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Abstract. This paper proposes a numerical scheme based on the lattice Boltzmann

method to tackle the classical problem of sound radiation directivity of pipes issuing

subsonic mean flows. The investigation is focused on normal mode radiation, which

allows the use of a two-dimensional lattice with an axisymmetric condition at the pipe’s

longitudinal axis. The numerical results are initially verified against an exact analytical

solution for the sound radiation directivity of an unflanged pipe in the absence of a

mean flow, which shows a very good agreement. Thereafter, the sound directivity

results in the presence of a subsonic mean flow are compared with both analytical

models and experimental data. The results are in good agreement, particularly for

low values of the Helmholtz number ka. Moreover, the phenomenon know as ‘zone of

relative silence’ was observed, even for mean flows associated with very low Mach

numbers, though discrepancies were also observed in the comparison between the

numerical results and the analytical predictions. A thorough discussion on the scheme

implementation and numerical results is provided in the paper.
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1. Introduction

The mechanisms of sound radiation from the open end of ducts have been investigated

by many researches over the last century and remains an important problem in acoustics.

Among all the sound radiation parameters, the acoustic directivity, which is a measure

of the angular distribution of acoustic energy around the sound source, is paramount

to defining strategies for noise control in systems such as exhaust pipes, jet engines,

ventilation systems and so on.

Nevertheless, exact analytical solutions for the directivity problem are only available

for very simple geometries (cylindrical and annular pipes) and low compressibility

regimes. In realistic situations involving real outlet systems, the geometrical

characteristics and flow conditions differ considerably from the conditions imposed by

available analytical models. For such cases, numerical techniques provide essential tools

for addressing the problem.

The first exact analytical model for the sound directivity from cylindrical pipes

was proposed by Levine and Schwinger [1], based on the Wiener-Hopf technique. The

solution is limited to normal mode propagation (plane waves) and assumes a stagnant

mean flow. Munt [2] extended this model by considering the presence of a low-Mach

number mean flow. In his solution, a full Kutta condition is imposed at the edges of the

pipe, the mean flow is assumed to be uniform (plug) and the vortex sheet separating the

jet and the outer fluid is considered infinitely thin. The solution is exact, provided that

the Helmholtz number ka < 1.5 and the Mach number M < 0.3. Rienstra [3] improved

Munt’s solution by introducing a complex parameter to take into account the effects of

unsteady vortex shedding in the vicinity of the trailing edge, with particular attention

to the energy balance between the sound and the fluid fields. Based on the work of both

Munt and Rienstra, Gabard and Astley [4] presented an extended model that includes a

center body for the cases of annular pipe and proposed an explicit numerical procedure

for evaluating the solutions for higher frequencies and higher compressibility regimes

(0 < ka < 60 and 0 < M < 0.8).

Numerical techniques have also been used to tackle problems of sound radiation

directivity of ducts involving more complex conditions. For example, Rumsey et al.

[5] analyzed the generation and propagation of unsteady duct acoustic modes resulting

from a rotor-stator interaction in a 3D configuration by using a Navier-Stokes numerical

simulation. Zhang et al. [6] modeled the sound radiation from an unflanged duct

of aircraft engines through linearized Euler equation (LEE) solutions. Ozyoruk et al.

[7] predicted the sound fields of ducted fans carrying an axisymmetric non-uniform

background flow by solving the LEE. Chen et al. [8] analyzed the planar wave radiation

from an unflanged duct by solving the LEE. More recently, Hornikx et al. [9] presented

a numerical solution for calculating the sound field radiated from an automotive exhaust

pipe situated over a rigid surface. The mean flow was represented by Reynolds averaged

Navier-Stokes equations (RANS) and the sound field represented by the linearized Euler

equations, which were resolved with the Fourier pseudo-spectral time domain technique
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(PSTD).

