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Abstract

The mouthpiece is one of the key components of a saxophone in determining its sound

and playability. However, the design of mouthpieces still heavily relies on empirical ap-

proaches due to the lack of physical analyses connecting geometry variations with corre-

sponding changes in sound quality and response. The objective of this research is to perform

a series of analyses to better understand the mechanisms behind saxophone sound gener-

ation and the mouthpiece’s impact on shaping the oscillation characteristics, consequently

assisting in mouthpiece design.

The mouthpiece functions as both a linear passive acoustic filter that sculpts saxophone’s

acoustic features, and a nonlinear active sound generator that, in conjunction with the reed,

transforms steady energy sources into unsteady oscillations. These two distinct roles of the

mouthpiece are studied separately using acoustic and aeroacoustic analyses.

The acoustic analysis of the mouthpiece is conducted by analyzing its input impedance

defined at the rectangle aperture at the tip of the mouthpiece. Two novel acoustic models

for the mouthpiece are proposed, namely the transfer matrix model (TMM) and the trans-

mission line model (TLM). TMM, derived from the finite element mouthpiece model using

the two-load method, is validated by the input impedance measurement and proves to be an

accurate and efficient model for acoustic characterization. TMM is also incorporated into

real-time sound synthesis for oscillation characterization, which includes both sound and

bifurcation analyses. TLM is a simpler model that represents the mouthpiece as piecewise

cylindrical segments. A mouthpiece design interface is implemented based on TLM, which

allows customizable one-dimensional mouthpiece geometries and provides instant synthesis

of the input impedance and sound.

The aeroacoustic analysis of the mouthpiece is based on computational aeroacoustic mod-

eling of the mouthpiece and the Ffowcs-Williams and Hawkings (FW-H) acoustic analogy.

The two-dimensional computational model is built using the lattice-Boltzmann (LB) method.

A characteristic-based time-domain impedance boundary condition (C-TDIBC) is proposed

to improve simulation efficiency. C-TDIBC utilizes the input impedance to represent an

acoustic resonator, which transforms the distributed acoustic field into a localized represen-

tation applied as a boundary condition to the end of the mouthpiece-reed system in the LB

simulation. The FW-H acoustic analogy is applied on top of LB simulations, which helps

characterize the sound generation mechanisms by decomposing the aeroacoustic source into
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monopole, dipole, and quadrupole contributions.

Finally, the acoustic and aeroacoustic analysis routines are employed to investigate the

influence of two design parameters, namely the chamber size and baffle height, on oscilla-

tions, which demonstrates the feasibility and capability of the proposed methodology for

mouthpiece modeling.



iii

Résumé

Le bec est l’un des éléments les plus importants dans la production du son et la jouabilité du

saxophone. Cependant, la conception des becs repose encore largement sur des approches

empiriques en raison du manque d’analyses physiques reliant les variations de géométrie

aux changements corrélatifs de la qualité du son et de la réponse acoustique. L’objectif de

cette recherche est d’effectuer une série d’analyses afin de mieux comprendre les mécanismes

à l’origine de la production du son du saxophone et l’impact du bec sur la formation des

caractéristiques d’oscillation, ce qui contribuera à la conception du bec.

Le bec agit à la fois comme un filtre acoustique passif linéaire qui sculpte les car-

actéristiques acoustiques du saxophone, et comme un générateur de son actif non linéaire qui,

en conjonction avec l’anche, transforme des sources d’énergie stables en oscillations instables.

Ces deux rôles distincts du bec sont étudiés séparément à l’aide d’analyses acoustiques et

aéroacoustiques.

L’étude acoustique du bec est réalisée en analysant son impédance d’entrée au niveau de

l’ouverture rectangulaire située à l’extrémité du bec. Deux nouveaux modèles acoustiques

pour le bec sont proposés: le modèle de matrice de transfert (TMM) et le modèle de ligne

de transmission (TLM). Le TMM, qui est dérivé d’un modèle du bec à éléments finis basé

sur la méthode des deux charges, est validé par la mesure de l’impédance d’entrée et s’avère

être un modèle précis et efficace pour la caractérisation acoustique. Le TMM est également

incorporé dans la synthèse sonore en temps réel pour la caractérisation de l’oscillation, qui

comprend à la fois des analyses sonores et des analyses de bifurcation. Le TLM est un

modèle plus simple qui représente le bec sous forme de segments cylindriques par morceaux.

Basé sur le TLM, une interface conception de becs est proposé qui admet des géométries

unidimensionnelles personnalisables et fournit une simulation instantanée de l’impédance

d’entrée et du son produit.

L’analyse aéroacoustique du bec est basée sur une modélisation computationnelle aéro-

acoustique bidimensionnel construit à l’aide de la méthode Boltzmann sur réseau (LB pour

lattice Boltzmann en anglais), et aussie sur l’analogie acoustique Ffowcs-Williams et Hawk-

ings (FW-H). Une condition limite d’impédance caractéristique dans le domaine temporel

(C-TDIBC) est proposée pour améliorer l’efficacité de la simulation. La C-TDIBC utilise

l’impédance d’entrée pour représenter un résonateur acoustique en transformant le champ

acoustique distribuée en une représentation localisée appliquée comme condition limite à
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l’extrémité du système bec-anche dans la simulation LB. L’analogie acoustique FW-H est

appliquée aux simulations LB, ce qui permet de caractériser les mécanismes de génération du

son en décomposant la source aéroacoustique en en contributions monopolaires, dipolaires

et quadripolaires.

Enfin, les routines d’analyse acoustique et aéroacoustique sont utilisées pour étudier

l’influence de deux paramètres de conception, à savoir la taille de la chambre et la hauteur

du plafond, sur les oscillations, ce qui démontre la faisabilité et la capacité de la méthodologie

proposée pour la modélisation du bec.
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Chapter 1

Introduction

1.1 Saxophone mouthpieces

The saxophone, which consists of a conical bore and a single-reed mouthpiece, was invented

by Adolphe Sax in the 1840s. The saxophone mouthpiece is similar to a clarinet mouthpiece

but has a larger and round chamber in the original design (Hemke, 1975, Rose, 2020). The

modern mouthpieces are adapted for jazz and other non-classical repertoires and typically

have a smaller chamber, a wider tip opening, and more options of baffle shapes to produce

a louder and brighter sound (Rose, 2020).

The mouthpiece structure is shown in Fig. 1.1 with the key features defined as:

• table: the flat surface to which the reed is clamped with the ligature.

• facing curve: the curved extension from the flat table to the tip of the mouthpiece,

also known as the lay.

• tip opening : the distance between the tip of the reed and the mouthpiece.

• window : the opening of the mouthpiece that lies under the reed.

• tip rail : the narrow flat surface located between the tips of the window and the mouth-

piece.

• side rails : the narrow flat surfaces that surround the window.

• tip window : a rectangle cross-section area viewed from the front of the mouthpiece and

defined in between the tip rail and the reed, also known as the reed aperture.

• side window : the wedge-shaped area viewed from either side of the mouthpiece and

defined in between the side rail and the reed.

• reed channel : the path in between the tip rail and the reed.
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Fig. 1.1: Mouthpiece’s structure1.

• baffle: a portion of the inner upper wall that extends a short distance from the tip rail.

• bore: the inner rear portion in which the neck of the saxophone fits, which normally

has a circular cross-section area.

• chamber : the inner front space that is connected to the bore.

• throat : the interface between the bore and the chamber, represented by the cross-

section area located on the chamber side if there is a discontinuity between the chamber

and the bore.

• ramp: the inner portion that ramps from the rear of the window to the throat.

• beak : the upper outer roof where the player’s upper teeth is placed against.

The mouthpiece is the most versatile component of a saxophone. Structurally, the mouth-

piece helps complete the saxophone by providing an extension of the saxophone neck upon

which the reed can be attached. Acoustically, the cavity inside the mouthpiece works as a

linear acoustic filter, which helps sculpt the sound. From a fluid dynamic perspective, the

mouthpiece rails and baffle confine the air flow that enters from the player’s mouth into

the mouthpiece, determining the aerodynamic force applied on the reed. Because of this

versatility, the mouthpiece is one of the most important parts of a saxophone in determining
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the sound and playability.

A multiphysics problem exists within the mouthpiece, which involves acoustics (sound

wave), fluid (air flow), and solid (reed and mouthpiece) as illustrated in Fig. 1.2. The

mouthpiece can thus be considered as “an energy transport hub” that permits energy from

different physical fields to interact with each other. When a saxophonist plays a saxophone,

the air blown from the player’s mouth serves as the energy source for the instrument. Such

energy is partially transferred to the vibrational energy of the reed and drives the reed to

vibrate. The reed vibration perturbs the air within the instrument and excites the acoustic

resonator attached to the mouthpiece, transferring the vibrational energy to acoustic energy.

The acoustic energy, on the other hand, provides feedback to the reed and helps maintain

the reed vibration. Solving this multiphysics problem is key to understand the relationship

between the mouthpiece geometry and the instrument’s sound and playability, and this re-

search aims at a better understanding of the mouthpiece’s influences on the sound generation

of the saxophone by studying the underlying multiphysics problems through acoustic and

aeroacoustic analyses.
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1.2 Literature review on mouthpieces

The literature on the saxophone mouthpiece can be broadly divided into two categories.

The first type of research focuses on the sound analysis of different mouthpieces, either

based on commercial mouthpieces (Pipes, 2018, Wyman, 1972) or customized 3D printed

ones (Carral et al., 2015, Ozdemir et al., 2021). Such research connects the sound properties,

such as spectra and subjective evaluations, to specific geometry features, which is helpful

to guide the mouthpiece design. However, it often does not explicitly provide a thorough

physical explanation on the connection between the sound properties and geometric features.

The second category of research aims at comprehending the sound generation mechanisms

by investigating the multiphysics problem. Benade (1990) was one of the first to discuss the

acoustic influence of a saxophone mouthpiece, showing that the mouthpiece primarily aids

in the tuning of the saxophone’s fundamental frequency and the harmonics. It completes

the truncated conical air column of the saxophone body by providing the volume equivalent

to that of the missing part of the cone. Simplified acoustic mouthpiece models have been

proposed for efficient sound synthesis (Kergomard et al., 2016, Scavone, 2002). However,

they considered only the mouthpiece volume and ignored the geometry details. Andrieux

et al. (2016) built the first 3D finite element model of the mouthpiece, making it possible to

study the acoustic effects of various mouthpiece geometric parameters.

The study of fluid dynamics in single-reed instruments (e.g., a clarinet or a saxophone)

began with the quasi-static empirical model proposed by Backus (1963). It was improved

by Hirschberg et al. (1990), who also adapted fluid models to different flow regimes and reed

channel profiles of the mouthpiece (van Zon et al., 1990). More recently, flow measurements

(Gilbert, 1991, Lorenzoni and Ragni, 2012) and numerical simulations (da Silva et al., 2007,

Shi, 2016, Yoshinaga et al., 2021) provided valuable insights into the fluid properties. How-

ever, the ways in which the mouthpiece influences the airflow and how the airflow alters the

sound remain unresolved.

1.3 Thesis objectives and scope

The main objective of the present research is to investigate how a mouthpiece influences

the sound and playability of a saxophone through acoustic and aeroacoustic analyses. A

1https://vandoren.fr/en/mouthpieces-technical-elements. Last accessed: May 2023.

https://vandoren.fr/en/mouthpieces-technical-elements
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set of modeling tools has been developed for conducting these analyses, allowing a compar-

ative study of mouthpieces with different geometries to understand the geometry-physics-

oscillation relationship.

The acoustic modeling of the mouthpiece is focused on its linear acoustic properties,

which is characterized by the input impedance. A variety of techniques are utilized to obtain

mouthpiece input impedances, including physical input impedance measurements, the finite

element model (FEM), and the newly proposed transfer matrix model (TMM) and trans-

mission line model (TLM) of the mouthpiece. TMM, which is derived from FEM, provides

an efficient way of modeling the mouthpiece while being accurate enough to retain complex

geometry information, whereas TLM is a further simplified representation by dividing the

mouthpiece into piecewise cylindrical segments. Along with acoustic mouthpiece characteri-

zation, TMM and TLM are applied to investigate oscillation characteristics by incorporating

a sound synthesis model, which helps complete the geometry-acoustics-oscillation analysis

routine. A mouthpiece design interface has been developed based on TLM, which allows

customizable mouthpiece geometries within defined restraints, and an instant calculation of

the input impedance and sound synthesis.

The aeroacoustic modeling of the mouthpiece involves fluid dynamics and its coupling

with acoustics and solids. A two-dimensional computation aeroacoustic model was developed

using the lattice Boltzmann (LB) method, where the fully-coupled fluid-structure-acoustic

interactions are implemented. Traditionally, the simulation domain includes the entire in-

strument and surrounding radiation field. However, this research proposes a characterization-

based time-domain impedance boundary condition (C-TDIBC) that models an acoustic sys-

tem by representing its impedance or reflection coefficients as a boundary condition in a

computational aeroacoustic model. C-TDIBC is essentially a combination of a time-domain

impedance boundary condition (TDIBC) that models the impedance in the time domain,

and a characteristic boundary condition (CBC) that solves the flow-acoustic coupling prob-

lem at the boundary. C-TDIBC is applied to the end of a mouthpiece-reed system to model

the bore of the instrument with radiation properties, which significantly reduces the com-

putational cost by truncating the domain of interest to a much smaller upstream section

of the saxophone body. The Ffowcs Williams and Hawkings (FW-H) acoustic analogy is

utilized to decompose the aeroacoustic source in the mouthpiece into monopole, dipole, and

quadrupole contributions to further characterize sound generation mechanisms. The FW-H

analysis provides the basis for the geometry-aeroacoustic-oscillation analysis routine, along
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with oscillation properties obtained in the LB simulation, such as pressure and velocity of

the flow, and displacement and velocity of the reed.

Finally, the influence of two mouthpiece design parameters are studied, namely, the

chamber size and baffle height, to demonstrate the feasibility and capability of the proposed

geometry-physics-oscillation analysis routines, targeting both quantitative and qualitative

explanations of oscillation variations caused by the geometry differences.

This research focuses on the development of methods and tools for analyzing the influence

of the mouthpiece in saxophone sound generation, with the aims at better explaining the un-

derlying physics in the mouthpiece for more informed mouthpiece design and sound synthesis.

Both TMM and TLM provide efficient ways of mouthpiece prototyping, and TLM addition-

ally provides a way of interactive mouthpiece design. Both mouthpiece models can replace

the traditional lumped mouthpiece model in the sound synthesis scheme, which helps better

preserve the mouthpiece-related acoustic features in the synthesized sound. The computa-

tional aeroacoustic model helps uncover the structure-related flow patterns and flow-induced

acoustic features in the mouthpiece, which offers rich information to be used in mouthpiece

customization.

1.4 Thesis outline

The structure of the thesis is shown in Fig. 1.3. The thesis is mainly grouped in two parts,

with Chs. 1 - 4 providing background knowledge and Chs. 6 - 8 covering the main contribution

of the research.

The present chapter describes the motivation and the context of the research. The review

provided in Sec. 1.2 briefly discusses research only on the mouthpiece, whereas Ch. 2 provides

a broader literature review on the single-reed instrument. Chapter 3 introduces fundamental

acoustic and aeroacoustic theories, focusing on the knowledge and techniques that will be

used in the subsequent chapters.

Chapter 4 covers the fundamentals of the lattice Boltzmann method (LBM), including

its derivation and development. The validation of LBM in aeroacoustic applications, as well

as the research on the acoustic radiation of the horn in the mean flow, is presented in the

Appendix B.

Chapter 5 focuses on the formulation of the characteristic boundary condition (CBC)

and its coupling with the time-domain impedance boundary condition (TDIBC), referred
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to as the characteristic-based time-domain impedance boundary condition (C-TDIBC) for

modeling an acoustic resonator in the LBM context.

Chapters 6 and 7 present methods for acoustic and aeroacoustic modeling and analysis

of the saxophone mouthpiece, respectively.

Chapter 8 applies methods presented in Chapters 6 and 7 to conduct a comparative

analysis of mouthpieces with varied geometries, controlled by a few design parameters. In

addition, Appendix C presents a mouthpiece design interface based on the transmission line

mouthpiece model provided in Sec. 6.5.

Chapter 9 concludes the thesis and discusses the possible future work.



Introduction
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Fig. 1.3: Thesis outline.
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Chapter 2

Literature Review

The present study aims to explore the connection between the saxophone mouthpiece geom-

etry and the instrument sound generation. However, the mouthpiece alone cannot generate

sound as it functions in conjunction with the reed and saxophone body as an integrated

system. Additionally, the saxophone sound generation involves interactions with the player,

who provides the energy source and controls the system. Viewed in this light, it is worth

reviewing the research in general on the single-reed instrument rather than focusing solely

on the mouthpiece.

The literature review in this chapter serves as support for the research on acoustic and

aeroacoustic analyses of the mouthpiece. Therefore, it will emphasize research that directly

inspires the present study or employs methodologies utilized in this research rather than

attempting to exhaustively cover all relevant research topics.

This chapter is composed of three sections, each of which provides a separate focused

literature review from a distinct perspective:

• Physics : Section 2.1 introduces the overall physical description of the sound genera-

tion process, as well as the mathematical framework and basic assumptions commonly

used in the majority of the single-reed instrument research. The section focuses on

various aspects of physics, such as the reed vibration, airflow, sound wave propagation

in the bore, and their interaction and coupling.

• Oscillation characteristics: Section 2.2 focuses on research that takes the single-

reed instrument as a nonlinear dynamical system to study the oscillation characteristics

of the instrument and their dependence on system parameters. Such research aims at a
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better understanding of how excitation parameters and instrument properties influence

the sound and playability of the instrument.

• Methodologies : Section 2.3 provides a methodology review that categorizes the re-

search based on the type of methodology, which covers analytical, experimental, and

numerical studies.

2.1 Physics and modeling of single-reed instrument sound

generation

The sound generation of a single-reed instrument involves a multiphysics problem, and the

corresponding study relies on the relevant research and knowledge of the underlying physics

such as vibration, acoustics and fluid dynamics. This section aims at providing physical

descriptions and the mathematical framework of the single-reed instrument sound generation

mechanism, which builds the base for the physical experiments and numerical simulations.

When a player plays the instrument, the air flows from the lungs toward the instrument

and builds up pressure in the player’s mouth. The mouth pressure provides the driving

force exerted on the reed, and at the same time, it drives the air to flow through the reed

aperture at the tip of the mouthpiece and into the instrument. The pressure on the reed

forces it to move toward the mouthpiece, and the moving reed in turn modulates the airflow

going through the reed channel. The moving reed also creates airflow, and the so-called reed-

induced flow disturbs the air in the acoustic resonator together with the pressure-driven flow.

The air disturbance travels back and forth in the pipe, and the reflected energy is fed into

the mouthpiece-reed system to support the reed oscillation.

Self-sustained oscillations are produced by the single-reed instrument, which are periodic

oscillations generated and sustained with a steady or slowly varying energy source. To

study such oscillations, the single-reed instrument is typically simplified as a combination of

an active generator and a passive resonator as illustrated in Fig. 2.1, with their interaction

assumed to be localized at the input end of the resonator. The active generator takes a steady

energy supply to produce oscillating signals that are transmitted to the passive resonator.

The resonator, in turn, provides the generator with the essential feedback to maintain the

oscillation.

The basic mathematical framework consists of two equations that model correspondingly

the linear resonator and the nonlinear generator. The resonator comprises the mouthpiece,
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nonlinear excitator

passive resonator

Source of energy

Fig. 2.1: Illustration of the single-reed instrument as a self-sustained oscillator.

the bore with toneholes, and the bell, and it can be represented by its frequency-domain

input impedance

Z(f) = P (f)/U(f). (2.1)

The generator is modeled by representing the airflow rate u(t) entering the resonator as a

time-domain nonlinear function of the acoustic pressure p(t) at the entrance of the resonator.

u(t) = NL[p(t)], (2.2)

The generator model can be further decomposed into a reed model and a fluid model, which

will be discussed in the following sections.

The next section will review the initial efforts made to develop a mathematical framework.

The research on reed vibration, airflow, and resonator physics will be addressed separately

in the three sections that follow.

2.1.1 Early development of mathematical framework

Helmholtz (1885, Appendix VII) provided one of the earliest physical and mathematical

discussions on the single-reed instrument sound generation1. He mathematically revealed the

reinforced odd partial tones of the cylindrical pipe of a clarinet and discussed the interaction

between the reed and the pipe.

Ghosh (1938) may have been the first to introduce a flow model into the reed-pipe system,

in which the flow velocity through the reed aperture is assumed to be linearly proportional

to the potential difference across the reed. Ghosh built the reed on a single-degree-of-

freedom mass-spring system, and the flow-potential relationship is controlled by the reed-tip

1The second English edition is cited here while the first German edition was published in 1863.



2 Literature Review 12

displacement and the reed channel conductivity K, where K is also a function of the reed-tip

displacement. A similar flow model was also used in the book by Morse et al. (1948, Ch.

23).

Backus (1963) further improved the model from different perspectives. He introduced

the pipe dissipation into the system, and for the first time demonstrated the importance of

the reed damping on the playing frequency. He may also be the first to use the steady-state

Bernoulli equation to describe the air velocity through the reed channel,

1

2
ρv2 = ∆p, (2.3)

where ∆p = pm − p is the pressure difference between the mouth pressure pm and the

pressure in the resonator p. The flow velocity v is proportional to the square root of the

pressure difference, and the volume flow rate u is calculated by integrating the velocity over

a rectangle reed aperture area A = hw, with h and w representing the height (tip opening)

and width of the reed channel, respectively. The integration yields u = vA if a uniform flow

is assumed through the tip window, equivalently written as,

u = hw
√

2∆p/ρ. (2.4)

Later in the article, Backus proposed an analytical expression fitted to the experimental

data, which correlates the flow rate to (∆p)2/3, and the difference between u ∝ ∆p1/2 and

u ∝ ∆p2/3 was attributed to the effect of the flexibility of the reed by him. However, the

fitted expression has not been found to be valid in subsequent experiments (Gilbert, 1991,

Maurin, 1992, van Zon et al., 1990), and the Bernoulli equation is more commonly applied

as the basis of the flow model.

Backus (1963) analytically introduced and experimentally demonstrated the nonlinearity

in the physical model and such a nonlinearity was further emphasized by Benade and Gans

(1968). In Benade and Gans (1968)’s paper, the wind instrument is considered as a self-

excited system composed of a valve driven by the reed dynamics, and the air column that

takes the output of the valve as an input and provides feedback to the reed. They took the

reed as a flow-controller, and stressed the importance of the nonlinearity in the excitation of

the air column oscillation. Following this work, Worman (1971) further completed the single-

reed instrument sound generation system in his thesis. The input impedance was used to
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represent the pipe as defined in Eq. 2.1, and a single-degree-of-freedom mass-string-damping

system was used to model the reed:

d2y

dt2
+ gr

dy

dt
+ ω2

ry = − 1

mr

∆p, (2.5)

where ωr = 2πfr with fr the resonant frequency of the reed, gr is the half-power bandwidth,

and mr is the effective mass per unit area. y is a measure of the reed tip displacement, with

h = y +H representing the tip opening, where H is the tip opening at equilibrium.

Worman (1971) also introduced the reed-induced flow into the system by adding a parallel

impedance to the resonator2. The flow rate through the reed channel u is decomposed into

two parts as u = upipe + ur, where upipe represents the part entering into the pipe, and ur

gives the portion that goes into the varying space created by the deflected reed, defined as

ur = −Sr
dy

dt
, (2.6)

where Sr is the effective reed area. However, Nederveen (1969) viewed the reed-induced flow

differently by assuming a different relationship between u, ur, and upipe as

upipe = u+ ur. (2.7)

This means that both the pressure-driven flow through the reed channel and the reed-induced

flow contribute to the flow entering the pipe, and such an interpretation seems to be more

adapted in the following research (Chaigne and Kergomard, 2016, Coyle et al., 2015, Dalmont

et al., 1995).

The calculation of reed-induced flow requires the value of the effective reed area Sr.

It is normally an empirical value, and Nederveen (1969) provided an estimated range of

Sr ∈ (0.2w2, 2w2), where w is the width of the reed.

Equations. 2.4, 2.5 and 2.7 build up the system of the nonlinear generator in Eq. 2.2, and

together with the resonator represented by Eq. 2.1, they form the governing equations for

the single-reed instrument sound generation. An illustration of the mathematical framework

is shown in Fig. 2.2 to demonstrate concepts of different physical variables.

2It is worth noting that Worman attributed the introduction of the reed-induced flow to Wilhem Weber,
as he stated that “We may parenthetically remark that it was Weber who first took explicit account of the
effect of this Zr on the natural frequencies of a pipe which is terminated by a reed.”
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reed

Mouthpiece

Teeth

Lip

Fig. 2.2: Illustration of the single-reed instrument sound generation framework.

Such a mathematical framework has been widely applied, particularly to explore the os-

cillation characteristics of the system, which will be discussed in Sec. 2.2. It also forms the

basis for research in developing sound synthesis and nonlinear dynamical systems (Sec. 2.3.3).

Despite the power and versatility of the mathematical framework, there exist several limi-

tations to the model, primarily due to various assumptions and simplifications made when

developing the system, including:

• the resonator is assumed to be a linear system: this makes it possible to model the

resonator by its input impedance, but it ignores all nonlinearities within the resonator,

such as the influence of flow convection on the wave propagation and the nonlinear

effects around the toneholes and the bell.

• the sound generator is assumed to have a localized nonlinearity, and this assumption

has a few implications:

– the distributed reed vibration is simplified as a single-degree-of-freedom oscillator.

– the distributed airflow and its interaction with the reed is also simplified to a

localized interaction at the tip of the reed.
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• a localized interaction is assumed between the resonator and the generator: unlike

the reed tip, which is assumed to be the localized point for the flow-reed interaction,

defining the local site to couple the generator and resonator is more difficult. To

facilitate the localized coupling, one can think of an imaginary area in the mouthpiece

where the resonator’s input impedance is defined. The pressure and flow rate are

assumed to be uniform over this plane and equals to that at the reed tip in order to

couple the resonator and the generator.

• the interaction between the reed and the mouthpiece is neglected in the reed model.

• the flow is assumed to be uniform through the tip window.

• the flow in the reed channel is assumed incompressible and quasi-stationary, so the

Bernoulli equation can be applied.

• the flow is assumed to be two-dimensional, and the flow only enters the mouthpiece

through the front tip window, i.e., the air that enters from the side slits is neglected.

• the hydrodynamic force on the reed due to the airflow is negligible.

One of the primary goals of the study on the single-reed instrument is to validate or

disprove the above assumptions and simplifications. The following sections will review the

study that further extends our understanding of the sound generation process, which investi-

gates in-depth the physics of different components of the system and their interactions with

one another.

2.1.2 Reed vibration

The physics of the reed vibration includes not only the reed itself, but also the elements that

interact with the reed, such as the airflow, mouthpiece, and the player’s lip and tongue. As

a result, the modeling of the reed involves not just the reed mechanical system itself, but

also the integration of other elements.

Muñoz Arancón (2017, Sec. 1.1.2) has provided a detailed review on the physical models of

the reed, which are classified as the lumped model, beam model and plate model. The lumped

model and the beam model are discussed here because they are applied correspondingly in

the mouthpiece acoustic modeling in Ch. 6 and aeroacoustic modeling in Ch. 7.
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2.1.2.1 Lumped model

The simplest lump model represents the reed as a massless spring,

kry = −∆p, (2.8)

where kr is the effective reed stiffness per unit area, and the pressure difference across the

reed ∆p = pm − p works as a driving force.

Worman (1971) is one of the earliest researchers who introduced both the mass and

damping into the system3. It is governed by Eq. 2.5, and is sometimes written in the form

of

mr
d2y

dt2
+ µr

dy

dt
+ kry = −∆p, (2.9)

where µr = grmr is the effective damping per unit area, and ωr =
√
kr/mr.

While the interaction with the fluid is achieved by coupling the pressure difference ∆p =

pm − p as the driving force, the interaction with the mouthpiece requires extra adaption of

the model.

The collision model was inspired by research on the hammer-string interactions of a piano

(Chaigne and Askenfelt, 1994, Hall, 1992), such that Chatziioannou and van Walstijn (2012)

introduced the one-sided contact force between the reed and the lay based on the power law,

mr
d2y

dt2
+ µr

dy

dt
+ kry − kc(by − ycc)αc = −∆p, (2.10)

and

by − ycc =

y − yc, if y < yc,

0, otherwise,
(2.11)

where kc is a stiffness coefficient, αc ≥ 1 is the power law exponent, and yc is an empirical

value that represents the displacement threshold below which the power law is active.

It is not easy to include the player’s lip explicitly in a lumped model since the lip is

in contact over a certain area with the reed. Therefore, the lip is commonly integrated by

modifying the lumped model coefficients. Efforts have been made to estimate such coefficients

from measurements (Chatziioannou and van Walstijn, 2012, Muñoz Arancón et al., 2016),

3Ghosh (1938) employed a mass-spring oscillator without the damping effect, while Nederveen (1969)
introduced the damping term but neglected the mass.
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and a larger lip force can result in a smaller tip opening H, larger damping µr and hence a

smaller resonance frequency ωr.

The incorporation of the tongue can be achieved similarly, and the tongue articulation

was modeled empirically by modifying the reed coefficients, which specifically increase the

mass mr and damping µr, and decreases the equilibrium tip opening H (Chatziioannou and

Hofmann, 2013, 2015). The tongue was also modeled as a separate mass-spring-damping

system by Ducasse (2003), with its equilibrium position controlled separately. Its interaction

with the reed was achieved by forming the tongue oscillator and the reed oscillator as a single

system. In addition, Almeida et al. (2017) proposed the water hammer model to simulate

the initial transients of a clarinet, where the tonguing induces a sudden increase in airflow.

It is worth noting that the reed is sometimes represented by its equivalent capacitance

(Coyle et al., 2015, Worman, 1971), where the transconductance of the reed is derived from

Eq. 2.5 and is shown as
y

∆p
= − 1

mr(ω2
r − ω2 + jωgr)

. (2.12)

The reed-induced impedance Zr can then be calculated using Eqs. 2.6 and 2.12, and is

expressed as follows if we neglect the impedance of the vocal tract:

Zr =
p

ur
=

p

Sr
dy
dt

= − mr

jωSr

(
ω2
r − ω2 + jωgr

)
. (2.13)

It can be simplified at low frequencies

Zr ≈ −
kr
jωSr

, (2.14)

which can be viewed as a parallel acoustic compliance Cr = Sr/kr attached to the resonator,

with an equivalent volume V eq
r = ρc2Sr/kr

2.1.2.2 Beam model

The beam model was first applied in single-reed instruments by Stewart and Strong (1980),

where the reed transverse motion y(t) is governed by

∂2

∂x2

(
Y I(x)

∂2y

∂x2

)
+ ρrS(x)

∂2y

∂t2
+Rr

∂y

∂t
= F (x, t), (2.15)
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where ρr represents the density, Y denotes Young’s modulus, Rr represents the damping,

and I(x) = S(x)κ2(x) represents the moment of inertia about the longitudinal axis with

κ(x) being the radius of gyration of the cross-section S(x) = wb(x). w and b(x) denote the

width and thickness of the reed, respectively. The force term F (x, t) includes the pressure

difference across the reed and the Bernoulli force due to the flow passing through the reed

channel.

