minimum bow-force surface for Cello #1 is plotted 

in Figure 2. As was expected from the admittance, a 

mountain range is observed from F# to G#. To study the 

influence of body modes on minimum bow force the 

same plot is calculated for our second studied cello 

(called Cello #2). The results averaged over frequency 

and over β are compared for the two instruments in Fig-

ures 3a and 3b respectively. The average over β (Figure 

3a) shows that these two instruments behave slightly dif-

ferently on different notes, specially in the wolf range, 

but the average over frequencies (Figure 3b) shows that 

these differences are mostly local and neither of the two 

instruments is globally more “playable” in this sense than 

the other. The β averaging is taken over the first 13 expo-

nentially spaced β values ranging from β = 0.02 to β = 

0.09; beyond β = 0.1 or so, the minimum bow-force is 

mostly driven by string properties and Helmholtz usually 

breaks down to constant slipping with no sign of double 

slip. For the same reason, Figure 3b is only plotted up to 

β=0.117. 

 

Figure 2: Minimum bow-force as a function of played 

note and β for Cello #1. Only the body is included in the 

model and all other options are turned off. 

 
(a)    (b) 

Figure 3: Minimum bow-force for Cellos #1 and #2 av-

eraged over β (a), and over thirteen semitones of D3 to 

D4 (b). The instrument is being played with a rigid bow, 

and the other strings are damped 
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  It is expected to see a stronger effect of body for the C 

string due to its closer impedance match to the body. 

However, no effort was made to simulate such effect in 

this study as the full mechanical properties of the C string 

were not available as much as they were for the D string. 

3.2 Dual string polarization 

The effect of the second string polarization together with 

compliant bow-hair in the transverse direction is studied 

in this section. Adding the second polarization can poten-

tially affect the playability of the instrument in two ways: 

a) by modulating the effective bow-force according to 

Equation (9) and b) by absorbing energy from the string 

and damping the transients/disturbances that can poten-

tially trigger a second, premature slip. The latter effect 

can only reduce the effective bow-force while the former 

can either increase or decrease it depending on the rela-

tive phase of bow-hair and stick-slip motions.  

It can be seen from Figure 4 that the second string polari-

zation has generally reduced the effective bow-force. The 

effect is even more visible for larger βs in Figure 4b. A 

possible explanation for this β dependency is that the 

amplitude of string vibration in both polarizations gets 

higher when the bow moves farther from the bridge, thus 

a stronger string-bowhair coupling can occur. 

  An interesting observation in Figure 4a is that the bow-

force reduction is almost independent of the note being 

played. The fundamental frequency of the bow-hair in the 

transverse direction is around 68 Hz, so one may expect a 

further minimum bow-force reduction in integer multi-

ples of this frequency (i.e. G3#, C4#). This did not hap-

pen, for two possible reasons: a) the bow-β used in this 

simulation is close to 1/3 and thus the third mode of the 

bow-hair can not contribute much; b) the bow-hair is 

heavily damped (Q=20), so fairly broad peaks are ex-

pected in the impedance of the bow-hair, which cannot 

create a strong frequency-dependent behavior (this agrees 

with the experience of the players that the playability of a 

particular instrument is not strongly dependent on bow 

tension or bow-β). Of course, a stronger frequency de-

pendency may be expected if a strong body resonance 

with a mode angle close to 45° exists close to one of the 

played notes. 

 
(a)    (b) 

Figure 4: Effect of the second string polarization on the 

minimum bow-force of Cello #1, averaged over β (a), 

and over thirteen semitones of D3 to D4 (b). In both 

plots the green line is for the single polarization (same 

as Green in Figure 3.a and 3.b) and the red is for dual 

string polarizations 

3.3 Longitudinal bow-hair vibration 

The effect of the longitudinal bow-hair vibration on the 

minimum bow-force is plotted in Figures 5a and 5b. As 

can be seen, the only difference is a slight reduction, 

which is probably due to a small energy absorption from 

the string. The insignificance of this effect can probably 

be traced to the large impedance mismatch between the 

bow-hair in the longitudinal direction (around 10 Ns/m) 

and the string in the transverse direction (0.55 Ns/m). A 

much stronger effect was observed when the bow-hair 

characteristic impedance was reduced to 4 Ns/m. Also a 

stronger effect might be expected when studying faster 

transients of the string such as the ones studied in [23].  