When compared to traditional numerical techniques, there has been less

investigation on the use of the lattice Boltzmann method (LBM) to solve acoustic

problems, though several interesting studies have been reported. For example, Buick et

al. [10] [11] investigated sound waves in an unbound fluid using a two-dimensional lattice

Boltzmann scheme with a Bhatnagar-Gross-Krook (BGK) approximation [12]). Later

on, Buick et al. investigated the jet formation at a pipe end [13]. Viggen [14] investigated

the effects of viscosity on spatially damped acoustic waves using the BGK scheme. More

recently, Viggen [15] implemented acoustic multipole sources in an acoustic field with

zero viscosity in the LBM scheme by including a source term and using a regularized

collision operator. In aeroacoustic problems involving the interaction between the flow

and the acoustic fields, Li et al. [16] simulated wave propagations in the presence of

compressible flow regimes. Kam et al. [17] simulated the scattering of acoustic waves

and Li and Shan [18] proposed a LBM scheme for adiabatic acoustic phenomena. Lew

and Mongeau [19] simulated the axisymetric subsonic turbulent cold jet issuing from

a pipe and its influence on sound radiation. Subsequently, Habibi et al. [20] added a

heat transfer model to the LBM scheme to study heated jets. In the specific case of

sound radiation from the open end of ducts, da Silva and Scavone [21] investigated the

sound radiation from an unflanged cylinder immersed in a stagnant fluid in terms of the

sound reflection coefficient R and the radiation directivity. Later, they investigated the

influence of a subsonic mean flow on the sound reflection coefficient of ducts terminated

by horns with different geometries [22]. The results agreed well with the analytical

theory proposed by Munt [23] and the experimental data obtained by Peters et al. [24]

and Allam and Åbom [25].

The objective of this paper is to use the LBM to address the problem of sound

directivity of ducts issuing a subsonic mean flow. The problem conditions will be

limited to the radiation of normal (planar) modes and low compressibility regimes. For

this reason, the numerical scheme used in this paper is based on an isothermal model

represented in a two-dimensional axisymmetric scheme.

This paper is structured as follows: Section 2 describes the numerical technique used

in the study. In Section 3, the simulation results for an unflanged pipe are compared to

the analytical model by Levine and Schwinger [1] and the experimental data obtained by

Gorazd et al. [26], for the case of zero mean flow. The directivity results obtained when

considering a subsonic mean flow are compared with the analytical results from Gabard

and Astley [4] and with the experimental results by Gorazd et al. [26]. Moreover, the

phenomenon associated with the zone of relative silence observed in the simulations is

discussed. Finally, Section 4 provides a discussion of the results and suggestions for

further investigations.
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2. Numerical Procedure

The fluid/aeroacoustic system in this study is characterized by a 3D axisymmetric flow

in an unflanged cylindrical pipe. Although it is possible to simulate the 3D flow using

a 3D LBGK model, this approach would require significant computational resources

(CPU time, memory, etc.). Rather, an axisymmetric 2D LBGK scheme is chosen

for its efficiency and simplicity. Halliday et al. [27] first proposed an axisymmetric

model for the steady 3D axisymmetric tube flow problems, where they inserted several

spatial and velocity-dependent source terms into the RHS of the collision equation of

a regular LBGK D2Q9 model ‡, such that the Navier-Stokes equations in cylindrical

polar coordinates can be recovered from the lattice Boltzmann equation by performing

a Chapman-Enskog expansion. Later Niu et al. [29] derived an axisymmetric model

for the Taylor-Couette flow problems. Lee et al. [30] further proposed an axisymmetric

scheme based on the incompressible LBGK D2Q9 model [31] for simulations of 3D

pulsatile flow.

In our study, the axisymmetric incompressible LBGK D2Q9 model by Lee et al.

[30] was employed to simulate the 3D axisymmetric flow in a circular pipe. This scheme

assumes that the flow is symmetric about the pipe’s axis and thus can be expressed

by the incompressible Navier-Stokes equations in cylindrical polar coordinates. Based

on this assumption, the azimuthal component of velocity uφ and the φ coordinate

derivatives vanish. Consequently, the flow can be represented by the axial and radial

coordinates, x and r, respectively. The adapted Boltzmann equation uses the BGK

approximation with a simple scalar relaxation time τ for the collision function. The two

main steps of collision and streaming are represented by

fi(x+ cix, r + cir, t+ 1)− fi(x, r, t) = −1

τ
[fi(x, r, t)− fEi (x, r, t)] + h

(1)
i + h

(2)
i , (1)