Avanzini and van Walstijn (2004) further completed the model by introducing viscoelastic

losses:
∂2

∂x2

[
Y I(x)

(
1 + η

∂

∂t

)
∂2y

∂x2

]
+ ρrS(x)

[
∂2y

∂t2
+ γB

∂y

∂t

]
= F (x, t), (2.16)

where η is magnitude of the internal viscoelastic losses, and γB is an alternative damping

coefficient.

In addition, the force term involves not only the pressure difference but also the collision

force between the reed and the lay, as well as the lip force distributed over a contact area.

This model will be applied in the aeroacoustic modeling of the mouthpiece, and detailed in

Sec. 7.1.2.

2.1.2.3 Other models

There exist other higher-dimension models such as the two-dimensional thin plate model us-

ing finite element method (Ducasse, 2001, Facchinetti et al., 2003) or finite difference method

(Chatziioannou and van Walstijn, 2007), and the Mindlin thick plate model (Casadonte,

1995, Ch. V), and one can refer to corresponding articles for details.

2.1.3 Airflow

The unsteady Bernoulli equation can be derived from the Navier-Stokes equation (which

will be introduced in Sec. 3.1) by assuming a frictionless flow along a streamline. If the

streamline follows the x direction, then we have,

ρ

∫ b

a

∂v

∂t
dx+ pb − pa +

1

2
ρ(v2

b − v2
a) = 0, (2.17)

where a and b represent two points along the streamline.

The steady Bernoulli equation can be obtained by dropping the unsteady term ∂v/∂t
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from the above equation:

pa +
1

2
ρv2

a = pb +
1

2
ρv2

b = const. (2.18)

Applying the Bernoulli equation to the flow within the reed channel and assuming a

zero velocity in the mouth leads to the expression of the jet velocity in terms of the pressure

difference shown in Eq. 2.3, and the corresponding flow rate in Eq. 2.4 by assuming a uniform

flow passing through a rectangular tip window.

Hirschberg et al. (1990) made an analogy of the reed channel to the Borda tube. The

flow is assumed to separate at the tips of the mouthpiece and the reed and forms a free jet

in the channel. The jet height hj is shorter than that of the tip opening, so that leads to

a smaller integration area of the Bernoulli flow. The vena contract coefficient α = hj/h is

introduced and Eq. 2.4 is modified as

u = αhw
√

2(pm − p)/ρ. (2.19)

More theoretical fluid models were proposed under the quasi-steady state assumption in

the 1990s (Hirschberg et al., 1990, van Zon et al., 1990, van Zon, 1989). The fluid is classified

based on the dimensionless reed channel length L/h with L representing the physical reed

channel length, and the Reynolds number defined as

Re =
u

νw
, (2.20)

where ν is the kinematic viscosity of the air. A list of all available fluid models at the time4

was provided in van Zon (1989, Ch. 2.7)’s thesis, which is shown below,

1. the empirical model proposed by Backus (1963), which states that u ∝ p2/3h4/3

2. the Bernoulli flow model based on Eq. 2.4

3. the free jet model : the introduction vena contracta coefficient hj/h = α leads to

Eq. 2.19 by assuming the flow separation at the entrance of the reed channel. It

is also assumed that L/h < 1, so that the jet goes over the entire reed channel without

reattaching to the wall after the initial separation. Hirschberg et al. (1990) defines the

range of the vena contracta coefficient 0.5 < α ≤ 0.611 based on the potential flow

theory.

4. the boundary layer flow model : the flow reattaches to the wall at x = lr after the initial

4To the best of the author’s knowledge, no new fluid models have been proposed since then.
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separation at the entrance of the reed when L/h > 1, and it is assumed that lr ∼ h and

a uniform flow at the reattachment point (van Zon et al., 1990). It starts to develop

toward the Poiseuille flow after the reattachment, and the flow exits the reed channel

before it is fully developed. Such a transition is modeled as a boundary layer flow with

a linear boundary layer velocity profile assumed, and the vena contracta coefficient is

given as:

αbl = 1− δ̂(L),

where the δ̂(L) = δ(L)/h is the dimensionless boundary layer thickness at the end of

the reed channel.

5. the Poiseuille flow model : the reed channel is longer than the previous case L/h � 1

so that the flow has already been fully developed at x = lp before the reed channel

exit, and flow rate is calculated using the following expressions:

u =
νw

Ch
(lp − lr),

where lp − lr is the length of the boundary layer flow between the reattachment point

and the Poiseuille flow

lp − lr
L− lr

=
12C(1− δ̂c)2

24C − 1

[
1−

√
1− h4(24C − 1)∆p

72ρν2(L− lr)2(1− δ̂c)2

]
,

with δ̂c = δc/h ≈ 0.2688 the dimensionless critical boundary layer thickness for a

channel of height h, and C =
[
4δ̂c + 9 ln

(
1− δ̂c

)
+ 5 δ̂c

1−δ̂c

]
≈ 0.01594 (da Silva et al.,

2007). Figure 2.3 illustrates the flow field in a long reed channel mouthpiece (L/h� 1),

which involves three different flow regimes that occur consecutively from the entrance

to the exit of the reed channel.

6. the turbulent flow model : the free jet transits to a turbulent flow in the reed channel,

αturb =
α2

2α2 − 2α + 1
,

where α is the vena contracta coefficient of the free jet model.

Efforts have been made in past decades to validate the proposed fluid models and one

widely studied subject is the value of the vena contracta coefficient. The vena contracta
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free jet model

Fig. 2.3: Illustration of the fluid field in a long reed channel mouthpiece (L/h � 1) that
involves all three different flow regimes. The fluid model labels indicate the range of L to
apply the corresponding fluid model.

coefficient of a stationary regime flow was measured in a two-dimensional mouthpiece by

van Zon et al. (1990), and calculated using a 2D lattice Boltzmann simulation by da Silva

and Scavone (2007), and both results confirms the validity of the free jet model for a 2D

flow. However, a quasi-static measurement in a real 3D mouthpiece by Dalmont et al. (2003)

showed a larger α ∈ (0.85, 1.30), which was attributed to the flow through the lateral side

slits by the authors. Such a result was later confirmed by a 3D computational aeroacoustic

simulation by Yoshinaga et al. (2021). Another interesting finding in the literature is that

both Dalmont et al. (2003) and da Silva and Scavone (2007) showed a constant α for a

relatively large tip opening, but it decreases quickly when the reed tends to close. Such

a result is not surprising because the viscous effect will play a more important role for a

narrower channel, in which case a flow model similar to the Poiseuille model or boundary

layer flow model should be applied instead of the free jet model .

It is worth reiterating that all the fluid models that have been proposed so far are based

on the quasi-stationary assumption, which assumes the time-varying flow as a series of steady

flow rates at each time frame, with unsteady effects neglected. Such an assumption normally
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works well in fluid dynamics for a small Strouhal number flow, so that the unsteady term in

Eq. 2.17 can be dropped. The quasi-stationary assumption was verified in the application to

pulsating jets through an orifice (Zhang et al., 2002) but its validity in single-reed instrument

application is still questionable.

Gilbert (1991) measured the contraction coefficients of the single-reed instrument with

the help of a hot-wire anemometry. This work used a real mouthpiece coupled to a resonator

with the first resonant frequency of 140 Hz. The agreement between the coefficients measured

under the static regime and the dynamic regime confirms the validity of the quasi-stationary

assumption in the single-reed instrument. Maurin (1992) showed the same result for the 140

Hz resonator, however, he observed a large hysteresis for the measurement using a 640 Hz

cylindrical pipe, which violates the quasi-stationary assumption. Earlier measurements by

van Zon et al. (1990) for the dynamic flow without a resonator also displayed the hysteresis,

as well as a large discrepancy between the measured data and the theoretical fluid model.

This indicates that, even for a small Strouhal number (it measured St = 0.01), there is still

hysteresis which cannot be described by the quasi-stationary model. The hysteresis was also

found by other researchers, particularly when playing the instrument at higher frequencies

(1000 Hz by da Silva et al. (2013), 584 Hz by Shi (2016), and 1800 Hz by da Silva and

Scavone (2007)).

The hysteresis effect shows its dependency on the mouthpiece geometry (Maurin, 1992),

the playing frequency and excitation parameters (da Silva et al., 2013). Further research is

required to reveal the underlying physics and to propose a proper unsteady fluid model for

the single-reed sound generation.

2.1.4 Resonator

The acoustic resonator is composed of various components, including the pipe (which may

involve bends), toneholes, and the bell. Each component has generated interest among

acousticians, not only in musical acoustics but also in other research fields.

The pipe is a crucial component in determining the oscillation characteristics of an

instrument. The length of the pipe, to a large extent, determines the playing frequency

while the shape of the pipe determines the timbre. Most research has focused on acoustic

waves below the cutoff frequency, where non-planar waves are considered evanescent and

attenuate quickly, resulting in the propagation of only planar waves through the pipe. The
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cutoff frequency is given by ωc = 1.84c/a, where a is the radius of the pipe. For a more

extensive discussion of the acoustics of pipes, please check the books by Fletcher and Rossing

(1998, Ch. 8) and Chaigne and Kergomard (2016, Ch. 7).

Toneholes are placed along the bore of the single-reed instrument to allow it to play

various notes. In general, toneholes are known to function as low-pass filters that pass high-

frequency components to the lower bore while reflecting low-frequency components back to

the upper bore. Such reflections cause a standing wave in the upper bore to support the reed

vibration. Benade (1960) and Keefe (1982a,b) conducted early studies on the physics of the

tonehole, which was considered as an acoustic side branch positioned on the main pipe. The

acoustics of the side branch was theoretically explored using the modal decomposition and

variational method (Dubos et al., 1999, Keefe, 1982b), and a lumped model was proposed by

representing the tonehole as a combination of series and shunt impedances in an equivalent

circuit. The tonehole geometry affects the series and shunt impedances, which are commonly

expressed as a function of tonehole height t and the radius ratio δ = b/a, where b and a

represent the tonehole radius and main pipe radius, respectively. The series impedances

are generally negative acoustic inertances, which provide for negative length corrections

accounting for the decreased kinetic energy density due to the flow penetration into the

tonehole cavity, as well as influences of the evanescent mode of the side branch (Dubos

et al., 1999). The shunt impedance incorporates multiple effects, including the impedance

of the side branch itself, length corrections of the side branch, and the radiation impedance

for an open tonehole (Dalmont et al., 2002).

Benade (1960) also pioneered the study of the tonehole lattice effect on the cutoff fre-

quency of the instrument. Such effects have been later examined in detail for both cylindrical

(Moers and Kergomard, 2011, Petersen et al., 2020b) and conical resonators (Petersen et al.,

2020a).

Sound radiation is another important topic in the context of musical instruments, and it

is often characterized using a radiation impedance. The radiation impedances for unflanged

and flanged circular pipes were derived by Levine and Schwinger (1948) and Nomura et al.

(1960), respectively. Corresponding approximation formulations, such as those proposed

by Norris and Sheng (1989), Dalmont et al. (2001), and Silva et al. (2009), have been

developed to aid in efficient radiation impedance calculations. In addition to circular pipes

with simple flanges, Dalmont et al. (2001) explored radiation impedances with various flanges

and provided approximated formulae for the end correction, and Hélie and Rodet (2003)
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proposed analytical expressions for radiation of a pulsating portion of a sphere, which can

be applied to a horn or a conical pipe.

The player’s vocal tract is considered as another resonator located upstream of the

reed. It can be represented by its input impedance looking at the reed into the mouth, which

is in series with the impedance of the resonator (Benade, 1986). Experienced players often

tune their vocal tracts to play in the altissimo register for both clarinet (Fritz and Wolfe,

2005) and saxophone (Chen et al., 2008). The player adjusts the impedance of the vocal

tract to reinforce the overall impedance around the playing frequency to make it easier for

the reed to oscillate at the instrument’s resonance frequency. In addition, the vocal tract

can be used for performing special effects such as pitch bends, multiphonics and glissandi

(Chen et al., 2011, Fritz and Wolfe, 2005, Scavone et al., 2008).

2.2 Oscillation characteristics of the dynamical system

The single-reed instrument can be considered as a nonlinear dynamical system that is char-

acterized by a time-dependent function. The function is governed by a number of system

parameters defined by the instrument characteristics and the player’s embouchure. The

oscillation characteristics of the system, such as the playing frequency and the oscillation

threshold, naturally infer the sound quality and the playability of the instrument. Therefore,

it is essential to investigate the oscillation characteristics of the system and their dependence

on the system parameters in order to establish a link between an instrument’s physical prop-

erties or the playing embouchure and the performance of the instrument.

This section provides a literature review on the research that studies the dependency

of the oscillation characteristics on different factors. The oscillation characteristics mainly

involve sound properties such as the playing frequency, spectrum and sound level, as well

as the bifurcation characteristics, which indicates the stability and thresholds of different

regimes. There exists multiple regimes in such a single-reed system, such as5

• the static regime, where there is no oscillation or sound produced,

• the periodic oscillation regime, where the system undergoes a periodic oscillation, and

• the quasi-periodic oscillation regime, where the system generates a quasi-periodic os-

cillation and produces a multiphonic sound.

5There exists also other regimes such as chaotic regime (Maganza et al., 1986), which is, however, not
listed here due to its lack of study and less musical interests.
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The bifurcation analysis helps explore the playability of the instrument by investigating

different thresholds (e.g, the oscillation thresholds and the extinction thresholds), the playing

frequency at these thresholds, as well as their dependence on different control variables. The

control variables are contributed by both the instrument and the player as listed below, and

their influences on the oscillation characteristics will be discussed in the following sections:

• reed : the reed stiffness, reed damping, reed-induced flow.

• resonator : the bore shape (cylindrical or conical), losses, inharmonicity, cutoff.

• airflow : the vena contracta coefficient.

• player : the mouth pressure, lip force, lip position, and the effect of the vocal tract.

2.2.1 Reed

Backus (1963) derived the analytical expressions for the blowing pressure threshold and the

negative frequency shift of the small-amplitude oscillation, which are shown to be linearly

and inversely proportional to the reed stiffness. Wilson and Beavers (1974) made use of a

similar method to explore the effect of the reed damping. It is found that the reed damping

plays the main role in helping the reed to oscillate at the resonant frequencies of the pipe.

Wilson and Beavers (1974) plotted dimensionless playing frequency θ and the dimensionless

mouth pressure oscillation threshold γ as a function of the dimensionless wavenumber krL,

where kr = 2πfr/c is the resonant wavenumber of the reed, and L represents the length of

the cylinder. While the playing frequency decreases monotonically with the krL, the mouth

pressure threshold’s dependence on krL shows a more complex behavior. However, at a larger

reed damping, the mouth pressure threshold is shown to decrease nearly monotonically with

the reed resonant frequency.

Nederveen (1969) investigated the effect of the reed-induced flow and the reed damping

on the playing frequency. The playing frequency shifts are expressed as length corrections

of the cylindrical pipe, which is found to increase with the tip opening at the equilibrium

state.

The length correction due to the reed-induced flow can be expressed as (Dalmont et al.,

1995)

∆lr =
ρc2Sr
krS

, (2.21)

where Sr is the equivalent reed area, S is the cross-section of the cylinder, and kr is the

stiffness of the reed. Though the equilibrium tip opening H is not included in Eq. 2.21, it
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can be inferred that Sr will decrease and kr will increase when the reed moves closer to the

lay (smaller H) due to a tighter embouchure and thus, ∆lr should decrease with a smaller

H.

Silva et al. (2008) conducted a similar analysis as Wilson and Beavers (1974) and proposed

an analytical expression for the length correction due to the damping effect:

∆lq ≈ ζ
qr√
3kr

, (2.22)

where ζ = wZc
√

2H/ρkr is a dimensionless number proportional to the maximum flow

rate, and qr is the damping coefficient of the reed. It showed that ∆lq increases with the

reed damping and tip opening, and it will decrease with the reed resonant frequency. Such

behavior was also confirmed for higher registers by Karkar et al. (2012) who solved the

problem with a numerical continuation approach.

Karkar et al. (2012) also explored the dependency of the oscillation threshold. They

showed that while the mouth pressure oscillation threshold rises with the reed damping,

the reed resonant frequency has a more complex impact. The mouth pressure threshold,

however, is shown to decrease monotonically with the reed resonant frequency at higher reed

damping, which is consistent with the results shown by Wilson and Beavers (1974) and Silva

et al. (2008).

It is worth mentioning that both ∆lr and ∆lq increase with the tip opening, which

suggests that stronger mouth pressure and lip force can reduce the length correction and

increase the playing frequency. Such embouchure effects will be discussed in Sec. 2.2.4.

2.2.2 Resonator

The resonator is known as a key component of the wind instrument in determining its

sound properties. For example, the pipe length determines the fundamental frequency of

the instrument, and different bore shapes can result in distinct harmonic amplitudes of the

resulting sound. This section will focus on how the resonator geometry affects the playability

of the instrument.

Grand et al. (1997) conducted an analytical study of the nature of the bifurcation for

small oscillations of a single-reed instrument. The bifurcation analysis was performance

based on the Taylor expansion of the nonlinear flow-pressure relationship u = u0 + Ap +
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Bp2+Cp3, and the linear flow admittance A is chosen as the control parameter. The solution

is expressed in terms of the expansion coefficients A, B, C, and the resonator admittance

An at the n-th resonant frequency. It revealed that the impedance peak amplitude An is

significant in defining the bifurcation nature, and changing the peak amplitudes can cause

a subcritical (inverse) bifurcation, which indicates a sudden emergence of the oscillation at

the bifurcation point. Dalmont et al. (2000) applied a similar technique to study the conical

reed instrument, and the conical resonator was modeled as a sequence of lossless stepped

cylinders. It demonstrated the supercritical bifurcation in the cylindrical instrument and

the subcritical bifurcation in the conical instrument. Multiple regimes were seen at the

fundamental frequency of the conical instruments, including both the Helmholtz motion and

the inverted Helmholtz motion, as later demonstrated by Dalmont (2007).

In addition to the amplitude, the frequencies of impedance peaks, particularly the inhar-

monicity between the first two resonant frequencies, also affect the oscillation characteristics.

The inharmonicity can be influenced by a variety of factors such as the geometry of trun-

cated cone (e.g., the length and the conicity) (Ayers et al., 1985) and the viscothermal losses

in the bore (Kergomard et al., 2000). A greater inharmonicity not only produces a larger

deviation of the playing frequency from the impedance peak (Coyle et al., 2015, Kergomard

et al., 2000, 2017), but it also makes it more difficult to play the instrument, as demonstrated

both experimentally (Dalmont et al., 1995) and numerically using the continuation method

(Gilbert et al., 2019, 2020). In addition, the inharmonicity is found to be a necessity of the

quasi-periodic regimes (Doc and Vergez, 2015, Doc et al., 2014).

Losses in the system are another important factor affecting the oscillations. In addition

to the above-mentioned influence of the viscothermal losses by inducing the inharmonicity,

it also influences the ease of playing of the instrument. Atig et al. (2004) simulated the

clarinet oscillation with Raman’s model, which assumes frequency-independent losses, and

found that a larger loss leads to a lower extinction threshold of the mouth pressure. Dalmont

et al. (2005)’s analytical analysis with Raman’s model showed a similar result. In addition,

it showed an increasing oscillation threshold with losses. The effect of the nonlinear losses,

particularly the losses influenced by termination geometry, is experimentally and numerically

studied by Atig et al. (2004), which showed that larger nonlinear losses result in a smaller

playing range and dynamic level.
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2.2.3 Airflow

There is little research studying the influence of the airflow on the oscillation characteristics.

Experimentally, this is due to the difficulty of measuring the flow field quantities in the

mouthpiece, and numerically and analytically, this is because that the current flow model

is built based on the 2D flow theory and there is lack of a well-established realistic 3D

flow model. The vena contracta effect is the only factor that has been examined. It was

studied analytically (Silva et al., 2008) and numerically (Chatziioannou and van Walstijn,

2008) by introducing the contraction coefficient α into the fluid model. Chatziioannou and

van Walstijn (2008) showed that a smaller α shifts upwards the harmonic frequencies, and

comparing a varying α and a constant α, the difference is significant in the transients but

small for steady-state signals.

2.2.4 Player

When it comes to the mouth pressure, the majority of the research has focused on the

pressure thresholds at which the oscillation starts, extinguishes, or changes the regime, and

studies on how such thresholds change with other parameters. However, the mouth pressure

can be regarded as a control variable itself, which alters the other oscillation characteristics

such as the playing frequency and the sound level.

Both increasing mouth pressure and lip force were observed to reduce the playing fre-

quency in experiments (Almeida et al., 2013, Bak and Dømler, 1987, Mayer, 2003) as men-

tioned in Sec. 2.2.1. This result is supported by Dalmont and Frappe (2007)’s experiment. It

showed that the maximum flow rate, which theoretically equals 2
3
√

3
ζ, decreases with increas-

ing lip force. The experiment (Almeida et al., 2013, Mayer, 2003) revealed more complicated

behaviors under certain conditions. With a lower lip force, for example, a rising mouth

pressure first decreases and then increases the playing frequency.

Almeida et al. (2013)’s experiments also revealed that as the lip force drops, it requires a

higher mouth pressure to excite the instrument. Such an observation can also be explained

with existing knowledge, because increasing the lip force increases the equivalent damping

of the reed (Gazengel et al., 2007), which raises the mouth pressure threshold as discussed

previously.

To better illustrate the player’s influence on the sound generation, a map resembling the

Schelleng diagram for string instruments can be created from the measured data (Almeida
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et al., 2013, Mayer, 2003). A schematic illustration and an example are shown in Fig. 2.4. The

map typically displays different oscillation characteristics in a space spanned by the mouth

pressure and the lip force. It helps not only reveal the dependence of oscillation properties on

the playing parameters, but also helps identify different regimes and corresponding thresholds

of different playing parameters.

Fig. 2.4: A schematic of the regimes on the mouth pressure - lip force plane (left) and an
example of the map (right). Reproduced from Almeida et al. (2013), with the permission of
AIP Publishing.

As discussed in Sec. 2.1.4, a player adjusts his/her vocal tract to help perform in the

altissimo register or for special effects. Furthermore, the vocal tract is known to influence

the timbre of the instrument. Li et al. (2015) found that harmonics of radiated sound can be

reinforced by adjusting the vocal tract to make its input impedance magnitude comparable

with that of the bore. Various studies have observed a similar effect (Benade, 1986, Scavone

et al., 2008).

Tonguing is another important aspect of single-reed instrument performance that is

known to influence various transients. However, a review on the tonguing effects will not be

covered here (readers are referred to Almeida et al. (2017), Li et al. (2016a,b)and Pàmies-Vilà

et al. (2018) for more detailed discussion).
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2.3 Methodology Review

From the point of view of methodologies, the research on the single-reed instrument is clas-

sified into three categories as theoretical/analytical, experimental6, and numerical studies.

2.3.1 Theoretical and analytical studies

The theoretical study aims at proposing a proper physical description and mathematical

model to explain the observed physical phenomenon throughout the single-reed instrument

sound generating process. It serves as the foundation for analytical and numerical research

and is continuously refined with the support of physical and numerical experiments. Early

development of the mathematical framework relied largely on the theoretical study as dis-

cussed in Sec. 2.1.1.

The analytical research presented here is specifically concerned with studies that an-

alytically calculate the oscillation and analyze the oscillation characteristics based on the

mathematical model. Backus (1963) assumed a small amplitude vibration, and linearized

the system by expressing the variables as a sum of an equilibrium value and a small sinu-

soidal perturbation. A characteristic equation of the linearized system is constructed in the

frequency domain, which connects the resonator admittance and the embouchure parame-

ters such as the mouth pressure. The analytical solutions to the characteristic equation are

used to investigate the basic characteristics of the oscillation such as the mouth pressure

and frequencies at the oscillation thresholds, and oscillation’s dependence on other system

parameters (Silva et al., 2008, Wilson and Beavers, 1974).

Another type of frequency-domain analytical study relies on the Fourier expansion of

the pressure and the Taylor expansion of the nonlinear Eq. 2.2 (Benade and Gans, 1968,

Grand et al., 1997, Kergomard, 1995). The system solution provides expressions of the

Fourier expansion coefficients, i.e., the amplitudes of harmonics of the pressure signal, and

the expression is written in terms of the Taylor expansion coefficients and the resonator

admittance at the respective resonant frequencies, either of which can be used as a control

variable to study its influence on the oscillation characteristics.

In addition to the frequency-domain impedance or admittance, the time-domain reflection

function was applied for analytical studies of oscillation thresholds and stability (Kergomard,

6It means physical experiments here.
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1995, Ch. 6.3), as well as to investigate the effect of resonator losses using Raman’s model

(Dalmont et al., 2005, Taillard and Kergomard, 2015).

2.3.2 Experimental study

Experimental studies are classified into two categories based on the condition of the instru-

ment during the measurement, including measurements with and without players.

2.3.2.1 Measurements without players

The measurement of an instrument at rest normally aims at investigating the linear prop-

erties of the instrument. Such measurement ignores the influence of the performer on the

instrument and focuses on the properties of the instrument itself.

The most typical example is the input impedance measurement of the resonator. The

measured input impedance is used not only to characterize the resonator acoustics, but also

for oscillation characterization and sound synthesis. Readers might refer to the papers by

Dalmont (2001a,b) and Dickens et al. (2007, Sec. II) to learn about the various available

techniques. There are two most commonly applied techniques for measuring wind instru-

ments. The first one is based on the two-microphone-three-calibration (TMTC) technique

(Gibiat and Laloë, 1990). The primary component is the measurement head, which is typi-

cally a cylindrical pipe with one side closed by a loudspeaker and the other side connected

to the object to be measured. Two microphones are installed at different points along the

pipe to measure the acoustic signal, which is then utilized to calculate the input impedance

in conjunction with the coefficients obtained during the calibration process. There exist

variants of TMTC, which may include more microphones or a different set of calibrations

to improve measuring accuracy and range (Dickens et al., 2007, van Walstijn et al., 2005).

Another widely used equipment was developed jointly by CTTM (Centre de Transfert de

Technologie du Man) and LAUM (Laboratoire d’Acoustique de l’Université du Maine) (Dal-

mont and Le Roux, 2008, Macaluso and Dalmont, 2011). The setup includes a small cavity,

which is separated by a piezoelectric buzzer into a fully-sealed back cavity and a front cavity

connected to the acoustic component to be measured. Two microphones are flush mounted

to the two cavities, and the measured signal is used to compute the input impedance with

two analytical variables determined by the cavity shape and the microphone sensitivity.
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2.3.2.2 Measurements with players

Measurements of musical instruments under the playing condition provide the dynamic char-

acteristics of the system. They are mostly used to investigate the oscillation characteristics

of the instrument, as well as their dependence on the player’s embouchure or the instrument’s

properties, as detailed in Sec. 2.2. Such measurements also help capture the nonlinear phe-

nomena of the system that are not available without playing the instrument, such as the

turbulent flow in the mouthpiece (Lorenzoni and Ragni, 2012) and the nonlinear losses at

the pipe termination (Atig et al., 2004).

Though a human player can play the instrument during the measurement, mechanical

(artificial) players are more commonly used for measurements that require a great repeata-

bility or accurate control of the embouchure. Appendix A presents a more in-depth review

on the artificial player, including methods of controlling the embouchure, measurable signals

and the selection of equipment.

2.3.3 Numerical study

The numerical study can be roughly categorized into the following three groups based on

the research objectives and applications:

• high-fidelity physical models,

• nonlinear dynamic systems, and

• sound synthesis.

2.3.3.1 High-fidelity physical models

The high-fidelity computational model is normally applied to study the physics of the in-

strument, and it involves a governing equation system to model the physical problem. The

governing equation system is typically composed of partial differential equations and bound-

ary conditions, which describe the corresponding physical fields. Examples include the wave

equation in time-domain acoustic problems, the Helmholtz equation in frequency-domain

problems, and the Navier-Stokes equation for fluid dynamic problems. The physical field first

requires domain discretization, after which numerical methods are applied to solve the prob-

lem. The finite element method (FEM) is often used to solve the frequency-domain acoustic

problem, such as the frequency-domain acoustic characterization of various resonator com-

ponents including the mouthpiece (Andrieux et al., 2014) and the tonehole (Lefebvre and
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Scavone, 2012), to name a few. In addition, it can also be applied for the modal analysis

of the reed (Facchinetti et al., 2003). It is also possible to apply FEM in a time-domain

simulation, however, the finite difference method (FDM) is most commonly applied in time-

domain simulations of the single-reed instrument (Giordano and Thacker, 2020, Yokoyama

et al., 2020, Yoshinaga et al., 2021). Such simulations also involve an FDM solver of the reed

vibration as proposed by Avanzini and van Walstijn (2004). Different from FEM and FDM,

which is applicable to a variety of physical domains, the lattice Boltzmann method (LBM) is

used exclusively in the fluid dynamic simulation 7 (da Silva, 2008, Shi, 2016). Furthermore,

LBM describes physics at the mesoscopic level and solves the Boltzmann equation, rather

than the macroscopic level Navier-Stokes equation as solved by FEM and FDM. Ch. 4 will

go into greater detail on LBM and its application to aeroacoustic problems.

2.3.3.2 Nonlinear dynamic system

Another type of numerical method is used to calculate and analyze the oscillation of the

nonlinear dynamical system. The differential equation and the difference equation (also

known as the iterated map) are two types of dynamical systems that are defined in continuous

time and discrete time, respectively (Strogatz, 2015, 1.2).

McIntyre et al. (1983, Appendix A) for the first time considered the sound generation

model of the clarinet as a nonlinear iterated map, allowing them to graphically obtain the os-

cillation at different regimes and explore the bifurcation in the clarinet-like system (Maganza

et al., 1986, Taillard et al., 2010).

Karkar et al. (2010, 2012) for the first time rewrote the system of a clarinet as an ordinary

differential equation system:

ẋ(t) = f(x(t), λ), (2.23)

where x ∈ Rn is the state vector (unknowns) of the system, ẋ is its time derivative and

λ ∈ R is the chosen control parameter such as the mouth pressure. This type of system

can be numerically solved using the numerical continuation method (also known as the

path-following method), which requires first calculating the static or periodic solutions of

the system and then continuing the solutions with the varying control parameter. While

the continuation of the static solution relies on the algebraic equation f(x(t), λ) = 0, the

continuation of periodic solutions is based on the mathematical framework proposed by

7It is possible, though less common, to use LBM for pure acoustic problems.
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Cochelin and Vergez (2009), which combines the harmonic balance method (HBM) and

the asymptotic numerical method (ANM). More recently, the same method was used to

investigate the oscillation characteristics of the saxophone (Colinot et al., 2019, 2020, 2021).

2.3.3.3 Sound Synthesis

The last type of research discussed in this section is the physical modeling-based sound

synthesis of the single-reed instrument. The sound synthesis does not only serve for music

purposes, but more importantly, to explore the dynamics and oscillation characteristics of

the instrument (Colinot et al., 2019, Kergomard et al., 2016, Petersen et al., 2020b). It can

also be applied in inverse modeling for estimating and analyzing reed (Chatziioannou and

van Walstijn, 2012) and articulatory (Chatziioannou and Hofmann, 2015) parameters.