  
(a)    (b) 

Figure 5: Effect of the longitudinal bow-hair vibration 

on the minimum bow-force of Cello #1, averaged over β 

(a), and over thirteen semitones of D3 to D4 (b). In both 

plots the green line is for a rigid bow (same as Green in 

Figure 3.a and 3.b) and the red is for a bow compliant in 

longitudinal direction 

Another interesting observation from the grid of classi-

fied motions is more frequent occurrence of ALF notes 

when longitudinal bow-hair vibration was allowed. For 

the simulations over the D3 to D4 octave, 102 ALF oc-

currences were observed for a compliant bow as com-

pared to 62 for a rigid bow. This point was emphasized 

by Mari Kimura in [24] “The first secret is maintaining 

loose bow-hair…. You don’t want a lot of tension… You 

need enough elasticity on the bow-hair that you can real-

ly grab the string.” 

3.4 The sympathetic strings 

The effect of three sympathetic strings is systematically 

studied in this section. An octave range is played on the 

D string of Cello #1 and the resulted minimum bow-force 

is compared for the cases of damped and undamped sym-

pathetic strings (with a regular C-G-D-A tuning). The 

exact effect is somehow complicated (see [25] section 5) 

and needs further analysis but the general expectation 

would be a reduction in the minimum bow-force when 

one or more of the coupled strings are sympathetically 

tuned with the played note. In this regard, four notes in 

the octave D3 to D4 are expected to be affected: 

• G3 which is an octave above G2 (twice the frequency) 

and an octave and a fifth above C2 (three times in fre-

quency) 

• A3 that is unison with the A3 coupled string 

• C4 which is two octaves above C2 (four times the fre-

quency) 

• D4 which is an octave and a fifth above G2 (three times 

the frequency) 
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  This effect is clearly visible in Figure 6a. A consistent 

“deep canal” can be seen on G3 which has support from 

two coupled strings and also happens to be around the 

strongest body resonance represented by a mountain 

range in Figure 2.  

  
(a)    (b) 

Figure 6: Minimum bow-force as a function of played 

note and β for Cello #1 similar to Figure 2 but being 

played when the other three strings were free to vibrate 

(a); β-averaged minimum bow-force with and without 

the sympathetic strings (b) 

  It is more revealing to look at the β-averaged minimum 

bow-force with and without the sympathetic strings (Fig-

ure 6b). A similar effect is observed for A3 to a lesser 

extent; however, C3 and D4 were not much affected by 

the sympathetic strings. A possible explanation for the C3 

case is that its minimum bow-force was already quite low 

without the sympathetic strings; thus its dynamics are 

most likely being driven by the intrinsic damping of the 

string itself rather than the vibrations of the bridge. D4’s 

independency on the sympathetic strings might be associ-

ated with the fact that it only gets support from every 

third partial of G2, which are apparently not so effective. 

4. CONCLUSIONS 

New features have been added to the model of the bowed 

string. A detailed body model is implemented whose pa-

rameters were extracted from calibrated admittance 

measurements. The model takes into account the angle of 

body modes with respect to the bowing direction, which 

transforms the initial excitation of the string in the bow-

ing direction to an excitation of the second polarization. 

A Schelleng minimum bow-force plot was produced that 

looks similar to ones found in the literature, with the dif-

ference that this diagram was calculated for different 

notes being played on an instrument. This offered the 

opportunity to explore the note-by-note variation of min-

imum bow-force on the same instrument or over different 

instruments. The second polarization of the string was 

taken into account by allowing the string to vibrate in 

both polarizations and the bow-hair to vibrate in its trans-

verse direction. The result was a general reduction in 

minimum bow-force with no obvious frequency depend-

ence, and with a stronger effect when bowing the string 

farther from the bridge. Moreover, the longitudinal vibra-

tion of the bow-hair was added to the model and its effect 

in modulating the effective bow-speed was studied. A 

general reduction in minimum bow-force was observed, 

similar to the second string polarization case, and the 

occurrence of ALF notes was found to be much more 

frequent compared to the rigid bow case. Finally, the ef-

fect of the sympathetically tuned coupled strings was 

studied. A noticeable reduction in minimum bow-force 

was observed at G3 which was the dominant wolf of the 

instrument before inclusion of the sympathetic strings. 

This effect and a minor reduction in A3 were justified by 

harmonic relations between the played notes and the 

sympathetic strings. The results are not further pursued 

here as the main focus of this article was to describe the 

theoretical background and modeling procedure. The 

results will be further discussed and experimentally vali-

dated in future studies.  
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