where fi is the distribution function for particles with velocity ci at position (x, r) and

time t and i = 0, 1, 2, ..., 8 indicates the site number associated with the propagation

direction. The LHS of Eq. 1 is a convection operator describing the diffusion of the

distribution function fi over the lattice grid. The first term on the RHS of Eq. 1 refers

to the intermolecular collision described by the relaxation time τ , which determines the

viscosity of the fluid by the relation ν = 2τ−1
6

. The equilibrium distribution function fE

is identical to that of an incompressible LBGK D2Q9 model [31] [30] given by

fEi (x, r, t) = ωi
(ρ0 + δρ)

c2s
+ ωiρ0

[
ci · u
c2s

+
(ci · u)2

2c4s
− u2

2c2s

]
, (2)

where ci is the discrete velocity connecting each site to its neighbor lattices, ω0 = 4/9,

ω1 = ω2 = ω3 = ω4 = 1/9 and ω5 = ω6 = ω7 = ω8 = 1/36 and cs = 1/
√

3 is the speed

of sound.

‡ Here we follow the standard DdQn nomenclature proposed by Qian et al. [28]
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The source terms on the RHS of Eq. (1) are given by

h
(1)
i = −ωiρ0ur

r
(3)

h
(2)
i = ωi

3ν

r
[∂rp+ ρ0∂xuxur + ρ0∂rurur + ρ0(∂rux − ∂xur)cix] (4)

The velocity derivation terms ∂rur, ∂xux and ∂rux − ∂xur in Eq. (4) can be solved

using the technique proposed by Lee et al. [30]. Specifically, the terms ∂rur, ∂xux and

∂rux + ∂xur are explicitly calculated from the higher-order moments of fi by Eq. (9) in

[30]. The term ∂rux − ∂xur is equal to ∂rux + ∂xur − 2∂xur, where the unknown term

∂xur can be calculated using the finite difference method described by Eq. (10) in [30].

The macroscopic fluid density ρ and velocity u are expressed by the moments of

the local distribution function fi by

ρ(x, r, t) =
∑
i

fi(x, r, t), (5)

u(x, r, t) =
∑
i

fi(x, r, t)ci/ρ(x, r, t). (6)

In the isothermal condition, the fluid pressure p is related to the fluid density and the

speed of sound by

p = ρc2s. (7)

According to previous experiments, we have noticed that the axisymmetric model

derived by Lee provides accurate results and offers a simpler numerical implementation.

Generally speaking, an incompressible LBGK model is able to capture acoustic wave

phenomena, provided that these are within the linear regimes characterized by low

Mach numbers and low wave amplitudes. The highest Mach number used in this paper

is M = 0.15, which makes the flow slightly compressible. However, the incompressible

model is still valid because the slightly unsteady compressible form of the Navier-Stokes

equations can be fully recovered from the isothermal form of the Boltzmann equation

by performing the Chapman-Enskog expansion, as described in [28] and [32].

2.1. Pipe Model and Boundary Conditions

The purpose of the pipe model presented here is to capture the sound radiation

directivity, which is the distribution of acoustic energy as a function of the angle

measured about the pipe main axis for plane wave radiation. The pipe model is described

by an axisymmetric cylinder structure immersed in a fluid domain surrounded by open

boundaries, as illustrated in Fig. 2.1. The axisymmetry is exploited such that the system

can be fully represented by a half-plane without losing accuracy. The fluid domain

defined by the half-plane is represented by a rectangular D2Q9 structure of 1000 by 500

lattice cells.
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Figure 1. Schematics of the pipe model

The top, left and right side of the fluid domain are treated with an absorbing

boundary condition (ABC) proposed by Kam et al. [33], which is a transition buffer

with a target flow precribed at the outlet. The non-reflecting condition is achieved by

setting the distribution function of the target flow, fTi , to the equilibrium state, i.e.,

ρt = ρ0 and ut = 0, where ρ0 is the undisturbed density of the fluid. For collisions inside

the transition buffer, an extra damping term is added to the collision equation of the

single relaxation time BGK lattice Boltzmann scheme, as described in Eq. 8,

fi(x+cix, r+cir, t+1)−fi(x, r, t) = −1

τ
[fi(x, r, t)−fEi (x, r, t)]+h

(1)
i +h

(2)
i −σ(fEi −fTi )

(8)

where σ = σm(δ/D)2 is the damping coefficient, σm is a constant, normally equals to

0.3, δ is the distance measured from the beginning of the buffer zone and D is the

thickness of the buffer. Inside the transition buffer, the amplitude of outgoing waves is

attenuated asymptotically and the reflections from the outside boundary are minimized.