Most of the synthesis schemes were based on the mathematical framework as discussed

in Sec. 2.1.1, and Schumacher (1981) was the first to apply such a framework in the clarinet

sound synthesis. In such a framework, the reed, flow and the acoustic resonator are modeled

with three equations, and it is assumed a localized interaction between them at the entrance

of the resonator or the tip of the reed. Here follows a brief review on the various ways of

modeling and discretizing the reed, flow, and the resonator.

The reed is usually modeled as a single-degree-of-freedom harmonic oscillator as shown

in Eq. 2.5 that may be discretized and solved with methods such as central finite difference

(Guillemain et al., 2005), the bilinear transform (Scavone and Smith, 2006), and the impulse

invariant method (van Walstijn and Avanzini, 2007). Even though less common, the 1D

distributed reed model has also been used in the synthesis (Sommerfeldt and Strong, 1988,

Stewart and Strong, 1980).

The only flow model applied in sound synthesis is the Bernoulli equation-based model,

including the models with (the free jet model) and without (the Bernoulli model) the con-

traction coefficients. Chatziioannou and van Walstijn (2008) might be the only exception,

who used the Poiseuille model to investigate the effect of a variable vena contracta coeffi-

cient. The results showed a minor effect on the steady-state signal but a large influence on

the transients of the sound.

The resonator can be modeled with a frequency-domain input impedance or reflectance.

However, such frequency-domain representations need to be converted to the time domain

for sound synthesis. The impulse response or the reflection function, the time-domain equiv-
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alents of the input impedance and the reflectance, respectively, can be used to model the

air column. Using the time-domain response for the sound synthesis involves convolutions,

which are more numerically expensive for longer responses. As a result, the reflection func-

tion is preferred over the impulse response due to its much shorter length. The reflection

function was firstly applied to single-reed instrument simulation by Schumacher (1981), and

was afterwards used by other authors (Gazengel et al., 1995, McIntyre et al., 1983).

Another way of converting the frequency-domain input impedance to the time-domain

simulation is achieved with the help of the modal expansion (Coyle et al., 2015, Silva et al.,

2014):

Z(ω) = jω
∑
n

Fn
ω2
n − ω2 + jωωn/Qn

=
∑
n

Cn
jω − sn

, (2.24)

where the input impedance is decomposed into contributions by a series of Helmholtz res-

onators controlled by ωn, Qn and Fn, representing the resonance frequency, quality factor and

the modal “amplitude” of the n-th mode. sn and Cn contribute to an alternative form of the

modal expansion, which represents the poles and the residues, respectively. A correspond-

ing time-domain model is typically constructed with a series of parallel one-zero, two-pole

IIR filters (Maestre et al., 2016, 2017, Taillard et al., 2018), with the modal coefficients

derived from the measured input impedance. Taillard et al. (2018) derived the coefficients

by applying Prony’s method to fit the impulse response. Maestre et al. (2017) extracted the

coefficients through linear constrained pole optimization (Maestre et al., 2016). It is worth

mentioning that the modal expansion must be truncated to a finite order N before being

applied to the sound synthesis. However, such a truncation causes the reflectance modu-

lus to approach unity as the frequency approaches the Nyquist frequency. Such a problem

can be fixed by employing a low-pass filter as used by Guillemain and Silva (2010), or by

including an additional set of poles distributed from the maximum frequency of interest

to the Nyquist frequency (Maestre et al., 2017, Taillard et al., 2018). Compared to the

time-domain response, the modal representation helps avoid convolutions, which makes the

simulation more efficient.

With either the reflection function or the modal representation, the resonator model can

be expressed as a difference equation in the form of

p[n] = B0u[n] + q[n], (2.25)
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where n represents the current time step, B0 is a constant and q[n] depends on the pressure

and velocity history, i.e., p[n− k] and u[n− k] with k ≥ 1.

Other than using a measured or simulated frequency-domain input impedance, the res-

onator can be simulated in the time-domain using the digital waveguide method (Scavone,

1997, Smith, 1986) or the finite difference method (Bilbao, 2009a,b). Such methods require

explicit modelings of all components of the resonator such as the bore, tonehole and the

bell. The coupling between the resonator and the other synthesis components such as the

reed-flow model and radiation domain are modeled through lumped elements or boundary

conditions.

There are two special components that also act as resonators, which are the mouthpiece

and the player’s vocal tract. The mouthpiece in a clarinet is mostly modeled by elongating

the cylindrical pipe with a certain extra length that has an equivalent volume of the mouth-

piece. For a saxophone, either a parallel acoustic compliance (Kergomard et al., 2016) or a

cylinder (Scavone, 2002) can be used to represent the mouthpiece, which also requires the

corresponding volume to equal that of the mouthpiece. There has also been other attempts

such as using a cylinder and a truncated cone to represent the mouthpiece (Chatziioan-

nou and Hofmann, 2015, Chatziioannou and van Walstijn, 2012), or a series of “cylinder

segments” with vary cross-section areas (Stewart and Strong, 1980).

The modeling of the vocal tract is generally similar to that of the bore, and can be

represented as a pipe with varying cross-section areas (Sommerfeldt and Strong, 1988). In

addition, by assuming that a single resonance of the vocal tract is tuned to control the

reed vibration, the vocal tract can be simplified as an upstream windway with a single

resonance, and such a simplified representation can be modeled by a simple equivalent circuit

as proposed by Scavone (2003).

The player’s control over the instrument is mainly achieved through the control of the

mouth pressure. The incorporation of the lip and tongue is typically obtained by equivalently

modifying reed parameters as discussed in Sec. 2.1.2. A separate oscillator is used to represent

the tongue in Ducasse (2003)’s model, which provides an explicit and physics-informed way

to control the tonguing. However, such a model is less commonly applied in other research,

either to keep the model simple or because the lack of interests in studying the tonguing

effect.

The coupling of different components in the discrete-time domain, such as the incorpo-

ration of Eq. 2.25 for the resonator, Eq. 2.4 for the airflow, and Eq. 2.5 for the reed, requires
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to solve an implicit nonlinear system of equations. Such a system can be explicitly solved if

the modeling of the reed displacement does not involve a delay-free loop (Guillemain et al.,

2005, Scavone and Smith, 2006). Otherwise, an implicit method is required, such as the

Newton-Raphson method, to solve the nonlinear system (Gazengel et al., 1995).

The last puzzle of sound synthesis is the external sound or radiated sound, which is

typically calculated using synthesized acoustic variables in the mouthpiece with a model that

transfers the mouthpiece variables to external sound pressure.

Guillemain et al. (2005) proposed the following approximation for the radiated pressure

from a cylindrical clarinet

pext =
∂

∂t
(p(t) + u(t)), (2.26)

where p(t) and u(t) represent the pressure and flow rate in the mouthpiece, respectively. It

neglects the losses and delay of the traveling wave so that will result in a brighter sound.

Taillard (2018, Ch. 7) designed a numerical filter to represent a global radiation transfer

function between the external pressure and the mouthpiece pressure, which was derived from

experimental data for all the fingerings of a clarinet.

Maestre et al. (2018) modeled the radiation transfer function as a recursive parallel filter

in conjunction with that of the input impedance. It allowed a fingering-dependent transfer

function, and provided an accurate and efficient way of calculating the radiated pressure.
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Chapter 3

Acoustics and aeroacoustics

fundamentals

This chapter introduces the fundamental theories of acoustics and aeroacoustics including the

governing equations and basic concepts required for modeling and analysis in the following

chapters.

3.1 Governing equations of fluid dynamics

3.1.1 Continuity equation

The continuity equation is based on mass conservation as described in the following equation,

which states that the rate of change of mass within a volume V equals mass influx across

the surface S
∂

∂t

∫
V

ρ dV = −
∮
S

ρ(v · n) dS. (3.1)

There is a negative sign on the right-hand side (RHS) because the normal vector to the

boundary is pointing outward, so that the influx points in the opposite direction.

The surface integral on the RHS is transformed to a volume integral by applying the

divergence theorem ∫
V

(∇ · F ) dV =

∮
S

(F · n) dS, (3.2)

so that

∮
S

ρ(v · n) dS =

∫
V

∇ · (ρv) dV .
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The equation of continuity is obtained by differentiating both sides of the equation to

eliminate a volume integral, written as

∂ρ

∂t
+∇ · (ρv) = 0, (3.3)

or in the index notation
∂ρ

∂t
+
∂ρvi
∂xi

= 0. (3.4)

3.1.2 Momentum Equation

The momentum equation is based on Newton’s second law, which states that the rate of

change of momentum is driven by the force acting on the system F , which is denoted as

d(ρv)

dt
= F . (3.5)

The rate of change of momentum is rewritten into the control volume formulation

d(ρv)

dt
=

∂

∂t

∫
V

ρv dV +

∮
S

vρ(v · n) dS, (3.6)

where the first term on the RHS represents the rate of change of momentum within the

control volume, and the second term is the contribution by the momentum flux through the

surface.

The force acting on the system is comprised of the surface force −
∮
S

p ·n dS contributed

by the compressive stress tensor p, and the body force

∫
V

fbody dV , though the body force

is typically ignored for acoustic problems. The momentum equation is derived using the

divergence theorem and differentiation, following a process similar to that used to derive the

continuity equation,
∂(ρv)

∂t
+∇ · ρvv = −∇ · p, (3.7)

with the corresponding form in index notation

∂ρvi
∂t

+
∂ρvivj
∂xj

= −∂pij
∂xj

. (3.8)
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The term pij denotes the compressive stress tensor in the i direction acting on the surface

normal to the j direction. It is composed of an isotropic stress tensor pδij and viscous stress

tensor −τij, i.e., pij = pδij − τij1.

The viscous stress tensor is defined as follows

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij
∂vk
∂xk

)
+ µBδij

∂vk
∂xk

, (3.9)

where µ is the dynamic viscosity coefficient, µB = 2µ/3 + λ is the bulk viscosity coefficient

with λ the second viscosity coefficient. It is sometimes written in terms of the rate of strain

tensor εij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, and

∂vk
∂xk

is also known as the rate of expansion of the flow.

The bulk viscosity µB can be assumed to be zero based on the Stokes’ hypothesis2, and

the viscous stress tensor can be simplified as

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij
∂vk
∂xk

)
.

The left-hand side (LHS) of Eq. 3.8 can be further simplified

∂ρvi
∂t

+
∂ρvivj
∂xj

= ρ
∂vi
∂t

+
���

���
��:0

vi
∂ρ

∂t
+ vi

∂ρvj
∂xj︸ ︷︷ ︸

LHS of Continuity Equation times vi

+ρvj
∂vi
∂xj

= ρ
∂vi
∂t

+ ρvj
∂vi
∂xj

,

which helps rewrite the momentum equation into the convective (non-conservation) form

ρ
dvi
dt

= −∂pij
∂xj

, (3.10)

where
dvi
dt

=
∂vi
∂t

+ vj
∂vi
∂xj

.

1This notation is more generally used in aeroacoustics, while in fluid dynamics, it is more commonly
written as σij = −pδij + τij (the sign is flipped) in the fluid dynamics context (Glegg and Devenport, 2017,
Sec. 2.3).

2The relationship between the dynamic viscosity µ and second viscosity λ is assumed to be λ +
2

3
µ = 0

by Stokes (1845).
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3.1.3 Energy equation

The energy equation is derived based on the first law of thermodynamics, which states that

the rate of change of energy equals the rate of heat transfer into the system minus the rate

of work done by the system,
dEe
dt

=
dQe

dt
− dWe

dt
, (3.11)

and

• the energy comprises the internal energy e and the kinetic energy
1

2
v2, so that

dEe
dt

=

d

dt

∫
V

ρ

(
e+

1

2
v2

)
dV ,

• the heat transfer rate through the surface gives
dQe

dt
= −

∫
S

qe · n dS, where qe is

the heat flux density. It becomes
dQe

dt
=

∫
S

κe∇Te · n dS by applying Fourier’s law

qe = −κe∇Te, where κe is the heat conductivity and Te is the temperature, and

• the rate of work done by the system is mainly attributed to the surface stress tensor

p, which gives
dWe

dt
=

∫
S

p · v · n dS.

The energy equation is written as

∂

∂t

[
ρ

(
e+

1

2
v2

)]
+

∂

∂xi

[
ρvi

(
e+

1

2
v2

)]
= κe

∂2Te
∂x2

i

− ∂pijvi
∂xj

. (3.12)

It can be simplified by subtracting {Eq. 3.10× vi}, which leads to

ρ
de

dt
= −p∂vi

∂xi
+ τij

∂vi
∂xj

+ κe
∂2Te
∂x2

i

. (3.13)

For adiabatic flow where q = 0, it is further simplified as

ρ
de

dt
= −p∂vi

∂xi
+ τij

∂vi
∂xj

. (3.14)

The governing equation system comprises the continuity equation Eq. 3.4, the momentum

equation Eq. 3.8, and the energy equation Eq. 3.14, which has five equations3 in a three-

dimensional (3D) system but involve six unknowns ρ, p, v and e, where v is a vector with

3Equation 3.8 composes three equations, which correspond to the three directions in a 3D system, re-
spectively.
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three components v1, v2, v3. An additional equation is necessary to close the system and this

is generally accomplished with an equation of state, which is essentially a thermodynamic

equation that relates state variables such as pressure, density, entropy, and temperature.

For a calorically perfect gas with constant specific heats, the internal energy can be

expressed in terms of the pressure

e =
p

ρ(γ − 1)
, (3.15)

where γ = cp/cv is the ratio of specific heat with cp and cv the specific heat capacities for

constant pressure and volume, respectively.

Equation. 3.14 can then be reformed as follows:

∂p

∂t
+ vi

∂p

∂xi
+ γp

∂vi
∂xi

= (γ − 1)τij
∂vi
∂xj

. (3.16)

3.2 Acoustics fundamentals

3.2.1 Speed of sound

An isentropic flow is normally assumed for acoustic problems (Pierce, 2019, Ch. 1), where the

specific entropy s = cv ln(Cp/ργ) constant (C is a constant of integration), which indicates

that
p

ργ
≡ const. (3.17)

The speed of sound is found to be

c =

√(
∂p

∂ρ

)
s

=

√
γp

ρ
, (3.18)

which is related to the adiabatic bulk modulus Bs = ρ (∂p/∂ρ)s. For isentropic flow, the

pressure is a function of only the density p = p(ρ). Considering the acoustic disturbance as

a small fluctuation on top of an ambient value, i.e., p = p0 + p′, and ρ = ρ0 + ρ′, the Taylor

expansion of p around p0 in ρ′ gives

p′ =

(
∂p

∂ρ

)
s

ρ′ +O
(
(ρ′)2

)
, (3.19)
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which indicates the acoustic pressure-density relationship

p′ ≈ c2ρ′. (3.20)

3.2.2 Acoustic wave equation

The wave equation is derived through the linearization of the continuity and inviscid mo-

mentum equations (µ = 0, so that pij = pδij). The acoustic variables are considered to be

small-amplitude fluctuations (superscript ′) on top of the ambient value (subscript 0)

p = p0 + p′, (3.21a)

ρ = ρ0 + ρ′, (3.21b)

v = v0 + v′, (3.21c)

where v0 = 0 for the quiescent flow.

The linearized continuity and momentum equations can be constructed by plugging the

above expressions into Eqs. 3.4 and 3.8, and keeping only the first order terms,

∂ρ′

∂t
+ ρ0

∂v′i
∂xi

= 0, (3.22)

ρ0
∂v′i
∂t

+
∂p′

∂xi
= 0. (3.23)

The linear acoustic wave equation is obtained by subtracting the divergence of the lin-

earized momentum equation from the time-derivative of the linearized continuity equa-

tion

[
∂

∂t
(Eq. 3.22)− ∂

∂xi
(Eq. 3.23)

]
, and making use of the pressure-density relationship

in Eq. 3.20,
1

c2

∂2p′

∂t2
− ∂2p′

∂x2
i

= 0. (3.24)

3.2.3 Green’s function

The Green’s function G(x, t|y, τ) is defined as the solution to the inhomogeneous wave

equation (
1

c2
0

∂2

∂t2
−∇2

)
G(x, t|y, τ) = δ(x− y)δ(t− τ), (3.25)
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where δ(x−y)δ(t−τ) can be considered as the impulse source emitted at the location x = y

and time t = τ , and the Green’s function corresponds to the resulting pressure distribution,

which is essentially the impulse response of the system.

The Green’s function can be used to solve the wave equation with an arbitrary sound

source Qs(x, t) (
1

c2
0

∂2

∂t2
−∇2

)
p(x, t) = Qs(x, t). (3.26)

The general solution is achieved by writing down the equation p·(Eq. 3.25)−G·(Eq. 3.26),

which gives

1

c2

(
p
∂2G

∂t2
−G∂

2p

∂t2

)
−
(
p
∂2G

∂x2
i

−G∂
2p

∂x2
i

)
= pδ(x− y)δ(t− τ)−QsG, (3.27)

and then integrating both sides over the time τ and the volume Vy, which results in the

following expression

p(x, t) =

∫ t

−∞

∫
V

[
1

c2

(
p
∂2G

∂τ 2
−G∂

2p

∂τ 2

)
−
(
p
∂2G

∂y2
i

−G∂
2p

∂y2
i

)
+QsG

]
dV (y) dτ. (3.28)

The first term on RHS is equal to 0 under a zero initial pressure and the causality

condition, and the volume integral of the second term is simplified to the surface integral by

applying Green’s second identity, so that∫
V

(
p
∂2G

∂y2
i

−G∂
2p

∂y2
i

)
dV (y) =

∫
S

(
p
∂G

∂yi
−G ∂p

∂yi

)
ni dS(y).

The solution can then be written as

p(x, t) =

∫ t

−∞

∫
V

Qs(y, τ)G(x, t|y, τ) dV (y) dτ +

∫ t

−∞

∫
S

(
p
∂G

∂yi
−G ∂p

∂yi

)
ni dS(y) dτ.

(3.29)

The first term in Eq. 3.29 represents the contribution of the source term Q, and the

second term is attributed to the presence of the boundary in the fluid field. The second term

is further subdivided into two contributions, with p ∂G/∂yi representing the contribution by

the force exerted on the fluid by the boundary, and G ∂p/∂yi representing the contribution
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due to the surface vibration4.

For unbounded fluids, the surface integrals vanish and the solution is simplified as

p(x, t) =

∫ t

−∞

∫
V

Qs(y, τ)G(x, t|y, τ) dV (y) dτ. (3.30)

In a three-dimensional case, the free-space Green’s function is given as

G(x, t|y, τ) =
δ
(
t− τ − |x−y|

c

)
4π|x− y|

. (3.31)

Substituting the Green’s function into Eq. 3.30 gives

p(x, t) =
1

4π

∫
V

Qs(y, t
∗)

|x− y|
dV (y), (3.32)

where t∗ = t− |x− y|/c is the retarded time.

3.2.4 Plane waves in cylindrical pipes

The plane wave propagation in a cylindrical pipe is governed by the one-dimensional wave

equation
1

c2

∂2p

∂t2
− ∂2p

∂x2
= 0, (3.33)

whose sinusoidal solution is presented in the form of

p(x, t) = p+ej(ωt−kx) + p−ej(ωt+kx), (3.34)

where p+ej(ωt−kx) and p−ej(ωt+kx) represent the left and right traveling waves, correspond-

ingly, with p± the wave amplitude, ω the radian frequency and k = ω/c the wave number.

The momentum equation in the pipe reduces to

∂p

∂x
= −ρ∂v

∂t
= − ρ

S

∂u

∂t
, (3.35)

where u(x, t) = v(x, t)S is the volume flow rate with S the cross-section area of the cylindrical

4This is because the inviscid momentum equation gives
∂p

∂yi
ni = −ρ0

∂vi
∂τ

ni, so that the contribution is

clearly related to the surface acceleration.
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pipe.

The volume flow rate can be derived from the above momentum equation, which yields

u(x, t) = u+ej(ωt−kx) − u−ej(ωt+kx), (3.36)

with the flow rate amplitudes

u± = p±/Zc, (3.37)

where Zc = ρc/S is the characteristic impedance of the pipe.

The Fourier transform of p and u gives the frequency-domain pressure P and volume

flow rate U , and the pressure P is the solution to Helmholtz equation (the frequency-domain

equivalent of the wave equation)

∇P + k2P = 0. (3.38)

The acoustic impedance in the pipe is defined as the ratio of the frequency-domain

pressure to the volume flow rate

Z(x, ω) =
P (x, ω)

U(x, ω)
, (3.39)

and the input impedance is the acoustic impedance defined at the input end of the pipe

(x = 0), which is denoted as,

Zin(ω) = Z(0, ω) =
P (0, ω)

U(0, ω)
. (3.40)

The reflectance is defined as

R(x, ω) =
P−(x, ω)

P+(x, ω)
=
U−(x, ω)

U+(x, ω)
, (3.41)

and its relationship with the impedance is given as

R =
Z − Zc
Z + Zc

, (3.42)

Z =
Zc +R

Zc −R
. (3.43)
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3.2.5 Transfer matrix of cylindrical pipes

Considering a cylindrical pipe as an acoustical two-port system, a two-by-two transfer matrix

T can be used to describe the relationship between the pipe’s input (P1, U1) and output

(P2, U2), [
P1

U1

]
= T

[
P2

U2

]
, (3.44)

where

T =

[
T11 T12

T21 T22

]
.

For a cylinder of length L, the transfer matrix is written as

T =

[
cos(kL) jZc sin(kL)

jZ−1
c sin(kL) cos(kL)

]
. (3.45)

The losses can be included by introducing the complex wavenumber kc = ω/vp − jα,

where vp is the phase velocity and α is the loss coefficient, and the corresponding transfer

matrix is defined as

T =

[
cosh(ΓL) Zc sinh(ΓL)

Z−1
c sinh(ΓL) cosh(ΓL)

]
, (3.46)

where the parameter Γ = jkc depends on the acoustic constants of the air (Chaigne and

Kergomard, 2016, Ch. 5).

3.3 Aeroacoustics analogy

This section provides the aeroacoustics fundamentals with a focus on the aeroacoustic anal-

ogy, which will be applied in the aeroacoustic study of the saxophone mouthpiece in Chap-

ter 7.

3.3.1 Lighthill’s acoustic analogy

The Lighthill’s acoustic analogy was proposed by Lighthill (1952, 1954), who reformulated

the fluid dynamic governing equation in a wave equation-like format, which is known as the

Lighthill equation. The Lighthill equation is derived in the same way as the wave equation,
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but is based on the original continuity and momentum equations instead of the linearized

ones. It subtracts the divergence of the momentum equation Eq. 3.8 from the time derivative

of the continuity equation Eq. 3.4, then subtracts both sides with c2
∞ ∂2ρ/∂x2

i , yielding

∂2ρ

∂t2
− c2

∞
∂2ρ

∂x2
i

=
∂2

∂xi∂xj
[ρvivj + pij − ρδij] ,

where c∞ denotes the speed of sound at quiescent fluid surrounding the listener.

The density and pressure are written as the sum of the reference value at quiescent fluid

and the fluctuation on top of it, i.e., ρ = ρ∞ + ρ′ and p = p∞ + p′. This implies that

∂2ρ/∂t2 = ∂2ρ′/∂t2 , and ∂2p/∂x2
i = ∂2p′/∂x2

i , resulting in Lighthill equation

∂2ρ′

∂t2
− c2

∞
∂2ρ′

∂x2
i

=
∂2Tij
∂xi∂xj

, (3.47)

where Tij = ρvivj + [p′ − ρ′c2
∞]δij − τij is the Lighthill stress tensor.

The Lighthill equation can also be written in the same form as Eq. 3.26

1

c2
∞

∂2ρ′c2
∞

∂t2
− ∂2ρ′c2

∞
∂x2

i

=
∂2Tij
∂xi∂xj

, (3.48)

and the corresponding solution is achieved by plugging the Lighthill stress tensor in Eq. 3.32

as the source (Qs(x, t) = ∂2Tij/∂xi∂xj )

ρ′(x, t)c2
∞ =

1

4π

∂2

∂xi∂xj

∫
V

Tij(y, t
∗)

|x− y|
dV (y). (3.49)

3.3.2 Ffowcs Williams-Hawkings equation

Lighthill (1952) originally considered an unbounded field and Curle (1955) extended Lighthill’s

formulation to deal with solid bodies in a fluid field, and Ffowcs Williams and Hawk-

ings (1969) generalized it further for moving boundary problems. While Curle (1955) used

Eq. 3.29 to introduce the contribution of solid boundaries to the sound source, Ffowcs Williams

and Hawkings (1969) generalized the Lighthill equation by introducing the control surface

of the fluid domain, as illustrated in Fig. 3.1, with the closed control surface S defined by

the function

f(x) = 0, (3.50)
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where f(x) > 0 for the outside volume V and f(x) < 0 within S, and the outward pointing

unit normal vector on S is given by

n =
∇f
|∇f |

. (3.51)

V (f > 0)

f < 0

S (f = 0)

n

Fig. 3.1: Illustration of fluid domain with the function f(x) that defines the surface.

The continuity and momentum equations are expressed in terms of a new set of variables

pH, ρH, and vH defined across an unbounded region to generalize the Lighthill equation,

where H(f) is the Heaviside unit function defined as

H(f) =

1, for f > 0

0, for f < 0.
(3.52)

with its gradient and time derivative given as

∂H(f)

∂xj
= δ(f)

∂f

∂xj
= njδ(f)|∇(f)|, (3.53)

∂H(f)

∂t
= −v̄j

∂H(f)

∂xj
, (3.54)

where v̄j is the velocity of the surface S.

The new continuity and momentum equations are given as 5

∂ρ′H

∂t
+
∂ρviH

∂xi
= (ρvj − ρ′v̄j)njδ(f)|∇f |, (3.55)

5The derivation in detail can be found in either (Glegg and Devenport, 2017, Ch. 5) or (Howe, 1998, Sec.
2.2).
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∂ρviH

∂t
+
∂ρvivjH + pijH

∂xj
= (ρvi(vj − v̄j) + pij)njδ(f)|∇f |, (3.56)

and the Ffowcs Williams-Hawkings (FW-H) equation is derived using the same method as

the Lighthill equation,(
1

c2
∞

∂2

∂t2
− ∂2

∂x2
i

)
[ρ′c2

∞H] =
∂2(HTij)

∂xi∂xj
+
∂Fi
∂xi

+
∂Q

∂t
, (3.57)

where

Tij = ρvivj + [p′ − ρ′c2
∞]δij − τij,

Fi = − (ρvi(vj − v̄j) + pij)njδ(f)|∇f |,

Q = (ρvj − ρ′v̄j)njδ(f)|∇f |

correspond respectively to the contributions to

• the quadrupole sound source ∂2(HTij)
/
∂xi∂xj by the distributed Lighthill stress tensor

Tij in the volume,

• the dipole sound source ∂Fi/∂xi by

– the compressive stress pij applied to the fluid by the surface and

– the momentum flux ρvi(vj − v̄j) through the surface, and

• the monopole sound source ∂Q/∂t by the mass flux ρvj − ρ′v̄j across the surface.

Since the dependent variables are defined in the unbounded fluid, we can use Eq. 3.30

for expressing the solution by substituting Qs(y, τ) with the RHS of Eq. 3.57,

ρ′(x, t)c2
∞H =

∫ t

−∞

∫
V

(
∂2(HTij)

∂yi∂yj
+
∂Fi
∂yi

+
∂Q

∂τ

)
G(x, t|y, τ) dV (y) dτ, (3.58)

and is written in the following form after a series of simplifications

ρ′(x, t)c2
∞ =

∫ t

−∞

∫
V

∂2G

∂yi∂yj
Tij dV (y) dτ

+

∫ t

−∞

∫
S

∂G

∂yi
[ρvi(vj − v̄j) + pij]nj dS(y) dτ

−
∫ t

−∞

∫
S

∂G

∂τ
[(ρvj − ρ′v̄j)nj] dS(y) dτ.

(3.59)
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For an impenetrable surface where vjnj = v̄jnj, the solution can be further simplified as

ρ′(x, t)c2
∞ =

∫ t

−∞

∫
V

∂2G

∂yi∂yj
Tij dV (y) dτ

+

∫ t

−∞

∫
S

∂G

∂yi
pijnj dS(y) dτ

−
∫ t

−∞

∫
S

∂G

∂τ
ρ∞v̄jnj dS(y) dτ.

(3.60)

3.3.3 One dimensional FW-H acoustic analogy for internal flow aeroacoustic

problems

Equation. 3.59 provides a general solution to the FW-H equation. It is expressed in terms

of Green’s function G, and the choice of the Green’s function is problem-dependent. While

the 3D free-field Green’s function is typically applied to study external flow problems such

as the noise of the jet (Mendez et al., 2013), the one-dimensional (1D) Green’s function

for an infinite long pipe has been widely applied to study aeroacoustic problems of internal

flows, such as the flow passing through a diaphragm (Hofmans, 1998) or vocal folds (Zhao

et al., 2001, 2002). The 1D Green’s function for an infinite long pipe can be considered as an

equivalent of the 3D free-field Green’s function in 1D, which assumes an acoustic compact

domain and a plane wave traveling in a pipe, and it is written as

G(x1, t|y1, τ) =
c

2S
H (t− τ − |x1 − y1|/c) , (3.61)

where S is the cross-section area. Its time-derivative and gradient give

∂G

∂τ
= − c

2S
δ(t− τ − |x1 − y1|/c), (3.62)

and
∂G

∂y1

=
1

2S
sign(x1 − y1)δ(t− τ − |x1 − y1|/c). (3.63)

Taking an internal flow in a straight pipe with a diaphragm as an example, the FW-

H integral domain can be defined to estimate the acoustic pressure at the observer, as

illustrated in Fig. 3.2. The integral surface involves both solid walls such as the pipe walls,

and permeable surfaces such as the inlet boundary Sin and outlet boundary Sout. Substituting
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the 1D Green’s function (Eq. 3.61) and its derivatives (Eqs. 3.62-3.63) into Eq. 3.59 yields

the pressure at the observer:

ρ′(x1, t)c
2
∞ =

1

2c∞S

∂

∂t

∫
V

[T11]|t∗ dV (y) (I)

+
1

2S

∫
Sw

[p1jnjsign(x1 − y1)]|t∗ dS(y) (II)

+
c∞
2S

∫
Sw

[ρ∞v̄jnj]|t∗ dS(y) (III)

+
1

2S

∫
Sin+Sout

[(ρv1vj + p1j)njsign(x1 − y1) + ρc∞vjnj]|t∗ dS(y) (IV)

(3.64)

where t∗ = t−|x−y|/c is the retarded time. The four different terms represent, correspond-

ingly,

(I) the quadrupole source contributed by Lighthill stress tensor T11 in the volume V ,

(II) the dipole source due to the unsteady force exerted by the solid wall on the fluid in

the x1 direction,

(III) the monopole source due to the displacement flow induced by the wall movement, i.e.,

when v̄j 6= 0,

(IV) the sound source contributed by the inlet or outlet, which can be further decomposed

as sources due to

• the incoming acoustic wave p+ ρcvjnj, where pδ1j = p1j + τ1j,

• the shear stress τ1j, and

• the Reynolds stress ρv1vjnj.