The thickness of the ABC buffer used in the model is 30 cells, corresponding to a

frequency-averaged pressure reflection coefficient of order of magnitude smaller than

10−3 for both perpendicular and oblique sound incidence. The lower boundary of the

radiation domain representing the axis of symmetry of the system is treated with a

free-slip condition.

The length and the radius of the cylindrical waveguide is L = 469.5 and a = 10

in lattice cells, respectively. The walls of the waveguide are represented by a solid

boundary of zero thickness based on spatial interpolations [34, 35]. The outer walls are

treated by a simple bounce-back scheme [36] for which the viscous boundary phenomena

are represented with second-order accuracy, while the inner walls are treated using a

free-slip scheme described in [32], in order to reduce the inherent viscous boundary layer

effects that result in a transfer of momentum by the tangential motion of particles along

the walls.

The undisturbed dimensionless fluid density was set as ρ0 = 1.0 for convenience.

To ensure the numerical stability and to make the viscosity as small as possible, the

relaxation time is set to τ = 0.5714, which is equivalent to a dimensionless viscosity

of ν = 0.0238. In fact, due to the BGK limitations, the viscosity asserted is one

order of magnitude higher than that of air in normal conditions. A higher viscosity
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could result in two significant effects: 1). Accentuated wave dissipation, particularly

at higher frequency components, and 2). Spurious directivity artifact caused by the

interaction between the viscous boundary layer and the rim of the pipe. In fact, if the

viscosity is relatively high, the pipe can be seen as a capillary tube, where the radiation

directivity is dominated by viscous phenomena. These effects are significantly minimized

by measuring sound pressures at positions sufficiently close to the sound source (open

end) and imposing a free-slip condition at the pipe wall. This last boundary condition is

in accordance with the exact model from Munt [2], which is inviscid and the singularity

at the sharp edge of the pipe is treated with a full Kutta condition.

The system is excited by a source signal that consists of a linear chirp signal running

from ka = 0.1 to ka = 3.8 (less than the first evanescent mode of the pipe) superimposed

on a DC offset representing the non-zero mean flow. The excitation is implemented by a

source buffer with a length of 60 cells at the left end of the pipe using the same technique

of an absorbing boundary conditions but prescribed by a non-zero target velocity given

by

ut = u0 +H(n−Nt)u
′
0 sin

[
cs
a

(
0.1 + 3.8

(n−Nt)∆t

N −Nt

)]
, (9)

where n is the time step, N is the total number of iterations in the simulation, Nt

is the initialization iterations, u0 is the velocity of the non-zero mean flow, u′0 is the

amplitude of the acoustic particle velocity along the axial direction and ∆t = 1 is the

time increment of the numerical scheme. H(n) is the Heaviside step function given by

H(n) =

{
0, n < 0,

1, n ≥ 0.
(10)

Before the acoustic source is superimposed, there should be enough initialization

time to allow the fluid in the whole domain to accelerate from stagnation to a steady

state. The initialization steps can be approximated by

Nt ≥ Nt0 + Lx/(Mcs), (11)

where Nt0 = 4000 is the acceleration time for the source buffer with thickness equivalent

to 60 cells [22], M is the Mach number of the non-zero mean flow and Lx = 1000 is

the maximum traveling distance of the plane sound wave in the axial direction in the

radiation domain. For example, the minimum initialization steps corresponding to a

Mach number of M = 0.036 is Nt = 5.21× 104.

The time histories of fluid density are probed at 75 points evenly distributed around

the semi-circle (corresponding to angle increments of 2 degrees), with the center point

at the outlet of the duct in the range of θ = 0◦ to θ = 150◦. The measuring distance is

d = 250 cells from the outlet. The acoustic pressure p′ is calculated by

p′(θ, t) = (ρ(θ, t)− ρ0)c2s, (12)
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where ρ(θ, t) is the spontaneous fluid density and ρ0 is the equilibrium density. For the

case of zero mean flow, ρ0 is nearly a constant and usually has the value of 1. For none-

zero mean flow, however, ρ0 in the vicinity of the probing points fluctuates over time and

the fluctuating density can not be calculated by simply subtracting the stagnant field

density (a value of 1) from the spontaneous fluid density. For such a case, a zero-phase

DC-blocking filter can be used to remove the offset caused by the flow.

Once the time history of acoustic pressures has been obtained, the pressure

directivity as a function of angle θ and frequency f can be calculated by

G(θ, f) =
P (θ, f)

Ph
, (13)

where P (θ, f) is obtained by performing a DFT on the time history of sound pressure

p′(θ, t) measured at the same distance d and Ph =
√∑

P 2(θ)/N is the square root of

the averaged value of P 2(θ, f) over all the measured angles.

3. Results

3.1. Directivity in the absence of mean flow

The LBM scheme in the absence of mean flow is first validated by comparing its results

with the established analytical model proposed by Levine and Schwinger [1] in the

form of relative pressure directivity. For six different frequencies expressed in terms

of the Helmholtz number (ka = 0.48, 1, 2, 2.5, 3, 3.5) that are below the cut-on

frequencies of higher-order modes, the numerical simulations are in good agreement

with the analytical results, as shown in Fig. 2. The tiny ripples found for ka = 0.48

and ka = 1 in the numerical results can be explained by the fact that G(θ) should be

measured in the far-field condition, which is not fully satisfied for low frequencies given

the size of the lattice (1000 × 500 cells) and the measuring radius (250 cells) used in

this paper (due to computation time limits). Not surprisingly, the results for higher

frequencies (ka ≥ 2) are smooth and the ripples are barely observed. To evaluate the

far-field condition in this simulation, we measured the acoustic impedance Z = P/U as

a function of ka at a distance d = 250 and angle φ = 0 from the outlet of the pipe,

where P and U are obtained by performing an FFT to the time history of acoustic

pressure p and particle velocity u, respectively. As depicted in Fig. 3(a), the amplitude

of the impedance Z quickly approaches to the characteristic impedance of the medium,

Zc = ρ0cs, for values of ka ≥ 1. A similar phenomenon can be found for the phase

between the acoustic pressure and particle velocity, φ, which gradually approaches to

zero for ka ≥ 2, as depicted in Fig. 3(b). It is worth mentioning that the phase and the

characteristic impedance will never converge completely to zero and ρc, respectively, due

to the viscous nature of the fluid [14]. The results suggest that the far-field condition is

not fully satisfied for ka < 1, while for ka ≥ 1, the acoustic impedance Z of the spherical

wave propagating into the radiation domain approximates that of a plane wave.



LBM simulations of sound directivity of a cylindrical pipe with mean flow 9

The results of Fig. 2 show discrepancies at high angles (more obvious for θ > 100◦).

We believe that these errors could come from the high viscosity in the simulation.

Perhaps the viscosity affects the directivity of sound radiation or the viscous boundary

layer on the outside of the pipe affects the results.

From Fig. 2(f), we can observe smoothing of directivity characteristics of numerical

results in the vicinity of θ = 100◦ compared to that of the analytical results for the

high frequency ka = 3.5. That might be attributed to the issue that, in the numerical

simulation, there may be some transfer of energy from the exciting chirp signal to

higher-order modes, while for the case of the analytical model, no higher modes are

involved and the energies are exclusively coming from the dominant plane mode. More

specifically, the exact analytical model derived by Levine and Schwinger only takes

into account the directivity due to plane mode propagation up to ka = 3.82. While

our source acts like a piston, it is possible that energy might be transferred to higher-

order modes (via mode-coupling) near structural discontinuities, either in the form of

evanescent or perhaps even propagating waves. Due to the shortness of the pipe, some

of the energy associated with these higher modes may find its way out of the pipe.