Sw
Sout Sin

observer
V

n

n n

Fig. 3.2: The integral surface for FW-H analogy.
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Chapter 4

Lattice Boltzmann method

fundamentals

4.1 From Boltzmann equation to lattice Boltzmann method

The description of the fluid can be categorized into three classes based on different length

and time scales as illustrated in Fig. 4.1. The microscopic description is defined at the

molecular level, which tracks the movements and interactions of individual molecules on the

length scale of the fluid molecule size lm. The macroscopic description is established in the

context of continuum mechanics, and the governing equations of fluid motion, as introduced

in Sec. 3.1, are based on tangible quantities such as density, flow velocity, pressure, and

temperature.The mesoscopic scale is defined on the length scale of the mean free path lmfp,

i.e., the average traveling distance between two successive collisions of molecules, and it

lies in between the microscopic and macroscopic scales. It is developed in the context of

statistical mechanics and is based on the kinetic theory of gases, which describes the fluid

with regard to the distribution of a collection of fluid particles instead of individual particle

motions.

The lattice Boltzmann method (LBM) is a mesoscopic model that originated from the

lattice gas automata (LGA) (Frisch et al., 1986, Hardy et al., 1973), which simulates the

gas or fluid dynamics on the microscopic scale. LGA is defined on a regular lattice of linked

nodes, with each node storing a set of boolean variables that indicate the presence of a particle

traveling in the direction of the node’s links. The system evolves through a local collision
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length scale

macroscopicmesoscopicmicroscopic

(veloctiy, pressure...)(particle distribution function)( particle momentum..)
Particle methods LBM Navier-Stokes

Fig. 4.1: Illustration of different length scales. Inspired by Krüger et al. (2017, Fig. 1.3) and
Horstmann (2018, Fig. 2.3). The picture for the macroscopic is a snapshot of the velocity
field of a mouthpiece simulation.

process and a post-collision streaming process. The collision process redirects particles on

the node when they meet (collide), and the particles move on to a neighboring node following

its traveling direction during the streaming process. LBM was first proposed by McNamara

and Zanetti (1988), who translated LGA into a related Boltzmann model in which boolean

state variables are replaced with distribution functions to represent the particle population.

He and Luo (1997) demonstrated that LBM can develop from the continuum Boltzmann

equation independently of LGA. This derivation will be discussed in the present chapter,

following the map shown in Fig. 4.2.

The objective of this section is to present the fundamentals of LBM, including its deriva-

tion, as well as the advanced collision operators and boundary conditions that will be used

for computational aeroacoustic modeling of the mouthpiece (Ch. 7). Readers seeking a more

comprehensive understanding of LBM might refer to the book by Krüger et al. (2017) as

well as theses by authors such as Coreixas (2018) and Viggen (2014).

4.1.1 The Boltzmann equation

The particle distribution function f(x, ξ, t), also known as the particle density function or

probability density function, is used in the mesoscopic description of fluids based on kinetic
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time-space discretization (Sec. 4.1.4)
(method of characteristics)

collide & stream
(Sec. 4.1.5)

ρ,v, Te
MACRO

MESO

Macroscopic Equations
macroscopic

variables

integral over the particle velocity ξ
& Chapman-Enskog analysis (Sec. 4.1.2)

Boltzmann Equation
(Eq. 4.2)

f Ω(f) f eq

velocity discretization (Sec. 4.1.3)
(Hermite series expansion & Gauss-Hermite quadrature)

Discrete-Velocity
Boltzmann Equation

(Eq. 4.24)
fi Ωi f eqi

Lattice Boltzmann Equation
(Eq. 4.31)

Lattice Boltzmann Method

Fig. 4.2: The derivation framework of the lattice Boltzmann method.
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theory. It is a function of physical space x, velocity space ξ, and time t.1 The f can also be

considered as a generalization of the macroscopic density ρ(x, t), which introduces additional

dependence on ξ.

The Boltzmann equation describes the evolution of f over time by relating the time

rate of change of f , i.e., df/dt , to the local redistribution of f due to the collision, represented

by the collision operator Ω(f):
df

dt
= Ω(f). (4.1)

By applying the chain rule to the total derivative df/dt , the Boltzmann equation is

written as
∂f

∂t
+ ξβ

∂f

∂x
+
Fβ
ρ

∂f

∂ξβ
= Ω(f), (4.2)

where ξβ =
dxβ
dt

and
Fβ
ρ

=
dξβ
dt

specify the particle velocity and the body force, respectively.

The Bhatnagar-Gross-Krook (BGK) collision model, named after the three authors Bhat-

nagar, Gross, and Krook (Bhatnagar et al., 1954), defines one of the most basic collision

operators

Ω(f) = −1

τ
(f − f eq). (4.3)

It indicates that the distribution function is relaxed toward the local equilibrium distri-

bution f eq within the relaxation time τ after collisions, and the equilibrium distribution is

based on the Maxwell-Boltzmann distribution defined as

f eq(x, |c|, t) =
ρ

(2πRTe)D/2
e−|c|

2/(2RTe), (4.4)

where c = ξ−v is the peculiar velocity, also known as the intrinsic velocity, representing the

deviation of the particle velocity from the local mean velocity. R is the molar gas constant,

Te is the thermodynamic temperature, and D is the system dimension.

The dimensionless equilibrium distribution is written as

f eq(ρ, |c|, θ) =
ρ

(2πθ)D/2
e−|c|

2/(2θ), (4.5)

where θ is the dimensionless temperature and θ = 1 for an isothermal system.

LBM is a numerical approach for solving the Boltzmann equation that relies on dis-

1The combination of x and ξ is known as the phase space (x, ξ).



4 Lattice Boltzmann method fundamentals 57

cretizing the Boltzmann equation in physical space x, time t, and particle velocity ξ. The

Boltzmann equation is first discretized in velocity space to establish the discrete-velocity

Boltzmann equation (DVBE), which is then discretized in time and space to obtain the

lattice Boltzmann equation (LBE). For simplicity, the following derivation is based on the

isothermal force-free flow (θ = 1 and Fβ = 0).

4.1.2 From Boltzmann equation to macroscopic equations

The macroscopic quantities, i.e., the density ρ, momentum density ρv, total energy density

ρE, and internal energy density ρe can be recovered from the distribution function f by

integrating its moments over the velocity ξ.

ρ(x, t) =

∫
f(x, ξ, t) dξ, (4.6a)

ρ(x, t)v(x, t) =

∫
f(x, ξ, t)ξ dξ, (4.6b)

ρ(x, t)E(x, t) =
1

2

∫
f(x, ξ, t)|ξ|2 dξ, (4.6c)

ρ(x, t)e(x, t) =

∫
f(x, ξ, t)|c|2 dξ. (4.6d)

The macroscopic conservation equations, i.e., the continuity equation, momentum equa-

tion, and energy equation can be obtained by integrating the zeroth to second-order moments

of the Boltzmann equation over the velocity space ξ:

∂ρ

∂t
+
∂ρvi
∂xi

= 0, (4.7a)

∂ρvi
∂t

+
∂ρvivj
∂xj

= −∂Πij

∂xj
, (4.7b)

∂ρe

∂t
+
∂ρvje

∂xj
= −Πij

∂vi
∂xj
− ∂qj
∂xj

, (4.7c)
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where the stress tensor Π and the heat flux q are given as2

Π =

∫
fc2 dξ, (4.8a)

q =
1

2

∫
fc3 dξ. (4.8b)

The tensors Π and q are not explicitly known but can be linked to the macroscopic

variables through the so-called Chapman-Enskog analysis (Chapman and Cowling, 1970).

Based on the Chapman-Enskog expansion, the distribution function is expanded as

f = f (0) + εf (1) + ε2f (2) + · · · , (4.9)

where f (0) = f eq is the equilibrium distribution, and f (k) represents the kth-order perturba-

tion on top of equilibrium distribution when k ≥ 1. The label ε is a smallness label instead

of a numerical parameter, and εk indicates that f (k)/f (0) = O(Knk), where Kn = lmfp/l is

the Knudsen number defined as the ratio between the mean free path length lmfp and the

physical characteristic length l.

Different levels of momentum and energy equations can be recovered when the Chapman-

Enskog expansion is truncated to different orders:

• zero-order (f ≈ f eq): the Euler equation is recovered as it leads to Π = p and q = 0.

• first-order (f ≈ f eq + f (1)): the Navier-Stokes equation is recovered, where Π = p3

and q = −κ∇Te with the shear viscosity and thermal conductivity given as

µ = ρRTeτ, (4.10a)

κ =
5

2
pRτ. (4.10b)

The Chapman-Enskog analysis is an important while complex topic. Its details are not

expanded here but can be found in chapters like Krüger et al. (2017, Ch. 4) and Viggen

(2014, Ch. 3.8).

2The power of a vector denotes the direct vector product such that c2 = cc presents an outer product,
which should be distinguished from |c|2 = c · c.

3p is the compressive stress tensor introduced in Ch. 3.1.2
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4.1.3 Discretization in velocity space

The velocity space discretization was inherited from LGA and was not originally associated

with the continuum Boltzmann equation. It was later connected to the Boltzmann equation

using either the Mach number expansion (He and Luo, 1997) or Hermite series expansion

(Shan and He, 1998). The latter method for velocity space discretization is illustrated here,

in which the distribution function is projected into a space spanned by truncated Hermite

series, with the Hermite coefficients directly related to macroscopic fluid variables. The

Hermite coefficients are numerically evaluated using the Gauss-Hermite quadrature, which

approximates the integral by adding up the weighted function values at abscissae, where the

abscissae correspond to the discretized velocities in the velocity space.

4.1.3.1 Projection of distribution functions on Hermite basis

Grad (1949a,b) recovered the Navier-Stokes equation from the Boltzmann equation using the

Hermite series expansion, where the distribution function is expanded in terms of Hermite

polynomials

f(ξ) = ω(ξ)
∞∑
n=0

1

n!
a(n) : H(n)(ξ), (4.11a)

f eq(ξ) = ω(ξ)
∞∑
n=0

1

n!
a(n),eq : H(n)(ξ), (4.11b)

where the ‘:’ denotes full index contraction, and the coefficients are defined as

a(n) =

∫
f(ξ)H(n)(ξ) dξ, (4.12a)

a(n),eq =

∫
f eq(ξ)H(n)(ξ) dξ (4.12b)

and the weight function is given as

ω(ξ) =
1

(2π)(D/2)
e−ξ

2/2. (4.13)
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Taking the three lowest order Hermite polynomials as examples

H(0)(ξ) = 1, (4.14a)

H(1)(ξ) = ξ, (4.14b)

H(2)(ξ) = ξ2 − δ, (4.14c)

the expansion coefficients are found to be directly related to hydrodynamic variables:

a(0) =

∫
f dξ = ρ, (4.15a)

a(1) =

∫
ξf dξ = ρv, (4.15b)

a(2) =

∫
(ξ2 − δ)f dξ = Π + ρ(v2 − δ), (4.15c)

a(0),eq = ρ, (4.15d)

a(1),eq = ρv, (4.15e)

a(2),eq = ρv2, (4.15f)

where Π =
∫
fc2 dξ.

When the expansion is truncated to the finite order N , it implies that the distribution

function is projected into the Hilbert space spanned by the leading N Hermite polynomials,

fN(ξ) ≈ ω(ξ)
N∑
n=0

1

n!
a(n) : H(n)(ξ), (4.16a)

f eq,N(ξ) ≈ ω(ξ)
N∑
n=0

1

n!
a(n),eq : H(n)(ξ), (4.16b)

Thanks to the orthogonality properties of the Hermite polynomials, the expansion coef-

ficients a(n) for n ≤ N can be expressed in terms of the truncated distribution function as

follows

a(n) =

∫
f(ξ)H(n)(ξ) dξ =

∫
fN(ξ)H(n)(ξ) dξ, (4.17)

which indicates that velocity moments of f(ξ) up to Nth order are preserved by fN(ξ) and

the corresponding conservation equation can be recovered4.

By keeping the expansion terms up to the second-order moment, the equilibrium distri-

4The Hermite expansion order n is directly related to hydrodynamic moment order such as the first-
order coefficient a(1) = ρv is the same as the first-order hydrodynamic moment of the distribution function∫
fξ dξ = ρv. It should be distinguished from the Chapman-Engkog expansion order k that is introduced

in Sec. 4.1.2. Such two truncation orders work together in determining the hydrodynamic behavior of the
discretized Boltzmann equations (Shan et al., 2006).
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bution Eq. 4.16b is approximated as

f eq(ξ) ≈ ω(ξ)ρ

[
1 + ξ · v +

1

2
(ξ · v)2 − |v|2

]
(4.18)

4.1.3.2 Discrete-velocity Boltzmann equation

The Gauss-Hermite quadrature is used to numerically evaluate an integral in the following

form ∫
ω(x)P (x)dx =

q−1∑
i=0

wiP (xi), (4.19)

when it satisfies Q ≤ 2M − 1, where Q is the order of the polynomial P (x), and xi are

known as the abscissae, essentially the roots of the Hermite polynomial H(M)(x) of order M .

The total number of abscissae is given as q = MD with D the dimension of the vector x.

ω(x) are the weight function of Hermite polynomials shown in Eq. 4.13.

To discretize the velocity space, the expansion coefficients (Eq. 4.17) are first rewritten

in the form of Eq. 4.19,

a(n) =

∫
ω(ξ)

fN(ξ)

ω(ξ)
H(n)(ξ) dξ =

q−1∑
i=0

wif
N(ξi)H

(n)(ξi)

ω(ξi)
, (4.20a)

a(n),eq =

∫
ω(ξ)

f eq,N(ξ)

ω(ξ)
H(n)(ξ) dξ =

q−1∑
i=0

wif
eq,N(ξi)H

(n)(ξi)

ω(ξi)
, (4.20b)

and the Gauss-Hermite quadrature is applied to convert the continuous integral to discrete

summation in the above equation by assuming fN(ξ)H(n)(ξ)/ω(ξ) a polynomial of order

Q = N + n ≤ 2N when n ≤ N . The abscissae ξi of the Gauss-Hermite quadrature of a

degree ≥ 2N are equivalently the roots of Hermite polynomial of order M > N (Shan et al.,

2006). For example, it requires that M ≥ 3 for Hermite expansion up to order N = 2

(e.g., (Qian et al., 1992)). When M = 3, there are q = 3D abscissae, i.e., 9 and 27 discrete

velocities in two- and three-dimensional physical space, which corresponds to the classical

D2Q9 and D3Q27 schemes as will be discussed in a later section.

The discrete-velocity distribution functions, also known as particle populations, are defined
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as

fi = wif(ξi)/ω(ξi), (4.21a)

f eqi = wif
eq(ξi)/ω(ξi), (4.21b)

and the corresponding discrete-velocity equilibrium distribution can be obtained by plugging

Eq. 4.18 into Eq. 4.21b,

f eqi = wiρ

[
1 + ξi · v +

1

2
(ξi · v)2 − |v|2

]
. (4.22)

The zeroth and first moments of the (equilibrium) distribution function are shown to be

ρ =

q−1∑
i=0

fi =

q−1∑
i=0

f eqi , (4.23a)

ρv =

q−1∑
i=0

fiξi =

q−1∑
i=0

f eqi ξi. (4.23b)

Finally, the discrete-velocity Boltzmann equation (DVBE) is obtained by projecting the

force-free Boltzmann equation (Eq. 4.2 without Fβ) into the space spanned by the three low-

est order Hermite polynomials and expressing it in terms of the discrete-velocity distribution

function fi and equilibrium distribution f eqi

∂fi
∂t

+ ξiα
∂fi
∂xα

= Ω(fi). (4.24)

4.1.3.3 The velocity set

The discretization of particle velocity ξ returns a discrete velocity set {ξi} and the corre-

sponding weights {wi}. The size of the velocity set is determined by the dimension of the

system as well as the Hermite polynomial truncation order5. Typically, the velocity set is

denoted as DdQq, where d and q represent the system dimension and the number of discrete

velocities, respectively. Taking D2Q9 as an example, the velocity set is given in Table 4.1

and illustrated in Fig. 4.3.

5In-depth discussion can be found in the book (Krüger et al., 2017, A.4) or the paper by Shan et al.
(2006)
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Table 4.1: The D2Q9 velocity set.
Position i ξi ei wi

center 0 (0, 0) (0, 0) 4/9

axial

1 (−
√

3,
√

3) (−1, 1) 1/36

3 (−
√

3,−
√

3) (−1,−1) 1/36

5 (
√

3,−
√

3) (1,−1) 1/36

7 (
√

3,
√

3) (1, 1) 1/36

diagonal

2 (−
√

3, 0) (−1, 1) 1/9

4 (0,−
√

3) (0,−1) 1/9

6 (
√

3, 0) (1, 0) 1/9

8 (0,
√

3) (0, 1) 1/9

e7

e5e4e3

e6e2

e1 e8

x

y

Fig. 4.3: The D2Q9 velocity set.

It is worth noting that there is an additional column displaying the vector ei, which is

the “normalized” velocity ei = ξi/
√

3 obtained by extracting the common factor
√

3 from

the abscissae. Eqs. 4.22, 4.23, and 4.24 are reformulated in terms of ei

f eqi = wiρ

(
1 +

ei · v̄
c2
s

+
(ei · v̄)2 − |v̄|2 · c2

s

2c4
s

)
, (4.25)

ρ =

q−1∑
i=0

fi =

q−1∑
i=0

f eqi , (4.26a)

ρv̄ =

q−1∑
i=0

fiei =

q−1∑
i=0

f eqi ei, (4.26b)

∂fi
∂t

+ eiα
∂fi
∂xα

= Ω(fi), (4.27)

where ei = ξics and v̄ = vcs with cs = 1/
√

3 defined as the lattice sound speed. The
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above equations in terms of “normalized velocities” are more commonly used in numerical

applications of LBM, and the bar on top of the v̄ is omitted hereafter for simplicity.

4.1.4 Discretization in time and space

The lattice Boltzmann equation (LBE) is derived by further discretizing the discrete-velocity

Boltzmann equation (DVBE) in time t and physical space x. Considering DVBE (Eq. 4.27)

as an inhomogeneous advection equation with characteristic equations expressed as

dx

dt
= ei, (4.28a)

dfi
dt

= Ω(fi), (4.28b)

it can be solved using the method of characteristics, where particle populations fi are con-

sidered to travel along the characteristic curves x − eit = const., which are straight lines

with the slope dx/dt = ei. The solution is thus obtained by integrating the above equation

over the time [t, t+ ∆t],

fi(x+ ei∆t, t+ ∆t)− fi(x, t) =

∫ t+∆t

t

Ωi(x+ ei∆t, t+ ∆t) dt. (4.29)

The approximation of the RHS by the trapezoidal rule gives

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = ∆t
Ωi(x, t) + Ωi(x+ ei∆t, t+ ∆t)

2
, (4.30)

which is second-order accurate in space and time.

The above equation is transformed from the implicit form to an explicit form through a

change of variable fi → f̄i, which gives the lattice Boltzmann equation

f̄i(x+ ei∆t, t+ ∆t) = f̄i(x, t) + ∆tΩ̄i(x, t), (4.31)

where f̄i = fi−Ωi∆t/2. The new variables still satisfy the mass and momentum conservation,

so that
∑

i f̄i = ρ and
∑

i f̄iei = ρv.

For the BGK model, the lattice BGK equation is written as

f̄i(x+ ei∆t, t+ ∆t) = f̄i(x, t)−
∆t

τ̄

[
f̄i(x, t)− f eqi (x, t)

]
, (4.32)
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where τ̄ = τ + ∆t/2 and is related to the lattice kinematic viscosity

ν = c2
s

(
τ̄ − ∆t

2

)
. (4.33)

For the sake of clarity, the overlines will be omitted in the subsequent sections.

4.1.5 Lattice Boltzmann method

The lattice Boltzmann method is essentially a numerical method for solving LBE, which is

decomposed in two equations that correspond to the two steps:

1. collision

f ∗i (x, t) = fi(x, t)−
∆t

τ
[fi(x, t)− f eqi (x, t)]

=

(
1− ∆t

τ

)
fi(x, t) +

∆t

τ
f eqi (x, t),

(4.34)

2. streaming

fi(x+ ei∆t, t+ ∆t) = f ∗i (x, t), (4.35)

where f ∗i (x, t) is known as the post-collision distribution function.

The collision step will redistribute the populations that go along different directions, and

the streaming process propagates post-collision populations to their neighbors as illustrated

in Fig. 4.4.

4.1.6 Unit Conversion

All the macroscopic variables in LBM simulation are presented in the “lattice unit”, such

as density and momentum calculated using Eq. 4.26 or lattice sound speed defined as cs =√
1/3 ≈ 0.577. The simulation sometimes requires to convert the lattice unit back to physical

unit or the other way round, for example, when dealing with the airflow-reed interaction

in the mouthpiece modeling. A conversion factor Cvar = Varph/Varla is required for each

macroscopic variable Var, where the subscripts ph and la indicate variables in physical and

lattice units, respectively. This section defines a specific way of lattice-to-physical unit

conversion that is later employed in the saxophone mouthpiece simulation. More general

discussions on this topic can be found in the book by Krüger et al. (2017).

Primary conversion factors Cl, Ct and Cρ should be first determined using the following
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Collision Streaming

Fig. 4.4: The illustration of the collision and streaming processes of the center node. The
solid and dashed arrows represent pre- and post-collision populations, respectively, and the
arrow length indicates the population strength. During the streaming process, the black
arrows represent the outgoing populations from the center node, while the gray arrows rep-
resent incoming populations from adjacent nodes. For clarity, the pre-collision populations
of neighboring nodes are not displayed in the leftmost figure.

steps, and all the other conversion factors can be derived from primary conversion factors

using the expressions shown in Table 4.2.

1. set the physical sound speed cs,ph, density ρph and kinematic viscosity νph,

2. assume the lattice grid length and time step to be unity ∆xla = ∆tla = 1,

3. determine Cl = ∆xph = cs,ph/(fppwNppw) by setting point-per-wavelength Nppw at a

specific frequency fppw,

4. determine Cv =
cs,ph

cs,la
, where cs,la =

√
1/3,

5. determine Ct = ∆tph = ∆xph/Cv,

6. determine Cρ = ρph/ρla, where it normally assumes ρla = 1.0,

7. determine τ = νla/c
2
s,la + 1/2 from Eq. 4.33, where νla = νph/Cν is the lattice kinematic

viscosity, and Cν = ∆x2/∆t is the kinematic viscosity conversion factor,

6This chapter discusses the isothermal LBM, which is based on the isothermal equation of state (derived
from the pressure-density relation in Eq. 3.18 by setting the isothermal condition γ = 1)

p = ρc2s. (4.36)

However, the pressure unit conversion only works for the pressure fluctuations p′ but not necessarily for
the ambient pressure p0 (Krüger et al., 2017, Ch. 7.2.1.2).
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Table 4.2: List of conversion factors.
Variables Conversion factor CVar = Varph/Varla

length Cl = CtCv = ∆xph

time Ct = Cl/Cv = ∆tph

velocity Cv = Cl/Ct = cs,ph/cs,la
viscosity Cν = C2

l /Ct
density Cρ = ρph/ρla

pressure6 Cp = CρC
2
v = Cρ (Cl/Ct)

2

4.2 Recursive regularized lattice Boltzmann method

The BGK scheme is known to be unstable for high Reynolds number flow when ν → 0 (or

equivalently when τ → 1/2). It is also known to suffer numerical noise that disturbs the

simulated acoustic signals (Xu and Sagaut, 2011). To improve the stability of LBM, many

advanced collision operators have been proposed, including the multirelaxation time (MRT)

LBM (d’Humières, 2002), two-relaxation-times (TRT) LBM (Ginzburg et al., 2008a,b), cu-

mulant LBM (Geier et al., 2015), regularized BGK (rBGK) (Latt and Chopard, 2005, 2006),

and recursive regularized BGK (rrBGK) (Coreixas et al., 2017, Malaspinas, 2015). The

recursive regularized BGK has been demonstrated to be effective and accurate in aeroacous-

tics applications (Brogi et al., 2017), so that it is applied in this research for aeroacoustic

modeling of the mouthpiece.

The recursive regularized BGK was originally developed by Malaspinas (2015) to improve

the stability and accuracy of BGK for isothermal and weakly compressible flow, and Coreixas

et al. (2017) generalized it for thermal and fully compressible flow. The regularized BGK

that forms the foundation of rrBGK is introduced in Sec. 4.2.1, following which the original

rrBGK scheme proposed by Malaspinas (2015) is discussed in Sec. 4.2.2.

4.2.1 Regularized BGK

The regularized BGK (RBGK) was proposed by Latt and Chopard (2005, 2006), where the

pre-collision population fi is regularized as

fi = f
(0)
i + f

(1)
i , (4.37)
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so that all the higher order terms (O(Knk) when k ≥ 2) in the Chapman-Enskog expansion

and their non-hydrodynamic contributions are filtered out7.

The collision equation Eq. 4.34 is modified correspondingly as

f ∗i (x, t) =

(
1− ∆t

τ

)
f

(1)
i (x, t) + f eqi (x, t). (4.38)

While the equilibrium population is still calculated using Eq. 4.25, f
(1)
i needs to be

approximated using the truncated Hermite expansion

f
(1)
i = wi

2∑
n=0

1

c2n
s n!

a
(n)
1 : H

(n)
i ,

where H
(n)
i is the discrete Hermite polynomials and the subscript of a corresponds to the

Chapman-Enskog expansion order k (Malaspinas, 2009, Appendix A).

The first three expansion coefficients are required to recover f
(1)
i . While the first two

coefficients are trivial from Eq. 4.15 a
(0)
1 = a

(1)
1 = 0, a2

1 is calculated as follows:

a
(2)
1 = Π(1) = −2τρε =

q−1∑
i=0

f
(1)
i e

2
i , (4.39)

where ε =
1

2

(
∇u+∇uT

)
.

The regularized BGK assumes that fneqi ≈ f
(1)
i , so that a

(2)
1 is approximated as

a
(2)
1 ≈

q−1∑
i=0

fneqi e2
i =

q−1∑
i=0

(fi − f eqi ) e2
i = Πneq, (4.40)

which finally gives that

f
(1)
i =

wi
2c4
s

Πneq : H
(2)
i , (4.41)

where H
(2)
i = e2

i − c2
sδ.

7The population is expanded as fi = f
(0)
i + f

(1)
i + f

(2)
i + · · · before the regularization.
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4.2.2 Recursive regularized BGK

While the same regularization scheme as in Eq. 4.37 was applied in rrBGK, the equilibrium

and non-equilibrium distribution functions are calculated differently by reserving some higher

order terms. For the D2Q9 scheme as an example, the Hermite polynomials up to the second

order provide only six bases for the nine-dimensional velocity field. Three extra higher-order

Hermite polynomials are introduced to complete the set of bases, and the particle population

is written as

fi = wi
[
ρ+

ei · ρv
c2
s

+
1

2c4
s

a(2) : H
(2)
i

+
1

2c6
s

(
H

(3)
ixxya

(3)
xxy +H

(3)
ixyya

(3)
xyy

)
+

1

4c8
s

H
(4)
ixxyya

(4)
xxyy

]
,

(4.42)

and the corresponding equilibrium and non-equilibrium populations are given as

f
(0)
i = wiρ

[
1 +

ei · v
c2
s

+
1

2c4
s

a
(2)
0 : H

(2)
i

+
1

2c6
s

(
H

(3)
ixxya

(3)
0,xxy +H

(3)
ixyya

(3)
0,xyy

)
+

1

4c8
s

H
(4)
ixxyya

(4)
0,xxyy

]
,

(4.43)

f
(1)
i = wi

[ 1

2c4
s

a
(2)
1 : H

(2)
i

+
1

2c6
s

(
H

(3)
ixxya

(3)
1,xxy +H

(3)
ixyya

(3)
1,xyy

)
+

1

4c8
s

H
(4)
ixxyya

(4)
1,xxyy

]
,

(4.44)

The zeroth and first order Hermite coefficients can be recursively determined using the

following expressions

a
(n)
0 = a

(n−1)
0 v, and a

(0)
0 = ρ (4.45)

a
(n)
1,α1...αn

= a
(n−1)
1,α1...αn

uαn +
1

ρ

n−1∑
l=1

a
(n−2)
0,βl

a
(2)
1,αlαn

, for n ≥ 3, (4.46)

where βl = α1 · · ·αl−1αl+1αn denotes the omission of the index αl.

4.3 Boundary Conditions

Boundary conditions are employed differently in LBM than in Navier-Stokes solvers because

LBM requires to define the particle populations, rather than macroscopic variable, at the
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boundary. This section starts with general techniques applied in Dirichlet boundary con-

ditions and then discusses the non-reflecting boundary condition for acoustic problems and

the immersed boundary condition for fluid-structure interaction problems.

4.3.1 Dirichlet boundary condition

A Dirichlet boundary condition directly defines the macroscopic value at boundaries, giving

v(xB, t) = VB(xB, t), (4.47)

where VB represent the imposed boundary velocity along the boundaries defined at xB. It

is called the non-slip boundary condition when VB = 0.

However, the macroscopic value might be insufficient for LBM boundaries because the

populations fi defined at the mesoscopic level need to be determined. The general problem

of an LBM Dirichlet boundary condition is illustrated in Fig. 4.5. During the streaming

process, the populations f2−6 of the boundary node at the center can be updated from its

neighboring nodes. However, because there are no neighboring nodes in the corresponding

directions, the populations f1,7,8 are left unknown after the streaming, and resolving these

unknown populations to satisfy the macroscopic boundary condition is the kernel task of an

LBM boundary condition.

Streaming

f6 f2

f5 f4 f3

f7

f5f4f3

f6f2

f1 f8

Fig. 4.5: The illustration of the general boundary problem. The empty and solid circles
represent fluid and boundary nodes, respectively. The arrows represent the populations
traveling at different directions, with the dashed ones indicating unknown populations after
the streaming process.

The boundary nodes shown in Fig. 4.5 do not necessarily correspond to the actual location

of the physical boundary wall, and the alignment of the boundary nodes and the boundary
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wall depends on the type of the LBM boundary condition. In general, there are two types

of boundaries conditions for straight boundaries as shown in Fig. 4.6, known as

• the link-wise boundary where the boundary wall lies on the link between solid and

fluid nodes, and

• the wet-node boundary where the boundary nodes are considered to locate infinitely

close to the boundary wall yet remain in the fluid as “wet-nodes”.

x

y

(b)(a)

Fig. 4.6: The illustration of the (a) link-wise and (b) wet-node boundaries aligned with the
x-axis. The gray and white area represent the solid and fluid regions, respectively, while the
empty and solid nodes represent the fluid and boundary nodes, correspondingly. The thick
dashed lines represent the wall, which locates across the lattice links (dashed double lines) or
aligns with the boundary nodes for the link-wise and wet-node boundaries, correspondingly.

4.3.1.1 Bounce-back boundary condition

The bounce-back boundary condition is a typical link-wise boundary, which is also the

simplest method to implement a non-slip boundary condition. For a boundary node shown

in Fig. 4.5, the unknown populations f1,7,8 are given

f1 = f5, f7 = f3, f8 = f4, (4.48)

In general, it means that the incoming populations of the boundary nodes are bounced

back in the opposite direction, resulting in

fī = fi, (4.49)

where index i and ī denote the incoming and bounced-back direction ei and eī, respectively,

and eī = −ei. The rest of the populations on the boundary nodes are often left undefined,

as is the macroscopic density as well.
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4.3.1.2 Zou-He boundary condition

The Zou-He boundary condition, also known as the non-equilibrium bounce-back bound-

ary condition, is a wet-node boundary condition proposed by Zou and He (1997). It first

calculates the density for the Dirichlet velocity boundary with known populations. For the

boundary node illustrated in Fig. 4.5, the density and the y-direction momentum are given

as

ρB =

q−1∑
i

fi = funknown + f0 + f2 + f3 + f4 + f5 + f6,

ρBVB,y =

q−1∑
i

eiyfi = funknown − (f3 + f4 + f5),

(4.50)

where funknown = f1 + f7 + f8 is the sum of unknown populations, and the values of eiy are

given in Table 4.1. The two equations above are combined to derive a formula of ρB, which

is expressed solely in terms of known populations

ρB =
1

1− VB,y
[f0 + f2 + f6 + 2(f3 + f4 + f5)] . (4.51)

To obtain the unknown populations, the equilibrium population is computed with the

imposed velocity VB and the density ρB calculated using Eq. 4.51. The non-equilibrium part

of the populations are updated using the bounce-back method, which, taking a resting wall

(VB = 0) as an example, is given as:

fneq
ī

= fneqi = fi − f eqi . (4.52)

4.3.2 Non-reflecting boundary conditions

Modeling an unbounded physical domain in a finite computational domain is a common

numerical challenge, and the non-reflecting boundary condition (NRBC) is a widely used

technique to address such an issue in solving wave problems. NRBC is typically formulated

on the Navier-Stokes level by defining macroscopic variables, and there have been multiple

NRBCs that have been adapted to LBM by deriving a proper mesoscopic formulation, such as

the characteristic boundary condition (CBC) (Izquierdo and Fueyo, 2008), perfectly match-

ing layers (Najafi-Yazdi and Mongeau, 2012, Tekitek et al., 2009), and absorbing boundary

condition (ABC), also known as absorbing layers (Kam et al., 2006, Xu and Sagaut, 2013).
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The ABC proposed by (Kam et al., 2006, 2007) will be introduced in this section, while CBC

will be described in Ch. 5.

ABC introduces a buffer zone near the boundaries, inside which the collision process in

Eq. 4.34 is modified as follows:

f ∗i (x, t) = fi(x, t)−
∆t

τ
[fi(x, t)− f eqi (x, t)]− σ(f eqi (x, t)− f eq,ti (x, t)), (4.53)

where f eq,ti (x, t) is the target particle population that is calculated using Eq. 4.25 with a

target density ρt and target velocity vt. σ = σmδ
2
m is the absorbing coefficient, where σm is

a constant that is typically set to 0.3, and δm ∈ [0, 1] is a normalized distance that increases

from 0 to 1, from the start to the end of the buffer zone. ABC provides a simple and efficient

way of absorbing the outgoing waves as a NRBC. In addition, ABC can be used as sound

sources by properly setting ρt and vt (da Silva et al., 2007), and this approach will be applied

in Chs. 5 and 7 to define the inlet of the fluid domain.

4.3.3 Immersed boundary method

The immersed boundary method (IBM) was originally proposed by Peskin (1972) in the

context of Navier-Stokes solvers. Since then, many IBM variations have been developed

(Kim and Choi, 2019, Mittal and Iaccarino, 2005, Peskin, 2002). In LBM, IBM was first

introduced by Feng and Michaelides (2004), which is known as the immersed-boundary lattice

Boltzmann method (IB-LBM). This section will focus on the multi-direct-forcing IB-LBM,

which is going to be employed in computational aeroacoustic modeling of the saxophone

mouthpiece.

The multi-direct-forcing IBM was initially proposed by Wang et al. (2008), which was

later combined with LBM by Inamuro (2012). The kernel concept of IBM is to represent

solid walls as a series of Lagrangian markers xk(t) (also known as immersed boundary (IB)

nodes), which are positioned among the Eulerian fluid grids. The motion and interaction of

IB nodes with fluid grids are linked through velocity interpolation and force spreading, which

are illustrated in Fig. 4.7.

The velocity interpolation process interpolates the velocity at the position of IB nodes
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xk(t)

x

velocity interpolation

force spreading

Fig. 4.7: Illustration of the force spreading and velocity interpolation. The open circles and
filled squares represent the Eulerian fluid nodes and Lagrangian solid nodes, respectively.
The gray squares represent the area covered by a kernel function.

xk using velocities of neighboring Eulerian grids. This calculation is expressed as

v(xk, t) =
∑
x

v(x, t)W (xk(t),x)∆xD, (4.54)

where v(xk, t) represents the interpolated velocity at the location of an IB node k. The

interpolated velocity is expected to be equal to a known velocity of the IB node vbk to

enforce a non-slip boundary condition on the solid wall.

W (xk(t),x) = W (xk − x) is a kernel function proposed by Peskin (2002):

W (r) =
1

∆xD

D∏
i=1

φ(ri/∆x), (4.55)

with D representing the dimensionality, and the 1D kernel function defined as

φ(r) =


1

8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1

8

(
5− 2|r|+

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, otherwise.

(4.56)
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The force spreading process is governed by

F (x, t)∆xD =
∑
k

Fk(t)W (xk(t),x)∆Vk, (4.57)

where the force exerted on an Eulerian fluid node is obtained by spreading force from neigh-

boring Lagrangian IB nodes. Here, F (x, t) and Fk(t) represent the force densities of the

LB grids and IB nodes, respectively. The term ∆xD on the left-hand side represents the

volume of an LB grid, while ∆Vk on the right-hand side is the volume on which the IB force

is exerted. For evenly distributed IB nodes, this volume is given as ∆Vk = S/N∆x, where S

is the solid surface area, and N denotes the total number of IB nodes. For a two-dimensional

problem, it is typically recommended to maintain a distance between IB nodes S/N within

the range of (0.5∆x,∆x) (Krüger et al., 2017, 11.4.2.7).

Applying a direct-forcing IBM to LBM requires an LBM with a forcing scheme. The

Shan-Chen forcing scheme (Shan and Chen, 1993) is utilized in the present study, which

modifies the velocity calculation to incorporate the effect of external forces. Instead of being

calculated with Eq. 4.26 in a force-free LBM, the LB velocity is updated with:

v(x) =
1

ρ

q−1∑
i=0

fiei +
τF (x)

ρ
. (4.58)

This equation can be considered as a velocity correction procedure when an external force

is present.

In an IB-LBM, after the collision and streaming at each time step (process as if there is no

wall in the fluid field), LB velocities need to be corrected upon the presence of the solid nodes

using Eq. 4.58. It requires force densities F (x) on the fluid grids in the vicinity of IB nodes,

which are obtained through the force spreading (Eq. 4.57) procedure, and this further relies

on the known IB forces Fk exerted on the solid nodes. The different ways of determining

theses IB forces distinguish various IB-LBMs from each other. The direct-forcing IB-LBM

computes IB force directly from the flow field using a similar formula as Eq. 4.58:

Fk = ρ
vbk − v(xk)

τ
, (4.59)

where the IB force corrects the interpolated velocity v(xk) calculated using Eq. 4.54 to the
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imposed wall velocity vbk. It forms an implicit system in conjunction with Eqs. 4.54, 4.57

and 4.58, and the various methods to solve this implicit system result in further IB-LBM

variations. The multi-direct-forcing IB-LBM solves this system iteratively, and the algorithm

is shown as follows:

1. Compute ρ and v(0) =
1

ρ

∑
i

fiei, where a superscript in parentheses represents an

iteration number.

2. Perform the velocity interpolation

v(m)(xk) =
∑
x

v(m)(x)W (xk,x)∆xD,

and advance the iteration number m (m = m+ 1)

3. Compute the IB force density using Eq. 4.59

F
(m)
k = ρ

vbk − v(m−1)xk
τ

.

4. Perform the force spreading to obtain the force on LB grids

F (m)(x, t)∆xD =
∑
k

F
(m)
k (t)W (xk(t),x)∆Vk.

5. Apply the force to correct the velocity

v(m)(x) = v(m−1)(x) +
τF (m)(x)

ρ
.

6. Go back to Step. 2 if m < mmax.

7. Compute total correction force density

F (x) =
mmax∑
m=1

F (m)(x).

8. Perform the LB collision using F (x) and then the streaming process.

9. Calculate Fk and use it to update vbk from the solid model.

10. Advect the Lagrangian nodes xk(t+ ∆t) = xk(t) + vbk∆t.

11. Advance the time step and go back to Step. 1.



4 Lattice Boltzmann method fundamentals 77

An essential step of coupling the solid model and the LB simulation is calculating of Fk.

In the present research, the IB force density is updated with a similar process as the velocity

interpolation shown in Eq. 4.54, but only with LB nodes in the fluid volume (demonstrated

in Fig. 4.8). Thus, the formula is expressed as follows:

Fk(t) =
∑
x∈V

F (x, t)W (xk(t),x)∆xD, (4.60)

where V represent the fluid volume.

Fig. 4.8: Illustration of the IB force calculation. The open circles represent the fluid grids,
whereas the filled squares represent the IB nodes. The gray and white regions represent the
solid and fluid volumes, respectively. The dotted square denotes the kernel function range
for a specific IB node (marked as the red square), and the light blue area encompasses the
LB grids used to interpolate the IB force Fk.

4.4 Why LBM?

LBM and Navier-Stokes (NS) solvers are the two main options for computational aeroacoustic

(CAA) modeling. Previous research by Marié et al. (2009) found that LBM-BGK is less

dissipative than high-order finite difference schemes and less dispersive than a second-order

scheme in space with a 3-step Runge-Kutta scheme in time. More recent studies by Suss et al.

(2023) showed that rrBGK, the advanced collision model used in the present study, exhibits

a higher numerical dissipation on shear modes than NS solvers (finite volume schemes), but

much lower dissipation on the acoustic modes. The numerical efficiency of different models,

when run with the same level of errors, also demonstrated that rrBGK is a better candidate
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than finite volume schemes for acoustic problems. All these studies seemingly qualify the

choice of LBM with rrBGK used in CAA modeling of the saxophone mouthpiece. However,

it is important to note that these comparisons primarily focused on the bulk flow field. They

did not consider the influence of boundary conditions, which is important in determining

the numerical accuracy and efficiency of a CAA model. In addition, the accuracy of the NS

solvers used in the above comparisons is between second- and third-orders, whereas higher-

order NS solvers with lower numerical dispersion and dissipation can be employed in CAA

models, such as the sixth-order accurate finite-difference applied in single-reed instrument

modeling (Yokoyama et al., 2020, Yoshinaga et al., 2021). With that said, LBM was chosen

in the present study not because it is a “more accurate” numerical method, but for a more

practical reason, as discussed below.

There are three main options to develop a CAA model for a saxophone: developing an

in-house numerical solver, using commercial software, or developing based on an open-source

computational fluid dynamic (CFD) framework. An open-source framework was chosen as

a compromise between the other two options. On one hand, it saves time from developing

everything from scratch, allowing the focus to be on the research problem. On the other

hand, open-source software is more extensible compared to commercial software, which allows

users to implement and integrate their algorithms and models.

The available options are further narrowed down to the finite volume method (FVM)-

based software OpenFOAM (Jasak, 2009), and the LBM-based software Palabos (Latt et al.,

2021), and OpenLB (Krause et al., 2020). The choice of LBM over FVM is based on the

analytical comparison by Marié et al. (2009), as discussed earlier, and numerical tests by

Kühnelt (2016), who demonstrated the higher efficiency of LBM compared to a detached

eddy simulation implemented in Ansys Fluent for a CAA model of a recorder. Palabos is

chosen over OpenLB, mainly because it has implemented the rrBGK that I decided to use,

which has been verified in CAA applications (Brogi et al., 2017).

Palabos (Parallel Lattice Boltzmann Solver) is an open-source LBM-based computa-

tional fluid dynamic framework. It is based on the multi-block concept and the message

passing interface (MPI) for parallel computing, which supports both shared or distributed-

memory architectures. Palabos provides a majority of algorithms used in this thesis such as

rrBGK, Zou-He boundary condition and IBM, and also offers convenient interfaces for users

to implement their own algorithms. Palabos is used for the LB simulation in Chs 5 and 7

and 8.
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Chapter 5

Characteristic-based time-domain

impedance boundary condition

In this chapter, the characteristic-based time-domain impedance boundary condition (C-

TDIBC) is for the first time applied in lattice Boltzmann (LB) simulations. It is proposed

for a later application in the aeroacoustic modeling of a saxophone mouthpiece to increase

simulation efficiency and reduce computational cost by replacing the distributed LB modeling

of the resonator with a local representation of the resonator as a boundary condition. In

general, it is a combination of several existing techniques, including

• the characteristic boundary condition (CBC), or specifically, the local one-dimensional

inviscid (LODI) model with transverse terms and transverse relaxation, which is re-

ferred to as LODI-T in this section (Wissocq et al., 2017, Yoo et al., 2005),

• the plane wave masking (PWM) technique, which is incorporated with CBC and exter-

nal excitations to form the characteristic-based reflecting boundary condition (C-RBC)

(Jaensch et al., 2016, Kaess et al., 2008, Polifke et al., 2006), and

• a time-domain representation of input impedance as a recursive parallel filter structure

(Maestre et al., 2016, 2018), which can be considered as a variant of the time-domain

impedance boundary condition (TDIBC).

This chapter starts with the general overview of CBC in Sec. 5.1, followed by a description

of the PWM technique and the formulation of C-RBC in Sec. 5.2. TDIBC is addressed in

Sec. 5.3. Finally, C-TDIBC implementation in an LB simulation is presented in Sec. 5.4 with

various numerical validations in Sec. 5.5.
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5.1 Characteristic boundary condition

The characteristic boundary condition (CBC) was first developed by (Thompson, 1987,

1990), which served as a non-reflecting boundary condition (NRBC) for the Euler equation

system. Poinsot and Lele (1992) later generalized it for Navier-Stokes equations, resulting in

the Navier-Stokes characteristic boundary conditions (NSCBC). They proposed the so-called

local one-dimensional inviscid (LODI) model, which assumes an inviscid and one-dimension

flow at the boundary and discards viscous and transverse terms in the Navier-Stokes equa-

tion. However, Yoo et al. (2005) and Yoo and Im (2007) discovered that incorporating the

transverse and viscous terms in the boundary condition can help reduce the spurious reflec-

tion at the boundary, which results in a better performance of NRBC. Furthermore, Polifke

et al. (2006) performed an analytical analysis of LODI and discovered that LODI is partially

reflective instead of fully non-reflective. This is attributed to the linear relaxation term

introduced in CBC to suppress the mean flow drift, and such a problem can be mitigated

using the plane wave masking (PWM) technique proposed by Polifke et al. (2006) in the

context of plane acoustic wave propagation with normal incidence to the boundary. PWM

also allows the incorporation of external acoustic excitation by defining incoming acous-

tic sources at the boundary. Since the incoming acoustic source is typically a reflection of

the outgoing acoustic wave at the boundary, such a boundary condition is named as the

characteristic-based reflecting boundary condition (C-RBC) in this thesis. C-RBC provides

an interface to couple CBC with the time-domain impedance boundary condition (TDIBC)

(Jaensch et al., 2016, Kaess et al., 2008) and this combination is referred to in this thesis as

the characteristic-based time-domain impedance boundary condition (C-TDIBC).

The next section provides a brief overview of the characteristic decomposition of a hy-

perbolic equation system, which serves as the mathematical foundation of the characteristic

boundary condition. The NSCBC, including the original LODI as well as its variant LODI-T,

will be introduced afterward.

5.1.1 Characteristic decomposition of hyperbolic systems

Consider a hyperbolic equation system of primitive variables U in the form of

∂U

∂t
+A

∂U

∂x1

+C = 0, (5.1)
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the matrix A is diagonalizable with real eigenvalues, resulting in S−1AS = Λ (LeVeque,

2007, Ch. 10.10). S and its inversion S−1 are the matrices of right eigenvectors ri and left

eigenvectors lTi of A, respectively, i.e.,

Ari = λiri, (5.2a)

lTi A = λil
T
i , (5.2b)

with Λ the diagonal matrix of eigenvalues λi.

Equation 5.1 can be expressed in the characteristic variable formulation

∂W

∂t
+ Λ

∂W

∂x1

+ S−1C = 0, (5.3)

where W = S−1U is known as the “characteristic variable” or “characteristic waves”, with

each of its components given as

Wi = lTi U . (5.4)

The second term of Eq. 5.3 is known as the wave amplitude variations, and is commonly

denoted as

L = Λ
∂W

∂x1

= ΛS−1 ∂U

∂x1

= S−1A
∂U

∂x1

, (5.5)

with each of its elements given as

Li ≡ λil
T
i

∂U

∂x1

. (5.6)

The wave amplitude variation L is the most important concept in CBC, and it can be

interpreted as the directional derivative of U in the characteristic direction of lTi .

The hyperbolic equation is then reformulated in terms of L as

∂U

∂t
+ SL +C = 0, (5.7)

or in the characteristic variable format as

∂W

∂t
+ L + S−1C = 0. (5.8)
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5.1.2 Navier-Stokes characteristic boundary conditions

NSCBC is constructed based on the governing equation system (Eqs. 3.4, 3.8 and 3.16) of

fluid dynamics, which is written below in three dimensions:

∂ρ

∂t
+ v1

∂ρ

∂x1

+ v2
∂ρ

∂x2

+ v3
∂ρ

∂x3

+ ρ

(
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

)
= 0, (5.9a)

∂p

∂t
+ v1

∂p

∂x1

+ v2
∂p

∂x2

+ v3
∂p

∂x3

+ γp

(
∂v1

∂x1

+
∂v2

∂x2

+
∂v3

∂x3

)
= (γ − 1)τij

∂vi
∂xj

, (5.9b)

∂v1

∂t
+ v1

∂v1

∂x1

+ v2
∂v1

∂x2

+ v3
∂v1

∂x3

+
1

ρ

∂p

∂x1

=
1

ρ

∂τ1j

∂xj
, (5.9c)

∂v2

∂t
+ v1

∂v2

∂x1

+ v2
∂v2

∂x2

+ v3
∂v2

∂x3

+
1

ρ

∂p

∂x2

=
1

ρ

∂τ2j

∂xj
, (5.9d)

∂v3

∂t
+ v1

∂v3

∂x1

+ v2
∂v3

∂x2

+ v3
∂v3

∂x3

+
1

ρ

∂p

∂x3

=
1

ρ

∂τ3j

∂xj
(5.9e)

Considering a boundary with its normal parallel to the x1 direction, the equation system

is written in the matrix equation form as in Eq. 5.1:

∂U

∂t
+A

∂U

∂x1

+ T = V , (5.10)

where U = [ρ, p, v1, v2, v3]T , and

A =


u1 0 ρ 0 0

0 v1 γp 0 0

0 1/ρ v1 0 0

0 0 0 v1 0

0 0 0 0 v1

 , (5.11)

The matrices V and T include all the inviscid transverse terms and the viscous terms,
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respectively, shown as

T =


Tρ

Tp

Tv1

Tv2

Tv3

 =



v2
∂ρ
∂x2

+ v3
∂ρ
∂x3

+ ρ
(
∂v2
∂x2

+ ∂v3
∂x3

)
v2

∂p
∂x2

+ v3
∂p
∂x3

+ γp
(
∂v2
∂x2

+ ∂v3
∂x3

)
v2

∂v1
∂x2

+ v3
∂v1
∂x3

v2
∂v2
∂x2

+ v3
∂v2
∂x3

+ 1
ρ
∂p
∂x2

v2
∂v3
∂x2

+ v3
∂v3
∂x3

+ 1
ρ
∂p
∂x3


(5.12)

V =


Vρ

Vp

Vv1

Vv2

Vv3

 =



0

(γ − 1)τij
∂vi
∂xj

1
ρ

∂τ1j
∂xj

1
ρ

∂τ2j
∂xj

1
ρ

∂τ3j
∂xj


(5.13)

The eigenvalues of A are

λ1 = v1 − c, λ2 = λ3 = λ4 = v1, λ5 = v1 + c, (5.14)

with the corresponding left eigenvectors written as

lT1 = (0, 1,−ρc, 0, 0),

lT2 = (c2,−1, 0, 0, 0),

lT3 = (0, 0, 0, 1, 0),

lT4 = (0, 0, 0, 0, 1),

lT5 = (0, 1, ρc, 0, 0),

(5.15)

where c =
√
γp/ρ is the speed of sound as given in Eq. 3.18.

The “characteristic variables” defined in Eq. 5.4 are given as

W =


W1

W2

W3

W4

W5

 =


p− ρcv1

ρc2 − p
v2

v3

p+ ρcv1

 , (5.16)
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and the wave amplitude variations defined in Eq. 5.6 are given as

L1 =
∂W1

∂x1

= λ1

(
∂p

∂x1

− ρc∂v1

∂x1

)
, (5.17a)

L2 =
∂W2

∂x1

= λ2

(
c2 ∂ρ

∂x1

− ∂p

∂x1

)
, (5.17b)

L3 =
∂W3

∂x1

= λ3
∂v2

∂x1

, (5.17c)

L4 =
∂W4

∂x1

= λ4
∂v3

∂x1

, (5.17d)

L5 =
∂W5

∂x1

= λ5

(
∂p

∂x1

+ ρc
∂v1

∂x1

)
, (5.17e)

Each Wi represents a different traveling wave, with the eigenvalues λi representing the

corresponding wave speeds. W1 and W5 represent left- and right-traveling acoustic waves,

respectively, with corresponding traveling speeds of v1−c and v1 +c. W2 and W3,4 are related

to the entropy wave and vorticity waves, which are convected by the mean flow velocity v1.

The equation system Eq. 5.9 can be rewritten in the characteristic variable form of Eq. 5.8

as 

∂W1

∂t
∂W2

∂t
∂W3

∂t
∂W4

∂t
∂W5

∂t

+


L1

L2

L3

L4

L5

 =


T1

T2

T3

T4

T5

+


V1

V2

V3

V4

V5

 , (5.18)

which is normally used to define the boundary condition with

T =


−(Tp − ρcTv1)
−(c2Tρ − Tp)
−Tv2
−Tv3

−(Tp + ρcTv1)

 (5.19a) V =


Vp − ρcVv1
c2Vρ − Vp

Vv2

Vv3

Vp + ρcVv1

 . (5.19b)
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Equation 5.9 is also rewritten in the form of Eq. 5.7 as

∂

∂t


ρ

p

v1

v2

v3

+



1

2c2

[
L2 +

1

2
(L5 + L1)

]
1

2
(L5 + L1)

1

2ρc
(L5 −L1)

L3

L4


+


Tρ

Tp

Tv1

Tv2

Tv3

 =


Vρ

Vp

Vv1

Vv2

Vv3

 , (5.20)

which is used to update macroscopic variables ρ, p, and v at the boundaries in the time

domain.

Consider an outflow boundary on the right surface of a computational domain, as shown

in Fig. 5.1, the time derivatives ∂/∂t in Eq. 5.20 can be approximated using the Runga-Kutta

or Euler method, and the transverse terms ∂/∂x2 and ∂/∂x3 in T and V are approximated

using finite difference schemes with information on the boundary. L2,3,4,5 correspond to right-

traveling wave amplitude variables that leave from the computational domain, which allows

their ∂/∂x1 terms to be approximated using a one-sided finite difference with upstream

variables within the computational domain. L1 corresponds to the left-traveling acoustic

wave that enters the domain through the boundary so that it cannot be approximated using

an upwind scheme and becomes the only term that remains unknown to solve the equation

system on the boundary. However, based on the boundary condition defined in Eq. 5.18, L1

can be defined with other terms in the first row of the equation:

L1 = −∂W1

∂t
+ T1 + V1. (5.21)

The primary goal of CBC is to define the outgoing wave amplitude variables Li that

cannot be approximated with known variables in the computational domain by using proper

boundary conditions. The boundary conditions specified here focus on the subsonic non-

reflecting outflow boundaries. One can refer to the papers by Poinsot and Lele (1992) and

Lodato et al. (2008) for the CBC formulations of other types of boundary conditions.

For non-reflecting boundary conditions, the incoming characteristic waves are constant
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L1(v − c)
L2(v)

L3(v)

L4(v)

L5(v + c)

x1

x2

x3

L5(v + c)

L4(v)

L3(v)

L2(v)

L1(v − c)

Fig. 5.1: Illustration of the computational domain with NSCBC applied on the right surface
(green) perpendicular to the x1-axis. Li represents wave amplitude variations and the arrows
indicate the characteristic wave traveling direction.

in time at the boundaries, which gives (Hedstrom, 1979)

∂W1/∂t = 0, (5.22)

so that Eq. 5.21 is simplified as

L1 = T1 + V1. (5.23)

The LODI proposed by Poinsot and Lele (1992) further dropped the viscous and trans-

verse terms T 1 and V 1, which leads to the so-called “perfectly non-reflecting” CBC (Poinsot

and Lele, 1992).

L1 = 0. (5.24)

However, such a condition is ill-posed and can lead to mean flow drift. A simple way

to ensure well-posedness is to introduce a pressure relaxation term (Poinsot and Lele, 1992,

Rudy and Strikwerda, 1980)

L1 = Kp(p− p∞), (5.25)

where

Kp = σ(1−Ma2)c/L (5.26)
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is the relaxation frequency, Ma is the Mach number of the mean flow, L is the characteristic

size of the domain in the x1 direction, and σ is a chosen constant. p∞ is a target pressure that

is normally set to the far field pressure. This boundary condition is obtained by substituting

Eq. 5.25 back into Eq. 5.21
∂W1

∂t
= −Kp(p− p∞).

This boundary condition is known to be partially reflective since it violates the ideal non-

reflecting boundary condition in Eq. 5.22. The plane wave masking is proposed as a remedy

in the context of a plane wave propagation problem and will be presented in the next section.

Yoo et al. (2005) improved LODI by including the transverse term T and an additional

relaxation of the transverse term toward a reference value T∞. The incoming acoustic wave

variation is modified as

L1 = Kp(p− p∞)−KT (T1 −T1,∞) + T1, (5.27)

with the transverse relaxation parameter typically set as KT = 2M. The corresponding

boundary condition is denoted as

∂W1

∂t
= −Kp(p− p∞) +KT (T1 −T1,∞) + V1, (5.28)

which is referred to as LODI-T, and will be primarily applied in the present study.

5.2 Plane wave masking

Polifke and Wall (2002) and Polifke et al. (2006) proved that LODI with the pressure relax-

ation term provided in Eq. 5.25 is partially reflective and that the amplitude of the reflection

coefficient R of the boundary condition approaches unity at low frequencies. Polifke et al.

(2006) proposed the plane wave masking (PWM) to overcome the problem when applying

CBC in plane acoustic wave propagation with normal incidence to the boundary. This section

will first present PWM for non-reflecting boundary conditions, then discuss the formulation

of the characteristic-based reflecting boundary condition (C-RBC) by applying PWM in

CBC with external excitations.
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5.2.1 PWM for non-reflecting boundary conditions

The essential of PWM is to identify the outgoing acoustic wave p′out from the pressure p at

the boundary and mask its contribution to the incoming acoustic wave by modifying L1

L1 = Kp(p− p′out − p∞). (5.29)

Considering the same boundary as shown in Fig. 5.1, the acoustic pressure wave traveling

along the x1-axis is decomposed into the right-traveling p+ = p+(x − (v̄1 + c)t) and left-

traveling waves p− = p−(x− (v̄1−c)t), where v̄1 is the mean flow velocity in the x1 direction.

The right-traveling pressure p+ corresponds to the one that leaves the domain, so that the

above equation is rewritten as

L1 = Kp(p− p+ − p∞). (5.30)

For LODI-T, L1 defined in Eq. 5.27 can also be modified correspondingly as

L1 = Kp(p− p+ − p∞)−KT (T1 −T1,∞) + T1. (5.31)

Acoustic pressure and velocity are considered as small fluctuations on top of the mean

value such that p = p̄+p′ and v1 = v̄1+v′1. In order to calculate p+ to complete the boundary

condition, PWM assumes a plane wave at the boundary, where the acoustic pressure and

velocity are uniform across the transverse plane and can be approximated with

p′ ≈ 〈p− p̄〉 ,

v′1 ≈ 〈v1 − v̄1〉 ,
(5.32)

where 〈·〉 represents the spatial average along the boundary.

With the known acoustic pressure p′ and velocity v′1 on the boundary, the right-traveling

and left-traveling waves are calculated with

p+ =
1

2
(p′ + ρcv′1) , (5.33a)

p− =
1

2
(p′ − ρcv′1) . (5.33b)
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5.2.2 PWM for reflecting boundary conditions

The characteristic boundary condition relies on the definition of L1 based on Eq. 5.21, which

is rewritten here:

L1 = −∂W1

∂t
+ T1 + V1.

The non-reflecting boundary condition is based on Hedstrom (1979)’s boundary condition

in Eq. 5.22 which set ∂W1/∂t = 0. However, ∂W1/∂t does not equal zero when there is an

external excitation.

By combining the definition of W1 = p − ρcv1 with PWM assumption in Eq. 5.32, the

approximation of ∂W1/∂t gives

∂W1

∂t
=
∂ (p− ρcv1)

∂t
≈ ∂ (p′ − ρcv′1)

∂t
= 2

∂p−

∂t
, (5.34)

The definitions of L1 in LODI (Eq. 5.30) and LODI-T (Eq. 5.31) for non-reflecting

boundary conditions are extended by including the non-zero ∂W1/∂t , and are expressed

correspondingly as

L1 = K(p− (p+ + p−)− p∞)− 2
∂p−

∂t
, (5.35)

and

L1 = K(p− (p+ + p−)− p∞)−KT (T1 −T1,∞) + T1 − 2
∂p−

∂t
. (5.36)

It is important to note that the pressure relaxation target includes not only the outgoing

acoustic pressure p+ as in NRBC, but also the incoming acoustic pressure p−, so that the

total acoustic pressure p′ = p+ + p− is masked.

The above boundary condition in Eqs. 5.35 and 5.36 is named as characteristic-based

reflecting boundary condition (C-RBC) in this thesis which needs to be completed with

user-defined excitation terms p− and ∂p−/∂t . C-RBC is commonly applied at the end of

the computational domain to help couple an acoustic component to the numerical system.

A time-domain reflection function r(t) can be used to model the acoustic component so

that the incoming acoustic wave p− can be calculated by convolving r(t) with the outgoing

acoustic wave p+

p−(t) = (p+ ∗ r)(t). (5.37)

Different acoustic models, such as the digital waveguide method, wave digital filters,
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and TDIBC, can be integrated with C-RBC by taking p+ at the boundary as an input to

the acoustic model and calculate the output p−, which is fed back to the computational

domain. In the present research, TDIBC is primarily used in the aeroacoustic modeling

of the saxophone mouthpiece, and the next sections will cover the TDIBC formulation, its

integration with C-RBC, as well as its implementation in LB simulations.