A similar phenomenon was reported in a recent experimental measurement conducted

by Gorazd et al. [26], where the curves presenting the directivity characteristics of

the experimental results (excited by broadband noise) around θ = 100◦ and for higher

frequencies (ka ≥ 2.96) are smoothed compared to those analytical results obtained for

a single-frequency exciting signal.

In the next step, the numerical and analytical results are compared with the

experimental results by Gorazd et al. [26] in the form of relative pressure directivity.

All three results (numerical, analytical and experimental) have been normalized to the

same dB level, as depicted in Fig. 4. For the two lower frequencies of ka = 0.74

and 1.48 and for angles within the range of 0◦ < θ < 90◦, the three results are in good

agreement with each other, despite the fact that the measurements are carried out using

1/3 octave broadband noise and the calculation of numerical and analytical results are

based on a single frequency. As the angle increases, the measurements are still in good

agreement with the analytical results, though the numerical results have discrepancies

less than 3 dB compared to the analytical results. For the higher frequency of ka = 2.96,

the numerical results are in good agreements with both the analytical results and the

measurements for angles within the range of 0◦ < θ < 75◦. As the angle increases

from 75◦ to 150◦, both the measurements and the numerical results deviate from the

analytical results, but in opposite ways. Compared to the analytical results, the highest

discrepancies are found at the largest angle of θ = 150◦, which is +3.8 dB for the

measurements and −2.6 dB for the numerical results, respectively.

3.2. Directivity in the presence of mean flow

For the case of a cold mean flow (i.e., the temperature gradient between the jet and the

outer stagnant flow is zero) with a low Mach number (M = 0.036), the numerical results
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Figure 2. Comparison between numerical (solid) and analytical predictions [1] (- - - -)

of the acoustic pressure directivity as a function of the angle in the absence of a mean

flow: (a) ka = 0.48, (b) ka = 1, (c) ka = 2, (d) ka = 2.5, (e) ka = 3, (f) ka = 3.5.
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Figure 3. Evaluation of the far-field condition in terms of acoustic impedance in

the radiation domain: (a) amplitude of acoustic impedance, (b) phase of acoustic

impedance.

are compared with the theoretical prediction given by Gabard and Astley [4] as well as

the recent experimental results obtained by Gorazd et al. [26] in the form of normalized

pressure directivity, as depicted in Fig. 5. All three results (numerical, analytical and

experimental) have been represented in the form of pressure directivity and normalized

to the same dB level.

In general, the results are in good agreement for angles in the range 0◦ < θ < 60◦.

Discrepancies between the numerical and analytical results become more obvious as the
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Figure 4. Comparison between numerical (solid), analytical predictions [1] (- - - -)

and experimental measurements [26] (+ + + +) of the acoustic pressure directivity as

a function of the angle in the absence of a mean flow: (a) ka = 0.74, (b) ka = 1.48,

(c) ka = 2.96.

angle increases and the maximum differences are found to be at θ = 150◦, i.e., -3.11

dB for ka = 0.74, -2.22 dB for ka = 1.48 and -2.3 dB for ka = 2.96, respectively. For

all three frequencies and for most angles, the analytical solution is located between the

numerical and the experimental results.

For the case of a cold mean flow with a higher Mach number (M = 0.15),

the numerical results are compared with the theoretical prediction only, since no

experimental results are available from Gorazd et al. for M = 0.15. The comparisons

are depicted in Fig. 6. In general, good agreement is found for angles in the range

30◦ < θ < 150◦. For most angles, the discrepancy from the theory is less than 3dB. The

deviation of the simulation from the theoretical results is mainly found in the region

of angles less than 30◦. The smoothing of the curve representing the numerical results

versus the analytical results in the region 90◦ < θ < 120◦ for the high frequency of

ka = 3.77, as depicted in Fig. 6(d), might be due to the transfer of energy from the

exciting chirp signal to higher-order modes, as discussed before.