5.3 Time-domain impedance boundary condition

The time-domain impedance boundary condition (TDIBC) can be divided into two groups

depending on the mean flow direction relative to the wall orientation. The majority of

TDIBCs have been proposed based on the Ingard-Myers boundary condition (Ingard, 1959,

Myers, 1980) and are commonly applied for grazing flows passing along acoustic liners, with

the wall being parallel to the flow direction. In this thesis, TDIBC is meant to be applied at

the end of a pipe to implement an acoustic load connected to the computational domain. In

such a circumstance, the flow travels perpendicular to the boundary, and it usually requires

to separate the mean flow from the acoustic flow using numerical filters (Schuermans et al.,

2005) or the characteristic boundary condition (Kaess et al., 2008, Polifke et al., 2006).

Despite the different flow directions to the boundary, the framework of TDIBC is the same

and is generally composed of two processes: modeling and implementation.

The modeling focuses on establishing a proper representation of the frequency-domain

impedance or reflection coefficients. Early TDIBC models, such as the first TDIBC model

(Tam and Auriault, 1996) that implemented a single frequency impedance and the first

“broadband” impedance model (Özyörük et al., 1998), are based on a rational function

representation of the impedance. Taking the impedance in the continuous frequency domain

as an example, it can be approximated by a rational function of jω (Dragna et al., 2015):

Z(ω) ≈ Zp(ω) = Z∞ +
a0 + · · ·+ aP−1(jω)P−1

1 + · · ·+ bP (jω)P
, (5.38)

where all coefficients ai and bi are real, and can be obtained by fitting the frequency response

to a known impedance. The rational representation can be built in the continuous frequency

domain and then transformed to the z-domain (Özyörük et al., 1998), or immediately fit in

the z-domain (Huber et al., 2008).

The multipole model is another extensively used representation (Fung and Ju, 2001, Li
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et al., 2012, Reymen et al., 2007). It is based on the partial fraction expansion of the rational

representation (Eq. 5.38), which yields

Zp(ω) = Z∞ +
∑
n

Cn
jω − sn

, (5.39)

where sn and Cn correspond to the poles and residues, respectively.

The implementation of TDIBC is primarily concerned with the transformation of a

frequency-domain representation to a time-domain representation so that the boundary con-

dition can be applied in a time-domain simulation. Widely applied implementations include

the recursive convolution (Fung and Ju, 2001, Li et al., 2012, Reymen et al., 2007), auxiliary

differential equation method (Dragna et al., 2015), state-space representation (Jaensch et al.,

2016, Schuermans et al., 2005, Zhong et al., 2016) to name a few.

In this thesis, the input impedance Z(z) is modeled as a recursive parallel filter structure

in the z-domain (Maestre and Scavone, 2016, Maestre et al., 2017). Akin to a discretized

modal expansion, resonant behavior of the impedance is conveyed by a number of parallel

two-pole resonators:

Z(z) =
N∑
n=1

(b0,n + b1,nz
−1)Hn(z), (5.40)

where

Hn(z) =
1− z−1

(1− pnz−1)(1− p̄nz−1)
, (5.41)

with pn and p̄n being a pair of complex conjugate poles of the n-th resonator, which guaran-

tees the realness of the coefficients. b0,n and b1,n are real coefficients to control the amplitude

and phase of each individual resonator.

As described by Maestre et al. (2018), the impedance digital filter Z(z) can be trans-

formed into a linear form

Z(z) = B0 + z−1Q(z), (5.42)
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where

Q(z) = z−1B1 + z−1H0(z) + z−2H1(z), (5.43)

B0 =
N∑
n=1

b0,n, B1 =
N∑
n=1

b1,n, (5.44)

H0(z) =
N∑
n=1

b0,nH
p
n(z), H1(z) =

N∑
n=1

b1,nH
p
n(z), (5.45)

and

Hp
n(z) =

c0,n + c1,nz
−1

1 + a1,nz−1 + a2,mz−2
, (5.46)

with c0,n = −1− a1,n and c1,n = −a2,n.

In order to be coupled with C-RBC, the input impedance model is transformed to a

reflection coefficient representation using the approach proposed by Maestre et al. (2017,

2018), which helps retain the parallel structure of the filter during the transformation.

Making use of the fact that P (z) = Z(z)U(z) and U± = ±P±Yc with Yc = 1/Zc the

characteristic admittance, the following expression of the volume flow rate U(z) can be

derived

U(z) =
2YcP

+(z)

1 + YcZ(z)
, (5.47)

which can then be reformulated by substituting it in Eq. 5.42:

U(z) =
2YcP

+(z)− z−1YcQ(z)U(z)

1 + YcB0

. (5.48)

The pressure is then updated as

P (z) = B0U(z) + z−1Q(z)U(z), (5.49)

with which the reflected acoustic pressure is calculated

P−(z) = P (z)− P+(z). (5.50)

Equations. 5.48-5.50 make it possible to take the outgoing acoustic wave P+ as an input

and return the incoming wave P−, which hence can be coupled with C-RBC. The corre-
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sponding discrete-time domain expressions are written as

u[n] =
Yc

1 + YcB0

(
2p+[n]− q[n]

)
, (5.51)

p[n] = B0u[n] + q[n], (5.52)

p−[n] = p[n]− p+[n]. (5.53)

where q[n] only depends on the history of u[n], i.e., on u[n − k] with k ≥ 1. It should be

noted that the volume flow rate u[n] is a temporary variable of the recursive parallel filter,

which is independent of the flow velocity v1 in the LB domain at the boundary.

5.4 Implementation of C-TDIBC in LBM

The characteristic boundary conditions are defined at the macroscopic level. To implement

it in LB simulations at the mesoscopic level, an LB boundary condition, such as the Zou-He

boundary condition introduced in Sec. 4.3.1, should be used to update the particle population

at each time step with the macroscopic variables determined from CBC.

Izquierdo and Fueyo (2008) were the first to apply CBC in the LB simulation by integrat-

ing the LODI with the LBM non-equilibrium bounce back boundary condition. Heubes et al.

(2014) later proposed a modified Thompson boundary condition that combines Thompson’s

original CBC for Euler equations (Thompson, 1987) with LODI and uses a single parame-

ter to control the contribution of the transverse terms. The non-equilibrium extrapolation

method is used to complete the boundary condition at the LB level. Jung et al. (2015)

incorporated Yoo and Im (2007)’s scheme into LB simulations, which includes viscous and

transverse terms, as well as a transverse relaxation into the boundary condition. More

recently, Wissocq et al. (2017) proposed the regularized CBC and investigated the combina-

tions of the regularized boundary condition with several CBC variants including the LODI,

the LODI with transverse terms and transverse relaxation (LODI-T) and the local streamline

LODI.

The implementation of C-TDIBC in LB simulation is detailed in this section. It is es-

sentially a combination of the C-RBC, the TDIBC, and the LB boundary condition, which

are introduced in Sec. 5.2.2, Sec. 5.3, and Sec. 4.3.1, respectively. To summarize, the imple-

mentation of C-TDIBC in LB simulations involves the following steps:
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1. compute L2−5 defined in Eq. 5.17 using one-sided finite difference with upstream

macroscopic variables inside the computational domain and compute the transverse

terms T using the finite difference to approximate the spatial derivatives in Eqs. 5.19a

and 5.12,

2. using a low-pass filter (LPF) to separate the mean flow v̄1 from acoustic flow v′1 as

well as the mean pressure p̄ from acoustic pressure p′, and update the mean flow Mach

number Ma = v̄1/cs, and relaxation parameters Kp and KT ,

3. compute p+ using Eq. 5.33a,

4. compute p− and ∂p−/∂t with Eqs. 5.51-5.53 using TDIBC (p− and ∂p−/∂t are set to

zero for the non-reflecting boundary condition),

5. compute L1 using Eq. 5.36 (the reference pressure and transverse terms are problem-

dependent and initialized at the start of the simulation, and the relaxation coefficients

Kp and KT have been updated in Step 2),

6. update ρ, p, v from Eq. 5.20, with the forward Euler method to approximate the time

derivatives,

7. update LBM particle populations fi with equilibrium particle distribution based on

the macroscopic variables calculated in the previous step,

8. forward in time and go back to Step 1.

The LPF used in Step 2 is designed using the filter designer in Matlab. Specifically, an

infinite impulse response (IIR) elliptic filter is constructed, which has a stopband starting at

100 Hz with an attenuation of 80 dB. The frequency response is shown in Fig. 5.2.
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Fig. 5.2: The frequency response of the infinite impulse response low-pass filter.
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5.5 Validations of characteristic-based boundary conditions

5.5.1 Non-reflecting boundary condition

5.5.1.1 Free field wave propagation

The vortex convection test case, where a single vortex is convected by the uniform mean

flow, is used to demonstrate the efficacy of the characteristic boundary condition as a non-

reflecting boundary condition (NRBC). Three different NRBCs are tested including the

absorbing boundary condition discussed in Sec. 4.3.2, LODI, as well as LODI-T.

The density and velocities are initialized as

ρ = ρ∞ − ρ
C2

c2
sR

2
c

exp

(
− r2

2R2
c

)
v1 = v1,∞ +

C

ρ∞
exp

(
− r2

2R2
c

)(
−(y − y0)

R2
c

)
v2 = 0− C

ρ∞
exp

(
− r2

2R2
c

)(
−(x− x0)

R2
c

) (5.54)

where C = 25csNx/104 is the vortex strength, Rc = Nx/10 is the vortex radius, and (x0, y0)

is the vortex center that is located at the center of the domain (Nx/2, Ny/2), and v1,∞ is

the mean flow velocity in the x1-direction with Mach number equal to 0.1. Nx = Ny = 100

is the number of grid points in x- and y-directions, correspondingly. The rrBGK is used for

LBM simulation with the relaxation frequency ω = 1/τ = 1.993.

Figures 5.3 and 5.4 display the isocontours of the y-directional velocity and pressure,

respectively, simulated by ABC, LODI and LODI-T, which show that LODI-T has the best

performance in absorbing the outgoing wave with minimum disturbance in the upstream

field.

5.5.1.2 Wave propagation in pipe

To further validate the performance of CBC, the wave propagation in a two-dimensional pipe

is simulated and the simulation setup is shown in Fig. 5.5. The inlet boundary condition is

applied to the left of the pipe, which generates both the mean flow and the acoustic impulse.

The impulse response of a finite impulse response low-pass filter is used as the sound source,

which has a cut-off frequency of 10000 Hz. CBC is applied to the right of the pipe as a
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ABC

LODI

LODI-T

Fig. 5.3: Isocontours of the y-directional velocity at four different time steps.

ABC

LODI

LODI-T

Fig. 5.4: Isocontours of pressure at four different time steps.

non-reflecting boundary condition, which indicates that the simulation can be considered

as an acoustic impulse traveling in an infinite-long uniform pipe. Two different CBCs are

tested including the LODI-T either with or without PWM, which correspond to the two

different definitions of L1 in Eq. 5.27 and Eq. 5.31, respectively. A probe is set at the right

boundary to measure the acoustic pressure and velocity, which are Fourier-transformed to
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the frequency domain and used to calculate the impedance Z as defined in Eq. 3.39, and

reflection coefficients R using Eq. 3.42. Non-slip boundaries are applied to the top and

bottom walls.

The pipe has a length of 8 mm and a width of 1.6 mm, which are selected based on

the dimension of the saxophone mouthpiece. The acoustic sound speed is 343 m/s and the

kinetic viscosity is set as 1.51e−4 m2/s, which is an order of magnitude larger than that of

the air to guarantee the stability of the simulation. The spatial resolution is set so that there

are 180 grid points per wavelength at 10000 Hz.

Inlet Outlet & Probe

acoustic impulse
mean
flow

Fig. 5.5: The schematic of the setup of wave propagation in a two-dimensional pipe.

The simulation is first run under a quiescent flow. The acoustic impulse is triggered as

soon as the simulation starts. Since there is no mean flow, there is no need to use the low-pass

filter (IIR-LPF discussed in Sec. 5.4) to separate the mean values and acoustic fluctuations

of the pressure and the velocity. However, simulations are computed both with and without

the IIR-LPF, which are used to study the influence of the IIR-LPF on the performance of

the non-reflecting boundary condition.

Figure 5.6 displays the measured magnitudes of the reflection coefficients using different

CBC models. It demonstrates that the LODI-T without PWM is partially reflective and

the reflectance goes toward unity at low frequencies as discussed in Sec. 5.2. PWM demon-

strates its efficacy in improving the performance of NRBC, especially at low frequencies. An

ideal NRBC should have zero reflection coefficient magnitudes at all frequencies. However,

in reality, the wave can never be perfectly planar because of the acoustic boundary layer

formulated due to the non-slip boundaries. In addition, the IIR-LPF is shown to degrade

the CBC performance and the influence is found to mainly fall in the frequency range within

the LPF passband by comparing results in Fig. 5.6 with the frequency response of the LPF

shown in Fig. 5.2.
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Fig. 5.6: The comparison of measured reflection coefficients for various CBCs under quies-
cent flow.

The simulation with the presence of mean flow runs through a few different phases. The

velocity in the pipe is first initialized as zero and the inlet velocity then starts to increase

from zero to the target mean flow velocity within 0.5 s. The acoustic impulse is finally

triggered after the velocity field is stable. The measured reflection coefficients under the

mean flow with Mach number 0.1 is shown in Fig. 5.7. A similar result as that of the

quiescent flow simulation is found which further confirms the efficacy of PWM in improving

the performance of the CBC as an NRBC.
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Fig. 5.7: The comparison of measured reflection coefficients for various CBCs under mean
flow (Ma=0.1).
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5.5.2 Characteristic-based time-domain impedance boundary condition

In this section, the characteristic-based time-domain impedance boundary condition (C-

TDIBC) is validated using the same simulation setup as shown in Fig. 5.5. Instead of

deploying an NRBC to simulate an infinite pipe, the measured input impedance of a saxo-

phone (the note C4 (written)) is imposed at the boundary with the help of C-TDIBC. The

numerical measurement of the impedance is conducted both with and without mean flow

with the same simulation parameters as used for NRBC validation. Figure 5.8 compares the

imposed impedance with the probed ones under quiescent and mean flow (Ma = 0.1), and

Figure 5.9 compares the corresponding reflection coefficients. A good overall agreement is

achieved for both cases while the main discrepancies lie around the first two anti-resonances

of the impedance. This is consistent with the study of the non-reflecting characterization

of the boundary condition, where the CBC is subject to larger fictitious reflections at low

frequencies as shown in Figs. 5.6 and 5.7.
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Fig. 5.8: The comparison between the imposed impedance and the measured ones under
quiescent flow and mean flow (Ma=0.1).
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Fig. 5.9: The comparison between the imposed reflection coefficients and the measured ones
under quiescent flow and mean flow (Ma=0.1).
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Chapter 6

Acoustical Modeling of the Saxophone

Mouthpiece

6.1 Introduction

In this chapter, the saxophone mouthpiece acoustics and its influence on the oscillation char-

acteristics are investigated by treating the mouthpiece as a linear acoustic resonator. There

are two main objectives in the present chapter. The first is to find a proper way to acous-

tically characterize the mouthpiece, and evaluate the mouthpiece’s acoustic contribution to

the saxophone. The input impedance of the mouthpiece is chosen as the primary feature

for the acoustic characterization, and its definition is thoroughly discussed with an emphasis

on determining the optimal place to define the mouthpiece acoustic input. The acoustic

contribution of the mouthpiece is explored by comparing the measured input impedance of

a conical pipe with and without a mouthpiece.

The second objective focuses on the acoustical modeling of the mouthpiece, with the

goal of achieving a more accurate and flexible representation of a saxophone mouthpiece

that can be applied both to sound synthesis and to investigate mouthpiece design variations.

The saxophone body is a truncated conical air column with modal frequencies that are not

harmonically related (Ayers et al., 1985). The mouthpiece completes the conical frustum

by providing the volume equivalent to that of the missing part of the cone so that the fun-

damental frequency and the harmonics are better tuned (Benade, 1990, pp. 469-472). For

the low-frequency range, where the wavelength is considerable in comparison to the dimen-
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sion of the mouthpiece, the mouthpiece can be modeled as a parallel acoustic compliance

that is determined only by the volume of the mouthpiece (Chen et al., 2009, Kergomard

et al., 2016). However, such a lumped model is less accurate at high frequencies where the

admittance of the parallel acoustic compliance overwhelms that of the resonator. Another

way to represent the mouthpiece is as a cylindrical section, sometimes referred to as the

“cyclone” model (Scavone, 2002). Similar to the lumped mouthpiece model, the volume of

the cylinder is the same as that of the missing part of the cone. The cylindrical mouthpiece

is coupled to the saxophone body based on mass conservation and pressure continuity at the

junction between the cylinder and the conical frustum. Kergomard et al. (2016) extended

the cylindrical mouthpiece model by allowing a cross-section discontinuity. It is shown that

the behavior of the cylindrical mouthpiece model, including the resulting mouthpiece inter-

nal pressure waveform and the inharmonicity of the complete instrument, highly depends

on the mouthpiece length and diameter. While the cylindrical model with a short length

resembles the lumped model, more and more higher frequency components are introduced

as the mouthpiece becomes longer. The dependence of the acoustic behavior on the variable

length of the cylindrical mouthpiece model might bring about uncertainties when used in a

sound synthesis scheme. A cylinder-cone mouthpiece model was proposed by van Walstijn

and Campbell (2003) for the clarinet. It approximates the mouthpiece as a cylindrical sec-

tion followed by a conical section. However, the structure near the tip of a real mouthpiece

is more like a cone and the remaining part of the mouthpiece is more cylindrical so that the

neck of the saxophone can be easily attached. Considering the mouthpiece is a non-reciprocal

acoustic unit, reversing the order of the cone and the cylinder can lead to a totally different

behavior. A more precise model of the saxophone mouthpiece was proposed by Andrieux

et al. (2014, 2016) using the finite element (FE) method. The FE model was validated by the

measured mouthpiece input impedance and was coupled to a measured input impedance of

the saxophone body to study the mouthpiece geometry’s influence on the instrument. To the

authors’ knowledge, this is the only work that has considered a more accurate geometry of

a mouthpiece. However, the FE model is time-consuming to develop and compute, making

it inappropriate for sound synthesis and the analysis of transient behaviors.

To overcome the limitations of the above-mentioned models, the transfer matrix model

(TMM) of the mouthpiece is derived from the FE mouthpiece model so that the acoustic

properties contributed by the complex mouthpiece geometry are intrinsically retained. For

this reason, TMM is more accurate than the cylindrical and lumped mouthpiece models, as
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shown by comparing the measured input impedance of a system composed of a mouthpiece

coupled to a truncated cone (the mouthpiece-cone system), with that calculated using differ-

ent mouthpiece models. As well, TMM provides a compact mouthpiece representation that

can be used for real-time sound synthesis. In this chapter, the sound of the saxophone with

different mouthpiece models is synthesized using the framework proposed by Maestre and

Scavone (2016), Maestre et al. (2018). The differences in the sound, as well as the dynamics,

among different mouthpiece models, are explored and discussed.

Finally, the transmission line mouthpiece model is proposed, which provides a slightly

less accurate but more flexible representation than TMM. It is applied in the construction

of the mouthpiece design interface, which will be discussed in the Appendix C.

In this study, a custom-designed alto saxophone mouthpiece with a medium round cham-

ber and a straight baffle is employed for acoustic measurement and various acoustic modeling.

6.2 Acoustic characterization of the mouthpiece

6.2.1 Definition of the Mouthpiece Input Impedance

The input impedance is one of the most widely applied concepts in wind instrument acous-

tic study. It is defined as the ratio of the frequency-domain pressure to the volume flow

rate at the system input (Eq. 3.40). One of the most challenging aspects of using the in-

put impedance to study the mouthpiece is properly locating the input. When taking the

mouthpiece-pipe system as a linear acoustic resonator, the airflow serves as the input of the

system. As discussed in Ch. 2, the pressure-driven flow that enters through the tip window

and the side slits, as well as the reed-induced flow produced by the reed motion, all con-

tribute to the airflow that enters the mouthpiece. This implies a distributed input to the

mouthpiece, which requires to be localized to simplify the problem.

There exist two choices in the literature for localizing the input. Chen (2009) and An-

drieux et al. (2014) defined the input right at the mouthpiece window as shown in Fig. 6.1(a),

and the mouthpiece acoustic cavity is the same as the mouthpiece inner cavity 1○. It is as-

sumed that the pressure-driven flow and the reed-induced flow have mixed with each other

and enter together into the mouthpiece through the window. The input impedance defined

on the window implicitly assumes an evenly distributed pressure field despite the curvature

of the surface. Furthermore, the input is typically defined at a circular sub-area on the win-
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dow rather than the complete window to facilitate the input impedance measurement(Chen,

2009). Andrieux et al. (2016) defined a different input plane that sits at the mouthpiece

tip window as shown in Fig. 6.1(b). Such a definition extends the acoustic cavity of the

mouthpiece by including the wedge-shaped complement to fill the space between the reed

and the mouthpiece window, and the mouthpiece acoustic cavity is composed of both the

mouthpiece inner cavity 1○ and the wedge-shape complement 2○. In addition, the curved

tip contour is also replaced with a flat tip window, where the mouthpiece input is defined.

1○

Input

3○

3○

3○

3○ Input

(a)

1○1○

2○

Input2○
3○

3○

3○

3○

Input

Reed Surface(b)

1○

Fig. 6.1: The illustration of the mouthpiece input and acoustic cavity, where 1○, 2○ and

3○ represent the mouthpiece inner cavity, the wedge-shaped complement, and a half of the
mouthpiece, respectively.

The second definition is employed in this chapter to build acoustic models because of the

following two reasons. First, the input is defined on a flat surface where a planar wave can be

assumed to make it easier to define the input impedance. In addition, defining the acoustic

input at the tip window assumes a localized fluid-acoustic-structure interaction at the tip of

the reed, which is consistent with the assumptions applied to the mathematical framework

as discussed in Ch. 2.1.1, making it more straightforward to apply to sound synthesis.

In summary, the use of the second definition is based on the following assumptions.

First of all, the acoustic system must be linear and passive. This is only true when the

sound source of the saxophone is decoupled from the mouthpiece. Even though the reed is

treated as part of the boundaries in the mouthpiece, its vibration is not. In this way, the
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excitation and the nonlinearity of the system can be modeled separately, and the mouthpiece

can be viewed as a linear and passive acoustic system. Second, the input is assumed to be

localized at the tip window, and the acoustic cavity is completed by closing the side slits

with hard walls and replacing the boundary confined by the vibrational reed with a solid

wall corresponding to the equilibrium position of the reed. Another assumption is that only

the propagating mode is considered on both the input and the output surfaces. At the

input surface, this assumption is satisfied by assuming a plane wave sound source. On the

output side, it is assumed that the discontinuity between the mouthpiece and the connected

resonator is small enough that any excited evanescent modes decay sufficiently within the

mouthpiece and do not interact with other discontinuities. Furthermore, it is also assumed

that the discontinuities within the mouthpiece are sufficiently distant from the output plane.

6.2.2 Input Impedance Measurements

The acoustic impedance measurements were performed with a custom-built multi-microphone

system (Lefebvre and Scavone, 2011) consisting of six microphones along a cylindrical pipe of

6.5 mm radius, providing a cutoff frequency slightly greater than 15 kHz. Three resonance-

free calibration loads were used similar to the ones described by Dickens et al. (2007), in-

cluding a quasi-infinite impedance, an almost purely resistive impedance and an unflanged

pipe radiation load. For this work, the input impedances of an alto saxophone mouthpiece,

a 40 cm-long truncated cone made of carbon fiber (3◦ taper angle), and the combination of

the mouthpiece and the truncated cone (the mouthpiece-cone system) were measured. To

connect the mouthpiece to the impedance head, an adapted structure having the same inner

geometry as the mouthpiece was designed and 3D-printed for the measurement. The surface

of the reed and the side slits were closed by the walls in the adapter, with only a small

rectangular tip window open to the impedance head.

When measuring the input impedance of the mouthpiece alone, the mouthpiece was closed

by a 3D-printed block that shortened the mouthpiece inner length by 1 cm. For consistency,

the truncated cone was inserted the same distance into the mouthpiece when measuring the

mouthpiece-cone system.

The input impedances of the truncated cone, closed mouthpiece, and the mouthpiece-cone

system are shown in Fig. 6.2. Compared to the truncated cone, the frequencies of the first few

impedance peaks of the mouthpiece-cone system are lower because the mouthpiece lengthens
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Fig. 6.2: The measured input impedances of the truncated cone, the closed mouthpiece,
and the mouthpiece-cone system.

the instrument. The mouthpiece also modulates the input impedance of the resonator by

amplifying it around the mouthpiece’s resonance frequencies. This indicates a similar role

as that played by a trumpet mouthpiece (Caussé et al., 1984), which helps explain the

brightness contributed by the mouthpiece.

6.3 Finite element modeling of the mouthpiece

The mouthpiece cavity shown in Fig. 6.1(b) was imported into COMSOL Multiphysics® for

the finite element simulation. A plane wave pressure source was set as the inlet boundary

condition at the tip window of the mouthpiece and impedance boundary condition was

applied to the rest of boundaries, which includes the viscothermal losses at the walls by an

imposed acoustic admittance defined as (Chaigne and Kergomard, 2016)

Ywall =
1

ρc

√
jk
[
sin2 θ

√
lv + (γ − 1)

√
lt

]
, (6.1)

with ρ the fluid density, c the speed of the sound, k the wavenumber, θ the angle of the

incidence of the wave, lv = µ/ρc the vortical characteristic length, lt = lv/Pr the thermal

characteristic length, γ the ratio of specific heats, µ the fluid dynamic viscosity and Pr the
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Prandtl number. The mesh of the FE model was constructed with a maximum element size

of 6 mm, which allows the model to have at least 7-8 nodes per wavelength at 8 kHz.

6.3.1 Validation of the finite element model

The FE model of the mouthpiece was validated by comparing the simulated closed mouth-

piece input impedance with the measured one, as shown in Fig. 6.3. A frequency-domain

phase correction was applied to the measured data to compensate for sub-sample time delay

discrepancies. Good agreement is achieved up to 15 kHz with maximum discrepancies of

1.8 dB in the magnitudes and 0.5% in the frequencies between the resonance peaks of the

measured and simulated input impedances. There are relatively larger discrepancies around

the anti-resonant frequencies than the resonant frequencies, which is mainly attributed to

the discontinuity between the impedance head and the mouthpiece tip window, and might

be potentially mitigated by taking into account the influence of higher-order modes using

the multimodal method (van Walstijn et al., 2005). The onset of the higher order mode

can be observed around 14 kHz in both the measured and FE-modeled input impedances.

This corresponds to the cutoff frequency of the mouthpiece, above which non-planar modes

are observed in the pressure iso-surface plot in COMSOL. It is worth noting that the cutoff

frequency of the mouthpiece is larger than 12.7 kHz, the cutoff frequency of an ideal cylin-

drical pipe with a radius equal to that of the mouthpiece bore (the cylindrical part of the

mouthpiece into which a resonator is inserted).

6.4 Transfer matrix modeling of the mouthpiece

The transfer matrix (TM) method has been widely applied to the study of the wind in-

strument resonator, including the effects of the tonehole (Keefe, 1990, Lefebvre, 2010) and

the cutoff frequency (Petersen et al., 2019), to name a few. It is based on the acoustical

two-port theory that assumes a linear acoustical system with two terminals (Pierce, 2019).

The black-box region between terminals can be characterized by a 2× 2 matrix written as

T =

[
T11 T12

T21 T22

]
, (6.2)
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Fig. 6.3: The measured input impedance of the closed mouthpiece and that simulated using
the FE model.

with all the matrix elements as functions of frequency. It defines the relationship of the

acoustic pressure and volume velocity between the input and the output of the acoustic

system: [
Po

Zc
oUo

]
= T

[
Pi

Zc
iUi

]
, (6.3)

where Zc = ρc/S is the characteristic acoustic impedance and S the cross-section area. The

subscripts i and o represent the input and the output side of the acoustic system, respectively.

To derive the transfer matrix of the mouthpiece, the two-load method was used by running

the FE simulation twice with two different output boundary conditions (Lefebvre, 2010).

With the simulated pressure and volume velocity at both the input and the output, the

following linear equation system can be solved to obtain the four elements of the transfer

matrix: 
p1
o Zc

oU
1
o 0 0

0 0 p1
o Zc

oU
1
o

p2
o Zc

oU
2
o 0 0

0 0 p2
o Zc

oU
2
o



T11

T12

T21

T22

 =


p1
i

Zc
iU

1
i

p2
i

Zc
iU

2
i

 (6.4)

The superscripts 1 and 2 represent two different simulations with the loads set as a

theoretical unflanged radiation impedance and the characteristic impedance, respectively.



6 Acoustical Modeling of the Saxophone Mouthpiece 109

The closed mouthpiece input impedance can be calculated as Zclosed = T11/T21, which agrees

well with that calculated by the FE model as shown in Fig. 6.4. Comparing the input

impedance calculated by TMM to that calculated by the FE model, the largest discrepancies

in the resonance peak magnitudes and frequencies are 0.7 dB and 0.2%, respectively. Since

the wall admittance is applied to the solid boundaries of the FE model, viscothermal losses

are intrinsically included in the derived TMM. However, because TMM is derived from the

FE simulation with specific temperature and corresponding physical variables, viscothermal

losses are immutable once the transfer matrix is derived.

To enable the application of TMM to other studies, the transfer matrix is approximated

with four 10th-order polynomials to fit all complex matrix elements Tmn up to 8 kHz1. The

estimation errors, defined as Emn =
∥∥Tmn − T poly

mn

∥∥
2
/‖Tmn‖2, for all elements are less than

0.5%, where T poly
mn are approximated matrix elements. The polynomial approximation is

available online.2
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Fig. 6.4: The comparison of the modulus (top) and argument (bottom) of mouthpiece input
impedances computed by the FE model and TMM.

1TMM derived from the FE model can reach to as high as the mouthpiece’s cutoff frequency around 14
kHz, while only the part below 8 kHz was validated in this chapter.

2http://www.music.mcgill.ca/caml/doku.php?id=projects:adsm
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6.4.1 Validation of the transfer matrix model

The mouthpiece-cone system was used to validate TMM derived in Sec. 6.4. The measured

input impedance of the conical frustum Zcone was coupled to the transfer matrix (TM)

mouthpiece as a load impedance. Since the diameter of the cone is different from that of

the mouthpiece bore, there exists a discontinuity at the interface. Because the diameter

difference is small, the influence of the non-propagating modes on the propagating mode is

neglected and the acoustic impedances on the two sides of the junction are assumed equal

to each other. However, the discontinuity, as illustrated in Fig. 6.5, should be carefully

treated when using the normalized acoustic impedance Z̃ = Z/Zc in the calculations. The

normalized impedance on the right of the junction is written as Z̃2 = Z̃1S2/S1, where S1 and

S2 are the cross-section areas on the left and right of the junction, respectively.

(1) (2)

junction plane

bore of the mouthpieceresonator

Fig. 6.5: An illustration of the junction between the mouthpiece and the resonator.

The input impedance of the mouthpiece-cone system can then be calculated with the

following equation

Z̃mc =
T11 + T12/Z̃2

T21 + T22/Z̃2

. (6.5)

The comparison between the measured and calculated input impedances is shown in

Fig. 6.6. The calculated input impedance generally matches the measured one, with the

largest peak magnitude discrepancy of 1.8 dB and the largest peak frequency deviation less

than 1%. As mentioned before, the discrepancies around the anti-resonances are relative

larger, which is due to the measurement error caused by the discontinuity between the

impedance head and the mouthpiece tip window.
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Fig. 6.6: The measured input impedance of the mouthpiece-cone system and that calculated
with TMM using Eq. 6.5.

6.4.2 Acoustic comparison between different mouthpiece models

6.4.2.1 Mouthpiece coupled to a truncated cone

TMM can be compared to two previously reported mouthpiece representations, i.e., the

cylindrical mouthpiece model and the lumped mouthpiece model. For each of the mouth-

piece representations, the input impedance of a combined mouthpiece-cone system is calcu-

lated using the input impedance of the truncated cone measured in Sec. 6.2.2 as the load

impedance.

The cylindrical mouthpiece model takes the mouthpiece as a pure cylinder that has the

same volume V eq
m as the missing part of the truncated cone. In this chapter, the cylindrical

mouthpiece is modeled based on its TM representation (see Sec. 3.2.5), which is expressed

as

Tcyl =

[
cosh(ΓL) Zc sinh(ΓL)

Z−1
c sinh(ΓL) cosh(ΓL)

]
, (6.6)

where Γ depends on the acoustic constants of the air (Chaigne and Kergomard, 2016) and

includes the wall losses due to viscothermal effects.

For consistency, the radius of the cylinder is chosen to be equal to that of the mouthpiece

bore S2 so that the length of the mouthpiece L = V eq
m /S2 is fixed. The input impedance of



6 Acoustical Modeling of the Saxophone Mouthpiece 112

the mouthpiece-cone system Z̃mc is calculated using Eq. 6.5 by substituting T with Tcyl.

The lumped mouthpiece model approximates the mouthpiece as an acoustic compliance

Cm = V eq
m /(ρc2) in parallel with the impedance of the resonator. This lumped representa-

tion is often sufficient for low frequencies, where the wavelength is large compared to the

characteristic length of the mouthpiece. Taking the same load impedance Z2 used with

the other mouthpiece models, the input impedance of the mouthpiece-cone system with a

lumped mouthpiece is calculated as

Z lumped
mc =

1
1

Z2

+ jωCm

. (6.7)

The input impedances of mouthpiece-cone systems with different mouthpiece models

are compared with the measurement in Fig. 6.7. The calculations with TMM result in

the best match to the measured input impedance compared to the other two mouthpiece

representations. Because all three mouthpiece models have the same mouthpiece volume,

they have a similar behavior at low frequencies where the lumped model assumption is valid.

However, the performance of the lumped mouthpiece degrades quickly as it shunts high-

frequency components. The high-frequency characteristics of the cylindrical mouthpiece

model show significant discrepancies from the measured and TMM responses because of the

oversimplified geometric approximation. Derived from the FE model, the TM mouthpiece

intrinsically contains the complex geometry information of the mouthpiece, which provides

advantages in preserving the high-frequency structure over the other models.

6.4.2.2 Mouthpiece coupled to an alto saxophone

Previous input impedance (Z(ω) = P (ω)/U(ω)) and radiation transfer function (E(ω) =

Prad(ω)/U(ω)) measurements of an alto saxophone (without mouthpiece) made by Maestre

et al. (2018) were used to investigate the coupling of the different mouthpiece models with

an alto saxophone. P (ω) and Prad(ω) are the frequency-domain mouthpiece pressure and

radiated pressure, respectively, and U(ω) is the volume flow rate at the entrance of the

resonator in the frequency domain. As with the mouthpiece-cone system, coupled responses

were obtained with the measurements as load impedances. In the junction between the bore

of the mouthpiece and the neck of the saxophone, there is a discontinuity that was accounted

for by multiplying the measured saxophone body input impedance by the cross-section area
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Fig. 6.7: The measured input impedance of the mouthpiece-cone system and that calcu-
lated using TMM, cylindrical mouthpiece model (Cyl.) and the lumped mouthpiece model
(Lumped).

ratio S2/S1, so that we were able to obtain the impedance on the mouthpiece side of the

junction Z̃2 = Z̃1S2/S1. Similarly, the radiation transfer function was also multiplied by

the same factor so that Ẽ2 = Ẽ1S2/S1. Input impedances of the entire instrument can be

calculated using either Eq. 6.5 for the TM mouthpiece and cylindrical mouthpiece, or Eq. 6.7

for the lumped mouthpiece. For the cylindrical mouthpiece and the TM mouthpiece, the

radiation transfer function can be derived as follows using the transfer matrix elements:

Ẽsax =
Ẽ2

T21Z̃2 + T22

, (6.8)

For the lumped mouthpiece, the radiation transfer function is calculated as

Ẽlumped
sax =

Ẽ2Z̃
lumped
sax

Z̃2

. (6.9)

As an example, the input impedances and the radiation transfer functions with and without

the TM mouthpiece are shown in Fig. 6.8 for the note B[4 (written).

The mouthpiece helps tune the fundamental frequency and the harmonics by completing

the truncated cone of the saxophone body. To compare the influence of the different mouth-
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Fig. 6.8: Comparisons of the input impedance and radiation transfer function with (solid
lines) and without (dashed lines) the TM mouthpiece for the note B[4 (written). The vertical
solid and dashed lines correspond to the equal-tempered scale frequencies of the first and
second harmonics of the note, respectively. The input impedance and radiation transfer
function with the TM mouthpiece are calculated using Eqs. 6.5 and 6.8, respectively.

piece representations on the alignment of the impedance peaks across the entire playing

range, each mouthpiece model was tuned separately when coupled with the measurement

for the F4 (written) fingering by adjusting the mouthpiece volume to align the first input

impedance peak to the corresponding equal-tempered scale frequency.

As shown in Fig. 6.9, the deviation (in cents) between the frequency of the first or

second peak of the input impedance and the equal-tempered scale frequency of each note

are compared among different fingerings with and without different mouthpiece models.

Comparisons are made to the first input impedance peak for first register notes (below D5)

and to the second peak for the remaining (second register) notes. For the body of the

saxophone alone (without mouthpiece), the deviation is large and generally increases with

the fundamental frequency within each register. All the mouthpiece models help reduce such

a deviation, though the tuning performance varies from note to note. The TM mouthpiece

performs similarly to the other two mouthpiece models in the first register, while it shows

the least deviation in the second register.

Following the definition of the inharmonicity parameter used by Gilbert et al. (2019),
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Fig. 6.9: The deviation in cents between the first or second input impedance peak and the
equal-tempered scale frequency of different notes.

the inharmonicity for the notes of the first register was characterized as I = (f2 − 2f1)/2f1,

where f1 and f2 are the two lowest resonance frequencies of the input impedance. The

comparison of the inharmonicities between the saxophone with different mouthpiece models

is displayed in Fig. 6.10, showing that the input impedance peaks of the saxophone with the

TM mouthpiece are more harmonically aligned than the others.

More comparisons between the saxophones with different mouthpiece models for the

note B[4 (written) are shown in Fig. 6.11, including the input impedance, normalized input

impedance, reflection function, and the radiation transfer function. All mouthpieces have

the same volume in this comparison, and as expected, they have similar behavior in the

lower-frequency range. The magnitude and the frequency of the first peak match each other

very well, while the difference between the second peak is more significant. Comparing the

normalized input impedances, magnitude differences are readily apparent. This is because

the impedance is normalized by values of Zc that are calculated with different cross-section

areas for different mouthpiece models. For the cylindrical and lumped mouthpieces, the

mouthpiece bore cross-section area is used (see Fig. 6.5). However, the TM mouthpiece

results are normalized by the cross-section area at the mouthpiece tip, which is much smaller

than the bore area. At higher frequencies, the input impedance magnitudes of the TM
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Fig. 6.10: Input impedance peak inharmonicities for the different mouthpiece representa-
tions.

mouthpiece and the cylindrical mouthpiece converge toward the specific impedance (or a

normalized value of one). However, due to the increase of the acoustic admittance used

in the lumped model, the input impedance magnitude continues to decrease, which causes

the reflection function to approach one as the frequency increases. Such a behavior can be

especially problematic in the context of sound synthesis, as mentioned by Kergomard et al.

(2016), so a preprocessing must be applied to force the reflection function towards zero, as

discussed in the following section.

The differences in the magnitude level of the normalized input impedance also leads to

differences in the magnitudes of the reflection function R = (Z̃ − 1)/(Z̃ + 1). As can be

seen from its definition, the magnitude of the reflection function will have minima around

frequencies where Z̃ ≈ 1. Because the input impedance magnitude of the TM mouthpiece

system is generally lower than that of the other two mouthpiece models and the magnitudes

of the first two peaks are just above one, the |R|-plot of the TM mouthpiece has extra dips

around 2000 - 4000 Hz and their positions do not correspond with those of the other two

models.

Finally, the comparison of the radiation transfer function shows that all three different

mouthpiece models have a similar behavior at the low-frequencies and the high-frequency

characteristics of TM mouthpiece are more significant compared to those of the other mouth-
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Fig. 6.11: Comparisons (from top to bottom) of the modulus of the physical input
impedances, the modulus of the normalized input impedances, the argument of the nor-
malized input impedances, the reflection functions, and the radiation transfer functions
between the TM mouthpiece (solid lines), cylindrical mouthpiece (dashed lines) and the
lumped mouthpiece (dotted lines) coupled with the measured impedance of the alto saxo-
phone resonator for the note B[4 (written).

piece models. This is consistent with the discussion about the input impedance comparison.

6.4.3 Sound and dynamics comparison between different mouthpiece models

This section describes the synthesis of alto saxophone sounds using different mouthpiece

models and measured saxophone impedances in order to analyze the influence of differ-
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ent mouthpiece models on the nonlinear dynamics and properties of the rendered sound.

Based on the work by Maestre et al. (2018), the saxophone was represented by the classic

three-equation single-reed instrument model (Chaigne and Kergomard, 2016), which was dis-

cretized based on a combination of three different schemes (Guillemain et al., 2005, Maestre

and Scavone, 2016, Scavone and Smith, 2006). As previously described, the different mouth-

piece models were coupled to measured input impedance and radiation transfer functions of

an alto saxophone. From this frequency-domain data, we fit recursive parallel filters that

jointly represented the mouthpiece and the resonator as an efficient digital filter that was

used for audio synthesis for a subsequent analysis of dynamics and sound properties. The

results of the note B[4 (written) were taken as an example to quantitatively compare the

performances of different mouthpiece models with the discussion of possible explanations for

their differences in sound characteristics and dynamics behavior.

6.4.3.1 The synthesis model

The standard three-equation single-reed instrument model comprises three unknowns: the

mouthpiece pressure p, the volume velocity u and the reed tip displacement y away from the

equilibrium position. Dimensionless variables are used in the governing equations as

p̃ =
p

pM
, ũ = Zc

u

pM
, ỹ =

y

H
, (6.10)

where pM is the mouth pressure at which the reed channel is closed, Zc is the characteristic

impedance at the input of the resonator, and H is the distance at equilibrium from the

tip of the reed to the lay of the mouthpiece. For the sake of simplicity, all the tildes are

subsequently omitted.

The pressure-controlled reed is modeled by a single-degree-of-freedom damped oscillator

that is governed by the following equation:

1

ω2
r

d2y

dt2
+
qr
ωr

dy

dt
+ y = −∆p, (6.11)

where ωr = 2πfr with fr being the reed resonance frequency, and qr is the reed damping

coefficient. The variable ∆p = γ − p is the pressure difference between the mouth pressure

γ and the pressure in the mouthpiece p.

The linear resonator, composed of the mouthpiece and the saxophone, is modeled based
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on the input impedance of the entire system,

Z(ω) =
P (ω)

U(ω)
. (6.12)

The nonlinearity of the saxophone is governed by the Bernoulli flow equation:

u =

ζ(1 + y)sign(γ − p)
√
|γ − p|, 1 + y ≥ 0,

0, 1 + y < 0,
(6.13)

where ζ = ZcwH
√

2/(ρpM), with w the reed channel width.

Equations 6.11, 6.12 and 6.13 compose the governing equations of the saxophone model,

which need to be discretized for the time-domain sound synthesis.

The discretization of the reed model is performed by way of the bilinear transform (Scav-

one and Smith, 2006), leading to

Y (z)

∆P (z)
=

−4ω2
rz
−1

a0 + 2(ω2
r − α2)z−1 + (α2 − grα + ω2

r)z
−2
, (6.14)

where gr = qr/ωr, a0 = α2 + grα + ω2
r and α = ωr/ tan(ωr/2fs) is the bilinear transform

constant that controls the frequency warping and is defined to match the reed resonance

frequency between the continuous and discrete domains.

The input impedance Z(ω) is modeled as a recursive parallel filter (Maestre and Scav-

one, 2016, Maestre et al., 2017) as discussed in Sec. 5.3.It ultimately gives a time-domain

expression in Eq. 5.52, which is rewritten here:

p[n] = B0u[n] + q[n], (6.15)

where p[n] and u[n] represent the discrete-time pressure and volume flow rate, respectively,

and q[n] only depends on the history of u[n], i.e., on u[n− k] with k ≥ 1.

By substituting Eq. 6.15 into the discrete version of Eq. 6.13, the volume flow rate u[n]

can be solved explicitly as (Guillemain et al., 2005)

u[n] =


1

2
sign(γ − q[n])(−B0w[n]2 + w[n]

√
(B0w[n])2 + 4|γ − q[n]| 1 + y[n] ≥ 0,

0, 1 + y[n] < 0,
(6.16)
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where w[n] = ζ(1 + y[n]). Afterward, p[n] can be updated using Eq. 6.15.

To obtain the radiated sound, we employed again the scheme proposed by Maestre et al.

(2018), which jointly approximates the input impedance Z(ω) and the radiation transfer

function E(ω) as a single set of recursive digital filters in parallel form. As in the case of the

impedance, this leads to a time-domain expression for the radiated sound pressure as

prad[n] = D0u[n] + g[n]. (6.17)

where D0 is constant and g[n] only depends on u[n− k], with k ≥ 1.

Thus, to summarize, the acoustic pressure p[n], flow rate u[n], and the radiated sound

pressure prad[n] were computed as follows:

1. update the reed position y[n] use Eq. 6.14.

2. update q[n] and g[n] in Eq. 6.15 and Eq. 6.17, correspondingly, based on previous

samples of the flow rate u[n− k] with k ≥ 1.

3. explicitly solve the flow rate in the mouthpiece u[n] using Eq. 6.16.

4. calculate the mouthpiece pressure p[n] and the radiated pressure prad[n] using Eq. 6.15

and Eq. 6.17, respectively.

5. go back to the step 1.

The number of parallel sections N depends on the fingerings and the mouthpiece models,

and was manually selected. A higher-note fingering normally has a smaller N than that of

a lower-note fingering for it involves less prominent modes. For a resonator with N = 32

parallel sections and a sampling frequency of 48 kHz, this model ran at a speed more than

30 times faster than real-time on one logical core of a laptop computer.

6.4.3.2 Fitting of the input impedance and the radiation transfer function

To design the digital filters corresponding to the impedance model and the radiation model,

we employed the nonlinear optimization described by Maestre et al. (2018). The sound

synthesis model was designed to run at a standard audio sample rate of 48 kHz. Some

preprocessings was performed before fitting the digital filter coefficients. For the cases of

TM mouthpiece and cylindrical mouthpiece representations, the target normalized input

impedance magnitude above 8 kHz was set to one, with a cross-fade region from 7 to 8 kHz.

This assumes that no sound is reflected from the end of the instrument above 8 kHz. For

the lumped mouthpiece representation, the target normalized input impedance magnitude
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was cross-faded to one in the region from 2 to 3 kHz, for reasons noted in Sec. 6.4.2. For all

three mouthpiece models, the magnitude of the radiation transfer function was set to -40 dB

above 8 kHz, as this response exhibited some noise at higher frequencies due to limitations

of the measurement space.

The fittings of the input impedance and the radiation transfer function are shown in

Fig. 6.12. For the lumped mouthpiece model, N = 14 parallel sections were used, while

N = 32 for the cylindrical and TMMs.
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Fig. 6.12: The fitting of the modulus (top) and argument (middle) of the impedance and the
radiation transfer function (bottom) of the lumped mouthpiece (left), cylindrical mouthpiece
(center), and TM mouthpiece (right). In each plot, dashed lines (red) and solid lines (blue)
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6.4.3.3 Analysis of nonlinear dynamics and sound properties

The sound of the saxophone was synthesized at the sampling frequency 48 kHz for the note

B[4 with different mouthpiece models. The resonance frequency of the reed was fr = 1500

Hz, the damping factor was qr = 1.5, the stiffness of the reed was kr = 8 × 106 Pa/m, the

density was ρ = 1.18 kg/m3 and the speed of sound was defined as 347.23 m/s. The width of
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the mouthpiece tip window was w = 12 mm and the equilibrium height of the reed channel

was H0 = 0.8 mm. The reed parameters were initially chosen based on values provided in

the literature (Colinot et al., 2020, Petersen et al., 2019), though they were subsequently

modified so that the synthesized sounds of different mouthpiece models were in the same

regimes. These values correspond to values of ζ = 0.3 in Eq. 6.13 for the lumped and

cylindrical mouthpiece models, falls into the typical range ζ ∈ [0.1, 1] (Kergomard et al.,

2016).

The synthesis was performed using a linearly varying mouth pressure with a fixed slope

k = 0.01. The normalized mouth pressure γ either increased from 0 to 3, or decreased from

1.2 to 0. The comparisons of the bifurcation diagrams, fundamental frequencies and spectral

centroids exhibited by different mouthpiece models are shown in Fig. 6.13 for the increasing

and decreasing mouth pressure profiles.

Unlike the traditional bifurcation diagram generated by solving a non-linear system theo-

retically (Dalmont et al., 2000) or numerically (Colinot et al., 2020), the one shown at the top

of Fig. 6.13 was obtained by extracting the envelope of the synthesized mouthpiece pressure

p, as has been used by Colinot et al. (2019). Though it cannot show all bifurcation branches

nor types, this diagram presents the stable solutions from which it is possible to identify

the different dynamics thresholds, including the oscillation threshold, extinction threshold,

inverse oscillation threshold and the inverse extinction threshold, and compare them between

different mouthpiece models. In addition, one may notice the sudden jump taking place in

the bifurcation diagram along the lower envelope around γ = 1.5, which corresponds to the

point that the oscillation changes from the Helmholtz motion to the inverted Helmholtz mo-

tion, as discussed by Dalmont (2007). While the overall characteristics remain similar, the

main differences between mouthpiece models revolve around the extinction threshold iden-

tified in the bifurcation diagram. The thresholds where the regime changes from Helmholtz

motion to inverted Helmholtz motion also vary among different mouthpiece models. The

difference in thresholds is partially explained by the inharmonicity difference as shown in

Fig. 6.10. However, though inharmonicity of impedance peaks has been shown to influence

dynamics (Dalmont et al., 1995, Doc and Vergez, 2015, Gilbert et al., 2019), its impact on

different oscillation thresholds is still unclear.

The playing frequency fp was also compared based on its deviation from the frequency
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Fig. 6.13: Comparisons of the bifurcation diagrams (top), playing frequencies (middle) and
radiated sound spectral centroid (bottom) for increasing (left) and decreasing (right) mouth
pressure profiles. The (inverse) oscillation thresholds and (inverse) extinction thresholds are
shown in the bifurcation diagrams as vertical solid and dashed lines, correspondingly.

of the first peak of the input impedance f1

fcents = 1200 log2

(
fp
f1

)
, (6.18)

and the difference can be as large as 15 cents between mouthpiece models. Such differ-

ences are partially contributed by the inharmonicity among different mouthpiece models as

discussed in Section 6.4.2.2 (Coyle et al., 2015, Dalmont et al., 1995, Gilbert et al., 2019).
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The spectral centroids of the radiated sound were compared as well. As shown at the

bottom of Fig. 6.13, the TM mouthpiece has the highest spectral centroid, mainly due to

its more accurate representation of higher-frequency characteristics as indicated in the input

impedance and the radiation transfer function.

The waveforms of the pressure inside the mouthpiece of two different regimes are shown

in Fig. 6.14. The mouthpiece pressure waveforms for the three different models are generally

similar to each other, though the TM mouthpiece result displays the largest fluctuation,

especially when the reed is closed (around the valleys of the pressure waveform). This can

be traced to the discontinuity in the flow model as the reed channel starts to close and the

fact that TMM reflects more high-frequency components.

When γ = 2, the saxophone is oscillating under the inverted Helmholtz motion. It is

interesting to see that the cylindrical mouthpiece has a more similar waveform to the TM

mouthpiece than to the lumped mouthpiece model. This could indicate that under the

inverted Helmholtz motion, where the closing phase of the reed channel is longer than the

opening phase, the inertance of the mouthpiece plays an important role in determining the

waveform. However, such an assumption needs to be further tested before a conclusion can

be drawn.
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Fig. 6.14: The comparison of the waveforms among three mouthpiece models when a)
γ = 0.8 and b) γ = 2.

Finally, the so-called bifurcation delay was quantitatively compared among different

mouthpiece models. The bifurcation delay was first proposed in the context of the clar-

inet by Bergeot et al. (2014), which is defined by the difference between the theoretical



6 Acoustical Modeling of the Saxophone Mouthpiece 125

oscillation threshold and the dynamic threshold simulated under dynamic conditions (as in

our experiments). In practice, the bifurcation delay is calculated as BD = Pmdt−Pmst. Pmst

is the minimum value of a static blowing pressure above which an instability can emerge.

The Pmdt is the dynamic oscillation threshold where the periodic oscillation occurs when

the mouth pressure increases. However, the theoretical oscillation threshold is nearly im-

possible to estimate for a real instrument. As shown in the results by Bergeot et al. (2014),

decreasing the mouth pressure changing rate k will make the measured inverse extinction

threshold closer to the theoretical static oscillation threshold. Based on this, Pmst was set

to the inverse extinction threshold with the smallest pressure change rate of k = 0.01. The

comparison of BD and its changes with k are displayed in Fig. 6.15. For a better sense of

the difference, the pressure is shown in Pascals rather than dimensionless pressure in this

figure.

0 500 1000 1500
Mouth Pressure Changing Rate

k (Pa/s)

0

500

1000

1500

B
if

ur
ca

tio
n 

D
el

ay
 (

Pa
)

TM m.
Cyl m.
Lumped m.

Fig. 6.15: The comparison of the bifurcation delays with different mouth pressure changing
rate k.

6.5 Transmission line modeling of the mouthpiece

The transmission line mouthpiece model (TLM) is proposed in this section. The model

represents the mouthpiece as a series of cascaded acoustic cylinders of varying cross-section

area, each modeled with a transmission line matrix. The one-dimensional cross-section area

function is created by slicing the 3D mouthpiece acoustic cavity along a longitudinal path
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from the tip of the mouthpiece to the end of the bore. There are two possible ways of defining

the guiding path as shown in Fig. 6.16. The first path follows a longitudinal straight line

perpendicular to the mouthpiece tip window (TLM-Perp), while the second path follows

the center line of the acoustic cavity of the mouthpiece (TLM-CL). Fig. 6.17 illustrates a

comparison of the two area functions by slicing the mouthpiece into 80 segments, indicating

a minor difference between the two slicing methods.

(a) (b)

Fig. 6.16: The illustration of the mouthpiece slices (vertical thin solid lines) following (a)
the path (horizontal dashed lines) perpendicular to the tip window and (b) the path through
the center line of the mouthpiece acoustic cavity.
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Fig. 6.17: The area functions built based on two different paths.

In Fig. 6.18, the input impedances of the closed mouthpiece calculated by two different

TLMs are compared with that calculated with the finite element method (FEM) in Ch. 6.3.

Both TLMs perform well at low frequencies where the acoustic capacitance plays a more im-

portant role. However, the discrepancies increase with frequency, which could be attributed

mainly to the geometry simplification when converting the 3D acoustic cavity into a 1D area

function, particularly in the front part from of the mouthpiece from the tip to the throat

where the cross-section resembles more of a rectangular pipe. Representing this front part

of the mouthpiece with cylindrical segments results in underestimated damping, which ex-
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plains the overestimated resonance amplitude in the TLM results. TLM-CL is shown to have

slightly lower resonant frequencies than TLM-Perp. This is due to the fact that the center

line guiding path is slightly longer than the straight guiding path of TLM-Perp, resulting in

a larger overall length, and lower resonant frequencies for TLM-CL.
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Fig. 6.18: The input impedance of a closed mouthpiece calculated by TLMs and FEM.

The simulated input impedance of the saxophone (connecting the saxophone body to the

mouthpiece) by TLMs and TMM are shown in Fig. 6.19. The input impedances calculated

with TLMs agree well with that calculated by TMM in general, and the discrepancy is

relatively larger around the resonances and anti-resonances of the closed mouthpiece.

In summary, TLM provides a way of modeling the mouthpiece using a series of cylindrical

pipes, with accuracy comparable to TMM for the frequencies below the second resonance of

the mouthpiece. TLM makes it convenient to customize and characterize the mouthpiece by

modifying the cross-section area function and calculating the corresponding input impedance.

A TLM-based interactive mouthpiece design interface is built and discussed in Appendix C.

6.6 Discussion

The present chapter begins with the definition of the mouthpiece input impedance. By

adding the wedge-shaped space between the reed surface and the mouthpiece window, the

acoustic cavity of the mouthpiece is extended to the tip window, where the input is de-

fined. Such a definition makes it easier to measure and calculate the input impedance of the

mouthpiece, and the measured input impedances are used for the acoustic characterization

of the mouthpiece. It shows that when a mouthpiece is connected to a truncated cone, the
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Fig. 6.19: The input impedance of the saxophone for the note B[4 (written) simulated with
TLMs and TMM.

resonator’s harmonic frequencies are shifted down due to the increase of the overall pipe

length, and the mouthpiece resonant frequencies shape the “formants” of the overall input

impedance.

The transfer matrix mouthpiece model was derived from a finite element mouthpiece

model, which represents the mouthpiece as a 2× 2 matrix. The modeling was validated by

comparing the calculated input impedance of a mouthpiece-cone system with measurements.

The same measured input impedance was also used to compare calculated results using

lumped and cylindrical mouthpiece models. TMM was shown to be the most accurate

representation among all three models, providing the highest degree of fidelity in the high-

frequency region.

Using a sound synthesis model based on recursive parallel filters, the three different

mouthpiece models were coupled to the same alto saxophone and a comparison was per-
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formed in terms of the fundamental frequency, inharmonicity, dynamics threshold, playing

frequency, spectral centroid, pressure waveform, and the bifurcation delay. Different mouth-

piece models clearly show varying behaviors that can be explained by differences in their

inharmonicity and high-frequency characteristics. In this chapter, basic comparisons were

aimed at demonstrating differences in terms of a number of acoustical and dynamical fea-

tures in simulated played conditions, and we leave a detailed analysis of other features, such

as the influence of inharmonicity or higher modes on the dynamics, for future studies.

Because the transfer matrix provides an efficient way to represent the mouthpiece while

being accurate enough to retain the complex mouthpiece geometry information, the proposed

TMM is adaptable and ideal for different applications. TMM, which could be applied to other

instruments such as the clarinet, can be connected to different resonators by taking either

the measured or calculated resonator input impedance as the load impedance, which is useful

for instrument prototyping purposes. It should also be straightforward to apply TMM to a

variety of sound synthesis schemes, leading to a more accurate simulation of both high- and

low-frequency regions.

The TLM built in this chapter is based on a one-dimensional cross-section function rep-

resentation of the mouthpiece geometry. Despite the simplification in geometry from 3D to

1D, the input impedance calculated using TLM closely matches the TMM-simulated results.

Unlike TMM, which requires running the more expensive FE model twice for a modified

mouthpiece geometry, updating the mouthpiece geometry is a trivial task for TLM. The

cross-section area function can be directly edited or updated by re-slicing the modified 3D

CAD model, which is an efficient process in either case. Though not covered in this chapter,

TLM can also be used for sound synthesis. The synthesis can be based on either the recursive

parallel filter representation as used for TMM, or a time-domain scattering representation

such as those used with digital waveguide models (Scavone, 1997, van Walstijn, 2002).

All three acoustic models developed in this chapter will be used for the acoustic analysis

of mouthpieces in Ch. 8, and TLM is applied to build the interactive mouthpiece design

interface in Appendix C.
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Chapter 7

Aeroacoustical Modeling of the

Saxophone Mouthpiece

A two-dimensional (2D) computational aeroacoustic model of the saxophone mouthpiece

is developed in this chapter to investigate the fluid-structure-acoustic interaction (FSAI)

during saxophone sound generation. The objective is to explore the role of the mouthpiece

in sound generation using aeroacoustic analyses.

The chapter begins with a comprehensive overview of the computational model in Sec. 7.1.

The lattice Boltzmann method (LBM) is used to simultaneously resolve fluid and acoustic

fields in the mouthpiece, which is commonly known as the direct method in computational

aeroacoustics(Wagner et al., 2007, Sec. 1.2.4). The mouthpiece solid walls and the one-

dimensional beam model of the moving reed are incorporated with the LB simulation using

the immersed boundary method (IBM), as detailed in Sec. 4.3.3. The characteristic-based

time-domain impedance boundary condition (C-TDIBC) is utilized to represent the acoustic

resonator at the end of the mouthpiece. While C-TDIBC was validated in Ch. 5 in simple

flows, it will be further validated in the context of self-sustained sound generation in Sec. 7.2.

Finally, in Sec. 7.3, the Ffowcs Williams and Hawkings (FW-H) acoustic analogy is employed

for the aeroacoustic analysis based on the LB simulation, which helps characterize the sound

generation process by investigating different sound sources distributed in the mouthpiece.
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7.1 Lattice Boltzmann aeroacoustic model of the mouthpiece

7.1.1 Mouthpiece Model

The schematic of the mouthpiece model is shown in Fig. 7.1. A Meyer 5M alto saxophone

mouthpiece is used in this chapter, which has a tip opening of 1.8 mm, and a round medium-

size chamber. The 2D mouthpiece geometry is represented by a series of B-splines, which are

obtained by projecting the three-dimensional (3D) mouthpiece onto its sagittal plane. To

provide the mouth pressure that drives the instrument, the absorbing boundary condition

(ABC) described in Sec. 4.3.2 is applied with a layer thickness of 30 grid points at the

computational domain’s inlet. C-TDIBC introduced in Ch. 5 is applied to the end of the

mouthpiece to represent the acoustic resonator. The immersed boundary method (IBM)

presented in Sec. 4.3.3 is used to model the mouthpiece and reed walls. IBM is only applied

to the complex geometry of the mouthpiece before the throat, whereas the Zou-He boundary

condition (Sec. 4.3.1.2) is applied to the rest of the solid walls, including the cylindrical bore

of the mouthpiece and the walls in the mouth. The immersed boundary (IB) nodes and Zou-

He boundaries are represented by dotted and solid lines in the diagram, respectively. The IB

nodes of the mouthpiece walls are created every 0.8∆x along B-splines, where ∆x represents

a grid size of the LB simulation. For the top of the reed, discretized IB nodes are initially

placed on the xreed-axis of the reed coordinate (xreed, yreed). The reed coordinate sets the

origin at the tip of the mouthpiece ramp, and the xreed-axis is placed along the mouthpiece

table, with its positive direction pointing toward the tip of the mouthpiece. The yreed-axis is

set perpendicular to xreed-axis, with its positive direction pointing into the mouthpiece. The

bottom reed curve is determined by the reed thickness b(x), along which the IB nodes were

created.