An important feature of the directivity characteristics in the presence of a non-zero

mean flow concerns the so-called “zone of relative silence”, where the sound wave in the

vicinity of the axis is subject to additional attenuation. The result from the theoretical

analysis of Savkar [37] and Munt [2] suggests that, for high frequencies and large Mach

numbers, the zone of relative silence is so obvious that a cusp can be observed at θ = θs
in the directivity pattern. Assuming that the medium outside the duct is stagnant and

the speed of sound remains constant, the zone of relative silence is defined by [37]

θs = cos−1
(

1

1 +M

)
, (14)

where M is the Mach number inside the duct.

Even for the low Mach number M = 0.036, the zone of relative silence (θs = 15.15◦)

can be observed in both the experiments and the numerical results for ka = 2.96, as

depicted in Fig. 5(c). For the case of higher Mach number M = 0.15, the zone of relative

silence (θs = 29.59◦) are more obviously observed in the numerical results for all four
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frequencies (ka = 0.74, 1.48, 2.96 and 3.77).

However, we also observed that the numerical results demonstrates significant

discrepancies compared to Gabard’s model for the region of angles less than 30◦. This

might be either due to the effects of high viscosity of the LBM scheme or some unknown

effects associated with the 2D axisymmetric LBM scheme, where the anti-symmetric

higher modes can not be recovered, and some spurious 2D transversal modes might be

generated per se. The modes below the cut off frequency die out exponentially as they

propagate downstream and their contribution on the directivity is negligible, although

some acoustic energy associated with these modes may find its way out of the pipe due

to its reduced length. However, at values of ka above the first cut off frequency for

plane modes (ka > 1.8) the energy associated with transversal modes will propagate

downstream and provide a significant contribution on the directivity pattern. This is

evidenced in Fig. 6(c) and 6(d).
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Figure 5. Comparison between numerical (solid), analytical [4] (- - - -) predictions

and experimental measurements [26] (+ + + +) of the acoustic pressure directivity as

a function of the angle in the presence of a mean flow at Mach = 0.036: (a) ka = 0.74,

(b) ka = 1.48, (c) ka = 2.96.

4. Conclusions

In this paper, we presented a numerical technique based on an axisymmetric two-

dimensional lattice Boltzmann scheme to predict the directivity pattern associated with

the sound radiation at the open end of cylindrical ducts issuing a low Mach number

cold subsonic jet into a stagnant fluid region.

The LBM scheme was first validated by comparing its results with the analytical

model of Levine and Schwinger and experimental results of Gorazd et al. for the case of

no flow. Then for the case of non-zero mean flow, the numerical results were compared

with the theoretical prediction given by Gabard and Astley for Mach number M = 0.036

and M = 0.15 as well as experimental results obtained by Gorazd et al. for Mach

number M = 0.036. Very good agreement was found with theoretical and experimental

results for the case of no flow and the lower Mach number of M = 0.036. For the

relatively higher Mach number of M = 0.15, the numerical result agrees very well with

the theoretical prediction for angles greater than 30◦, though significant discrepancies
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Figure 6. Comparison between numerical (solid) and analytical predictions [4] (- - -

-) of the acoustic pressure directivity as a function of the angle in the presence of a

mean flow at Mach = 0.15: (a) ka = 0.74, (b) ka = 1.48, (c) ka = 2.96, (d) ka = 3.77.

are observed for angles less than 30◦. The effects of the so-called zone of relative silence

are clearly observed in the results of non-zero mean flow even for very low Mach number

(M = 0.036). This is interesting for some other cases, e.g., in the studies of musical

acoustics, a woodwind instrument normally exhibits a very low Mach number flow.

The aforementioned discrepancies for the case of θ < 30◦ and M = 0.15 are

not well explained yet. For further investigations conducted by either experimental

measurements or numerical simulations, some limitations might be considered. The

theoretical model assumes an infinitely thin vortex sheet separating the jet and the

neighboring quiescent fluid, which is not true for far field situations as well as the

numerical simulations presented here. In addition, it was found in the numerical

simulation presented here that the directivity pattern in directions close to the

axis is very sensitive to the probing distance. Moreover, for better explaining the

aforementioned smoothing effects demonstrated in the numerical results, we need more

insight towards the axisymmetric D2Q9 model in terms of its capability of fully

representing the higher radial modes, although the anti-axisymmetric circumferential

modes are not supported for sure.
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