The upstream length (measured from the tip of the mouthpiece to the upstream bound-

ary) is 3 cm, and the mouthpiece bore length depends on simulations and will be defined

separately.

The sound speed is set to 343 m/s. The kinetic viscosity is set to 1.51e−4 m2/s, which

is approximately an order of magnitude larger than that of the air. This is a numerical

tradeoff to help allow a coarser grid while ensuring the simulation stability. A larger viscosity

corresponds to a smaller Reynolds number, which will yield a more laminar flow in the

mouthpiece reed channel. However, previous research (Wang and Scavone, 2019) has shown
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Fig. 7.1: The schematic of the simulation setup.

that LB simulations with larger viscosities are accurate enough to model the quasi-static

flow in a saxophone mouthpiece. In addition, although a larger viscosity can introduce

greater dissipation on acoustic waves, it has demonstrated good performance in solving

aeroacoustic problems, as will be discussed in Appendix B. All simulations use a grid size

of ∆x ≈ 9.53e−5 m and a time step of ∆t ≈ 1.60e−7 s, which guarantees 360 grid points per

wavelength at 10 kHz.

Both the pressure and velocity are initialized as zero in the computational domain. The

ABC pressure also starts at zero and then increases linearly to reach the target pressure pt

within a short amount of time tr. The ramping-up period is typically 5 ms for the saxophone

playing frequencies studied in the present research (from around 200 to 600 Hz). The short

pressure ramping time is not set to match a realistic playing condition but is rather a

numerical tradeoff to help faster achieve a steady-state signal and to save computational time.

However, it is important to note that a short ramping-up duration may not be suitable for

playing lower notes, such as fingering B[3 on a saxophone, as it may result in an unintended

higher register note.

The total simulation duration is selected to be long enough for the system to reach a

steady state, which is typically between 0.1 s and 0.2 s.

7.1.2 Reed Model

The mouthpiece-reed-lip model developed by Avanzini and van Walstijn (2004) is used in

this research, where the reed is modeled as a one-dimensional bar clamped to the mouthpiece

at one end and free at the other. The reed’s interaction with the fluid, mouthpiece, and lip

is achieved by applying corresponding external forces along the reed.
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A schematic view of the mouthpiece-reed-lip model is displayed in Fig. 7.2. The reed

is modeled in a separated coordinate (xreed, yreed) in the LB simulation, as illustrated in

Fig. 7.1. However, the reed coordinate subscripts are omitted in this section for clarity.

break point
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Fig. 7.2: The schematic view of the mouthpiece-reed-lip interaction.

The transverse oscillation amplitude of the reed y(x, t) is governed by the Euler-Bernoulli

equation:

∂2

∂x2

[
Y I(x)

(
1 + η

∂

∂t

)
∂2y

∂x2

]
+ ρrS(x)

[
∂2y

∂t2
+ γB

∂y

∂t

]
= F (x, t), (7.1)

where ρr represents the reed density, while Y and η denote Young’s modulus and magnitude

of the internal viscoelastic losses, respectively. In addition, I(x) = S(x)κ2(x) represents the

moment of inertia about the longitudinal axis with κ(x) being the radius of gyration of the

cross-section S(x) = wb(x), where w and b(x) denote the width and thickness of the reed,

respectively.

The time discretization of the equation uses the same time step as the LB simulation,

and the spatial discretization is based on the discretized IB nodes with a grid size of 0.8∆x,

where ∆x denotes the grid size of the LB simulation. The finite difference method is used

to solve the reed model and details can be found in the original paper by Avanzini and

van Walstijn (2004). The reed IB nodes are constrained to move solely along the y-axis,

with their x-axis positions fixed. At each time step, the node velocity is updated using the

backward Euler method dyn(x)/dt = (yn(x) − yn−1(x))/∆t before being transformed from

the reed coordinate to the LB coordinate.
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The external force acting on the reed is expressed as a sum of three forces: lip force Flip,

lay force Flay, and fluid force Ffluid, written as F (x, t) = Flip(x, t) + Flay(x, t) + Ffluid(x, t).

The lip distributes both elastic force and additional damping along its contact area with

the reed, which is defined over the range of x ∈ (xlip − Llip, xlip), where Llip represents the

length of the lip, and xlip indicates the position of the front edge of the lip. The elastic force

is exerted on the reed when ∆ylip > 0, where ∆ylip = ylip − y(x, t) + b(x) denotes the lip

compression with ylip representing the vertical position of the top of the uncompressed lip,

as illustrated in Fig. 7.2. This force is given by Flip = −klip∆ylip, where klip represents the

stiffness of the lip. Meanwhile, to account for the damping effect, the damping coefficient

γB in Eq. 7.1 is defined as

γB =

γair + γlip, x ∈ (xlip − Llip, xlip),

γair otherwise.
(7.2)

The contact force Flay between the reed and mouthpiece lay can be decomposed into the

elastic and dissipative components. The elastic force is given as

Fel =

−klay∆ylay(x, t) ∆ylay > 0,

0 otherwise,
(7.3)

where ∆ylay = y(x, t) − ylay(x) is the distance that the reed “penetrates” into the lay. The

dissipative force is defined as

[Fdis(x, t)dx]∆t = ẏ(x, t)dm, (7.4)

where the reed mass is given as dm(x) = ρrb(x)wdx. The dissipative force is present only

when the reed collides with the lay (i.e., the reed position y(x) crosses through ylay(x)) during

∆t.

The aerodynamic force on each IB node of the reed is determined in the LB domain

using IBM as discussed in Sec. 4.3.3. It is then projected to the reed coordinate to achieve

Ffluid(x).

A fourth-order polynomial is utilized to fit the reed thickness profile of a plastic reed

measured by (Avanzini and van Walstijn, 2004). The original polynomial was designed
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specifically for a reed with a length of 34 · 10−3 m, however, it is adapted to arbitrary reed

length L using the following formula:

b(x) =


∑4

n=0 bn(x− L+ 34 · 10−3)n, x > (L− 34 · 10−3),

b0, otherwise.
(7.5)

with b0,...,4 = [2.263 · 10−3,−4.9483 · 10−2,−4.444, 2.0126 · 102,−2.4385 · 103].

The profile of the lay is obtained from the 3D mouthpiece geometry, which is also fitted

by a fourth-order polynomial, shown as

ylay(x) =


∑4

n=0 ln(x− L0)n, x > L0,

0, x <= L0.
(7.6)

7.2 Validation of C-TDIBC in aeroacoustic modeling of

single-reed mouthpieces

7.2.1 Validation procedure

Section 5.5.2 presents the validation of C-TDIBC in a 2D uniform pipe with and without

mean flow. This section explores and validates the application of C-TDIBC in the aeroa-

coustic modeling of single-reed instruments. The validation procedure is presented below,

which includes three separate simulations as illustrated in Fig. 7.3:

1. simulate the wave propagation in a 2D pipe with a length of 30 cm and diameter of 1.5

cm. C-TDIBC and the unflanged radiation impedance Zrad are applied at its outlet.

The pressure and velocity at the inlet are spatially averaged to calculate the input

impedance of the pipe Zpipe.

2. simulate the mouthpiece-reed system, coupled with the 30 cm pipe used in step 1. The

same C-TDIBC and unflanged radiation impedance Zrad are applied at the outlet of

the pipe.

3. simulate the mouthpiece-reed system with C-TDIBC applied at the end of the mouth-

piece. The impedance Zpipe measured in step 1 is applied at the boundary.

4. The results obtained in steps 2 and 3 are compared to access the accuracy and reliability

of C-TDIBC in modeling the sound generation in single-reed instruments.



7 Aeroacoustical Modeling of the Saxophone Mouthpiece 136

Inlet
Measured Zpipe

C-TDIBC
+
Zrad

(a)

(b)

(c)

C-TDIBC
+
Zrad

C-TDIBC
+
Zpipe

30 cm

Probe

Fig. 7.3: The illustration of simulation setups in (a) step 1, (b) step 2, and (c) step 3.

7.2.2 Simulation details

While Sec. 7.1 describes the general setup for the LB modeling of the mouthpiece, this section

provides specific details on several simulations conducted in different steps.

The mouthpiece has a bore length of 1 cm and a diameter of 1.5 cm. In step 3, the

cylindrical part includes both the 30 cm pipe and the 1 cm mouthpiece bore, making its

total length to 31 cm. The probe is consistently placed 8 mm away from the mouthpiece

throat in both simulations, as shown by dashed gray lines in Fig. 7.3

The simulation lasts for 0.1 s in both steps 2 and 3. The mouth pressure increases

from 0 to 6000 Pa within 5 ms and remains constant until the simulation ends. The reed

parameters shown in Table 7.1 are based on research on clarinets (Avanzini and van Walstijn,

2004, da Silva et al., 2007, Yoshinaga et al., 2021), but have been adjusted to account for

the saxophone mouthpiece’s larger tip opening.

The unflanged pipe radiation impedance employed in steps. 1 and 2 is derived from

reflection coefficients using Eq. 3.43. A rational function approximation of the reflection

coefficients proposed by Silva et al. (2009) is employed to model the unflanged opening of

the pipe:

R(ω) =
−1 + n1jka

1 +m1jka+m2(jka)2
, (7.7)
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Table 7.1: Reed and lip parameters used in steps 2 and 3.

Component Parameter Value

Reed

Density ρr = 1000 kg/m3

Young’s Modulus Y = 4 · 109 Pa
Viscoelastic constant η = 6 · 10−7 s

Fluid damping coefficient γair = 1000 s−1

Lip

horizontal position xlip = 12.25 mm
vertical position ylip = 10.85 mm
contact length Llip = 9 mm

additional damping γlip = 1.6 · 104 s−1

stiffness per unit length klip = 6.5 · 104N/m2

Lay contact stiffness per unit length klay = 108 N/m2

where values of n1 = 0.167, m1 = 1.393, and m2 = 0.457 are used as specified in the original

paper for the unflanged case1.

The bilinear transform is applied to obtain a model in the discrete-time domain, which

essentially is a two-zero, two-pole numerical filter. Figure 7.4 presents a comparison of

reflection coefficients calculated using Eq. 7.7 in the s-domain, the bilinear transformed

version in the z-domain, and Levine and Schwinger (1948)’s (L&S) analytical expression.

Although the bilinear transform is known to cause frequency warping, the high sampling rate

of the LB simulation (fs ≈ 6.25 · 106 Hz) renders its effect negligible. Furthermore, while

there are relatively larger deviations between the approximation and the L&S analytical

reflection coefficients at high frequencies, these discrepancies will not affect the efficacy of

the C-TDIBC validation if the same Zrad is used in steps 1 and 2.

The same low-pass filter as described in Sec. 5.4 is used for C-TDIBC. It has a stopband

that starts at 100 Hz, which is set lower than an alto saxophone’s lowest note (around 138.6

Hz).

7.2.3 Results and discussion

Figure 7.5 presents a comparison of the time-domain tip opening measured in steps 2 and 3.

Furthermore, Figs. 7.6 and 7.7 present comparisons for the probed pressure and velocity,

1It should be noted that while the ejωt convention is used here, Silva et al. (2009)’s original paper used
e−jωt. As a result, there is a sign difference between Eq. 7.7 and the corresponding equation described in
the original paper.
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Fig. 7.4: A comparison of the approximated unflanged pipe radiation coefficients in the s-
and z-domains with the analytical expression proposed by Levine and Schwinger (1948).

respectively. The single-period steady-state signals are compared in Fig. 7.8.

In general, the comparison shows good agreement in the steady-state signal and the

initial onset of the simulation, but there exist larger discrepancies during the intermediate

transient stage from around 0.005 to 0.035 s.

To better evaluate the performance of C-TDIBC, the tip opening amplitude spectra are

compared at the top of Fig. 7.9, with their amplitude deviation in dB shown at the bottom.

The “period synchronized sampling” technique (Grothe, 2013, Sec. 5.1.3) is used to obtain a

clean spectrum of the steady-state signal by assuming that the harmonic frequencies of the

signals are integer multiples of the fundamental frequency. It first extracts a single-period

steady-state signal to calculate the fundamental frequency f0, and the single-period signal

is resampled under a new sampling frequency, which is set as an integer multiple of f0. The

discrete Fourier transform is applied to the resampled signal and the harmonic frequencies

are ensured to be aligned with the frequency of each bin.

The frequency-domain comparison demonstrates a good overall performance of C-TDIBC

below 2 kHz, with a maximum deviation of less than 3 dB. However, discrepancies get larger

at higher frequencies. Several sources can account for these deviations, although the primary

factor is that C-TDIBC generates spurious reflections that cause the resonator impedance to

deviate from the imposed one at the boundary. The envelope of deviations shown in Fig. 7.9
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Fig. 7.5: The comparison of tip opening in the time domain, with the two rows showing
the first and last 0.05 s of signal.
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Fig. 7.6: The comparison of probed pressure in the time domain.
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Fig. 7.7: The comparison of probed velocity in the time domain.
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Fig. 7.9: The frequency-domain comparison between the measured tip openings in steps 2
and 3 (top), and the absolute amplitude deviations in dB of harmonics below 8 kHz (bottom).
The +3 dB is shown as a reference in the bottom figure by the horizontal dashed line.

presents a resonance-like structure in the frequency domain with several “resonances”, such

as the 26th harmonic around 6000 Hz. This structure arises due to the amplification of the

spurious reflections around the mouthpiece’s resonance frequency2 when these reflections

travel back and forth within the mouthpiece.

C-TDIBC is essentially a combination of the characteristic boundary condition (CBC)

and time-domain impedance boundary condition (TDIBC). The spurious reflection generated

by CBC is a well known problem that arises when applying it as a non-reflecting boundary

condition. CBC applied in the present research relies on the local one-dimensional invis-

cid model with transverse terms and transverse relaxation (LODI-T), and the plane wave

masking (PWM) technique. On one hand, LODI-T exhibits spurious reflection, particularly

when stronger vortices are present in the system (Sec. 5.5.1.1). On the other hand, the

PWM technique assumes a planar wave at the boundary, which is not ideally representa-

tive of higher-frequency acoustic waves due to the disturbed fluid fields and the presence of

higher-order modes in the mouthpiece. Consequently, the performance of C-TDIBC can be

degraded if the outgoing acoustic wave cannot be perfectly resolved in such cases.

2One can refer to Fig. 6.2 about the resonance structure of a closed mouthpiece.
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In addition to the amplitude deviation, the fundamental frequency of the steady-state

signal measured in step 3 (with C-TDIBC applied) is about 2 Hz higher than that measured

in step 2 (with a pipe), and all the harmonics also shift correspondingly. This is likely

another artifact due to the spurious reflection from C-TDIBC but requires further study to

confirm it. Another factor that may contribute to this discrepancy is that the pipe input

impedance applied in step 3 is measured under a quiescent flow in step 1, while in step 2,

it experiences a non-zero mean flow velocity in the pipe. Consequently, the imposed input

impedance in step 3 has higher resonance frequencies, which is consistent with trend of the

observed discrepancies. However, the convective effect is known to introduce a multiplicative

factor of 1−Ma2 of the resonant frequencies (Rodriguez et al., 2012) with Ma denoting the

Mach number. Considering that the mean flow measured at the end of the mouthpiece in

step 2 is only about 2 m/s, the convective effect is too weak to have a significant influence

on the playing frequency.

Additionally, the pressure amplitude spectra are displayed in Fig. 7.10, which shows a

similar behavior as that of the tip opening spectra with a good accuracy at low frequencies.
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Fig. 7.10: The frequency-domain comparison between the measured pressure in steps 2 and
3 (top), and the absolute amplitude deviations in dB of harmonics below 8 kHz (bottom).
The +3 dB is shown as a reference in the bottom figure by the horizontal dashed line.
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7.2.4 Conclusion

This section presents the first application of C-TDIBC in computational aeroacoustic mod-

eling of the saxophone. The results demonstrate that C-TDIBC can model the acoustic

resonator in a self-sustained system, with accurately simulated steady-state signals up to 2

kHz. The main limitation of C-TDIBC is the spurious reflection it generates at the bound-

ary, which contributes to discrepancies at high frequencies and the transient signal. This

is, however, not only an issue for the present research, but a well-known problem for all

non-reflecting boundary conditions. Further improvements are necessary, especially in ad-

dressing high-frequency wave absorption and strong vortices at the boundaries, to enhance

its performance.

C-TDIBC is proposed to reduce computation costs and improve modeling efficiency. In

the application presented in this section, the utilization of C-TDIBC in step 3 has resulted in

a computational domain size that is only one-quarter of that used in step 2. This reduction

in domain size has led to a 60% reduction in the total simulation runtime (155.9 mins for

step 3 and 393.8 mins for step 2). It is worth mentioning that even step 2 itself benefits from

C-TDIBC by using Zrad to model the radiation domain. This means that the simulation

efficiency improvement by C-TDIBC can be larger than 60% in the model demonstrated

here. The simulation efficiency improvement by C-TDIBC also depends on other factors and

the reduction in simulation runtime may not be linearly proportional to the number of LB

grids. The IBM is used to model the mouthpiece and reed, which deploys a series of IB nodes

in the mouthpiece region and requires more computations at each time step. Truncating the

computational domain and applying C-TDIBC do not help reduce the computation cost by

IBM. In addition, other strategies can be applied to improve the simulation efficiency such

as grid refinement. Yoshinaga et al. (2021) applied a finer grid around the reed channel and

used a coarser grid to resolve the resonator and the radiation domain. However, no grid

refinement is applied in the present model in order to avoid potential spurious reflection at

the interface between different grid resolutions.
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7.3 Sound generation characterization using Ffowcs-Williams and

Hawkings acoustic analogy

This section presents an analysis of saxophone sound generation using the Ffowcs Williams-

Hawkings acoustic analogy. The present work is inspired by research on confined flow,

especially in the context of flow passing through vocal folds (Zhao et al., 2001, 2002) and

orifice (Hofmans, 1998). Ffowcs Williams (1969) first introduced the application of an acous-

tic analogy in internal flow by utilizing the one-dimensional Green’s function for an infinite

pipe. Hofmans (1998) used the same Green’s function in Curle’s formulation of Lighthill’s

equation to examine aeroacoustic problems in confined flows. Later, Zhao et al. (2001) and

Zhang (2002) developed a corresponding solution for the Ffowcs-Williams and Hawkings

equation, which helps incorporate the effect of moving vocal folds in the aeroacoustic study

of human phonation.

The objective of this study is to investigate the sound generation characteristics of the

saxophone, with a specific focus on understanding the role of the mouthpiece in saxophone

sound generation. A methodology similar to that used in other confined flow research is

employed to achieve this goal. To this end, a hybrid method (Wagner et al., 2007, Sec. 1.2.4)

is used, which combines LB simulation and FW-H acoustic analogy. The LB simulation

resolves the near-field sound generation, while the FW-H acoustic analogy serves as an

analytical transport method to estimate far-field acoustics based on the near-field simulation

results. As the LB model of the mouthpiece has already been detailed in previous sections,

this section focuses on adapting the FW-H acoustic analogy to the saxophone mouthpiece

and its implementation based on LB simulation.

The FW-H acoustic analogy is based on the FW-H formulation, which takes the form of

either Eq. 3.58 or Eq. 3.59. The definitions of the integral domain, Green’s function, and the

values of hydrodynamic variables are required to evaluate the integral in the formulation,

which will be addressed in Secs. 7.3.1, 7.3.2, and 7.3.3, respectively.

7.3.1 Definition of the integral domain

The integral domain and integral surface must be defined in order to evaluate the integral

in an FW-H formulation. For confined flows passing through orifices or vocal folds, the

integral domain spans the entire computational domain, with integral surfaces distributed
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on both sides of the confined region, as illustrated in Fig. 3.23. In the saxophone mouthpiece,

an analogous integral domain and integral surface can be defined by considering the reed

channel as an orifice and the player’s mouth and the inner mouthpiece as the upstream

and downstream regions, respectively. The corresponding integral volume V ′ is bounded by

dashed lines, and the associated integral surface is shown as dotted lines in Fig. 7.11(a). This

acoustic system can be abstracted as a simplified acoustic model, illustrated in Fig. 7.11(b),

which consists of four connected pipes to represent the mouth cavity above the mouthpiece

beak Vb, the mouth cavity below the reed Vr, the inner mouthpiece cavity Vmp, and the

upstream mouth cavity Vm.

x1

x2

V ′

(a)

(b)

V ′

x1

x2

VmVmp

Vb

Vr

VmVmp

Vb

Vr

Fig. 7.11: The illustration of (a) the definition of an integral domain based on research in
confined flows, and (b) a simplified acoustic system comprising four interconnected pipes.

However, to focus on the sound generation in the mouthpiece, an alternative definition

of the integral surfaces is proposed, which excludes the mouth cavity represented by the sum

of three volumes Vb + Vr + Vm, and restricts the integral volume to Vmp. This definition

is justifiable when the mouth cavity is viewed as a pressure reservoir, and the effect of the

3To maintain the consistency with the FW-H derivation in Sec. 3.3, the coordinate is denoted as (x1, x2)
instead of (x, y).
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vocal tract is neglected. Furthermore, the area in the reed channel (the area between the

mouthpiece tip rail and the reed) is removed from the integral volume, and the inlet is

placed at the end of the mouthpiece reed channel. This simplification is made to eliminate

the potential for an unclear definition of the integral surface in the reed channel during the

beating of the reed with the mouthpiece.

The integral surface and domain for the FW-H formulation in a saxophone mouthpiece

are illustrated in Fig. 7.12. The integral surface is composed of the inlet Sin, outlet Sout,

and solid walls Sw = Supper
mp + Slower

mp + Sr + Sbore that includes the upper Supper
mp , lower Slower

mp ,

and bore Sbore parts of the mouthpiece as well as the reed surface Sr. The normal n of the

integral surface is pointing into the mouthpiece.

In contrast to external flow applications, the observer in wind instruments like the saxo-

phone cannot be placed in the acoustic far field due to the presence of standing waves inside

the instrument. Therefore, the observer has to be placed in the acoustic near field, which is

one of the primary differences between the present FW-H application in the saxophone and

previous research in human phonation, where the vocal tract was replaced with an infinite

pipe without acoustic feedback.

The observer is placed between the throat and outlet of the mouthpiece, and should be

as far away from any abrupt geometric discontinuity as possible to minimize the influence of

higher-order modes on the planar wave.

x1

x2

Slower
mp Sr

Sin
n

V ′V
Supper

mp
Sout

Sboreobserver

Fig. 7.12: The integral domain for FW-H acoustic analogy in a saxophone mouthpiece.

7.3.2 Choices of Green’s function

This section provides three different Green’s functions, including:

• 2D free-field Green’s function,

• 1D Green’s function for an infinite pipe, and
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• the 1D Green’s function for a semi-infinite pipe terminated at the inlet.

All of these Green’s functions are viable options in the FW-H formulation, while the latter

two 1D Green’s functions are employed in the present study.

7.3.2.1 2D Green’s function

The 2D free-field Green’s function for the wave equation is given as:

G(x, t|y, τ) =
c

2π

H(c(t− τ)− r)√
c2(t− τ)2 − r2

, (7.8)

where r = |x− y| is the distance between the observer and the source, and H is the

Heaviside function. The 2D Green’s function is similar to the 3D version denoted in Eq. 3.31,

but becomes singular at the observer due to the infinite denominator of Eq. 7.8 at the

retarded time τ = t∗ with t∗ = t − r/c. Additionally, the Green’s function involves a

time integral with a long tail due to the presence of the Heaviside function, which can

be computationally expensive in certain applications. To overcome these issues, FW-H

formulations in the frequency domain are typically used, with different formulations proposed

for different scenarios depending on whether the source is moving and whether the source is

in a moving medium (Bozorgi et al., 2017, Guo, 2000, Lockard, 2000, Zhou et al., 2023).

7.3.2.2 1D Green’s function for an infinite pipe

The 1D Green’s function for an infinite pipe is presented in Eq. 3.61, which is rewritten here

G(x1, t|y1, τ) =
c

2S
H (t− τ − |x1 − y1|/c) .

It has been used in confined flows as introduced in Sec. 3.3.3, which assumes a planar

wave and zero mean flow velocity at the observer placed outside of the source region,

Based on the integral domain specified in Fig. 7.12, the FW-H formulation in Eq. 3.64 is
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modified as follows:

ρ′(x1, t)c
2
∞ =

1

2c∞S

∂

∂t

∫
V

[T11]t∗ dV (I)

+
1

2S

∫
Sw

[p1jnj]t∗ dS (II)

+
c∞
2S

∫
Sr

[ρ∞v̄jnj]t∗ dS (III)

+
1

2S

∫
Sin

[(ρv1v1 + p11) + ρc∞v1]t∗ dS (IV)

+
1

2S

∫
Sout

[(ρv1v1 + p11)− ρc∞v1]t∗ dS. (V)

(7.9)

In this formulation, the term (I) corresponds to the quadrupole sound source, which

arises due to the Lighthill stress tensor in the control volume. Term (II) represents the

dipole sound source contributed by the force exerted on the fluid by the solid walls, while

term (III) accounts for the monopole sound source produced by the induced displacement

flow of the moving reed. Theoretically, terms (IV) and (V) are combinations of the dipole

contribution by ρv1v1 + p11 and the monopole contribution by ρv1. However, these terms

can also be treated as equivalent monopoles produced by the mass flux across the inlet and

outlet surfaces ρv1M1 + ρv±1 , where M1 = v1/c∞ is the Mach number in x1-direction, and

v±1 = p11/ρc ± v1 represents the incoming acoustic velocities. It should be noted that both

Sout and Sin are defined perpendicular to the x1-axis, so that their normal vectors nj are

correspondingly replaced with (−1, 0) and (1, 0) during the derivation.

The above formulation can be further simplified by omitting the quadrupole term (I),

since its magnitude is typically two orders lower than that of the dipole (Zhao et al., 2002).

Additionally, the dipole contribution from the bore Sbore is zero, owing to the wall’s parallel

orientation with respect to the x1-axis. Consequently, sound source terms (II)-(IV) are all

located upstream of the observer so that they only contribute to the left-going pressure

p+(x1, t) at the observer’s position. On the other hand, the term (V) represents the only

sound source located downstream of the observer and contributes exclusively to the right-

going pressure p−(x1, t).

Given that the present study focuses on sound generation within the mouthpiece, the

final FW-H formulation is as follows, which evaluates the left-going pressure at the observer
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using a surface integral over a region located upstream of the observer:

p+(x1, t) =
1

2S

∫
Sw′

[p1jnj]t∗ dS (II′)

+
c∞
2S

∫
Sr

[ρ∞v̄jnj]t∗ dS (III)

+
1

2S

∫
Sin

[(ρv1v1 + p11) + ρc∞v1]t∗ dS (IV),

(7.10)

where the total wall surface area is defined as Sw′ = Supper
mp + Slower

mp + Sr. Terms (II′), (III)

and (IV) are referred to as the dipole, reed monopole, and inlet monopole, respectively, in

later discussions.

7.3.2.3 1D Green’s function for a semi-infinite pipe terminated at inlet

The resonator of the saxophone can be modeled as a close-open pipe, with the closed end

placed at the instrument’s inlet. In this case, an alternative Green’s function can be used in

FW-H formulation - the 1D Green’s function for a semi-infinite pipe terminated at the inlet

xin
1 :

GT (x1, t|y1, τ) =
c

2S

[
H

(
t− τ − |x1 − y1|

c

)
+H

(
t− τ − x1 + y1 − 2xin

1

c

)]
. (7.11)

This Green’s function GT is defined as a sum of two terms. The first term represents

the direct wave from the source at y1 to the observer at x1, and is equivalent to the Green’s

function for an infinite pipe G, which was introduced in the previous section. The second

term in GT corresponds to the reflected wave by the closed end at xin
1 with x1 > xin

1 . It can

be also considered as an image source placed at 2xin
1 − y1 in an infinite pipe, which has the

same amplitude with an opposite sign with the direct sound source placed at y1.

GT can be considered as a 1D tailored Green’s function that satisfies the boundary

condition of an ideally closed pipe at the inlet:(
∂GT

∂y1

)
y1=xin1

= 0. (7.12)
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The corresponding spatial- and time-derivatives of the Green’s function are given as

∂GT

∂τ
= − c

2S

[
δ(t− τ − |x1 − y1|

c
) + δ

(
t− τ − x1 + y1 − 2xin

1

c

)]
. (7.13)

and

∂GT

∂y1

=
1

2S

[
sign(x1 − y1)δ

(
t− τ − |x1 − y1|

c

)
− δ

(
t− τ − x1 + y1 − 2xin

1

c

)]
(7.14)

The equivalent of Eq. 7.10 using GT is given as follows

p+(x1, t) =
1

2S

∫
Sw′

[p1jnj]t∗1 − [p1jnj]t∗2 dS (II′′)

+
c∞
2S

∫
Sr

[ρ∞v̄jnj]t∗1 + [ρ∞v̄jnj]t∗2 dS (III′′)

+
1

2S

∫
Sin

[2ρc∞v1]t∗1 dS (IV′′)

+
1

2S

∫
Sout

[(ρv1v1 + p11)− ρc∞v1]t∗2 dS, (V′′)

(7.15)

where t∗1 = t − |x1 − y1|/c and the t∗2 = t − (x1 + y1 − 2xin
1 )/c are the two retarded times,

corresponding to the direct and reflected sound, respectively.

Equations 7.10 and 7.15 provide two different interpretations of the sound generation

inside the mouthpiece. Comparing these representations can provide a better understanding

of the results obtained from the FW-H acoustic analogy as will be discussed in subsequent

sections.

In general, applying GT to the FW-H means placing all the sound sources in Eq. 7.10

by the closed end at the inlet. Assuming the dipole in the mouthpiece consists of two

horizontally aligned monopoles with opposite signs (−,+), it creates a quadrupole (+−−+)

sound source when combined with its image (Rienstra and Hirschberg, 2004, Ch. 6), which

is known to be less efficient in radiation compared to an acoustic dipole. Meanwhile, all the

monopoles are typically strengthened when being placed by the wall.

Compared to the dipole term (II′) in Eq. 7.10, the corresponding term (II′′) in Eq. 7.15

includes an additional component −[p1jnj]t∗2 , which accounts for the image dipole placed on

the opposite side of the inlet.
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The reed monopole (III) in Eq. 7.10 is strengthened by the additional image monopole

[ρ∞v̄jnj]t∗2 in Eq. 7.15.

For the sound source located at the inlet, the dipole component ρv1v1 + p11 of the term

(IV) is canceled by its counterpart from the image dipole, while the monopole component

contributed by [ρc∞v1]t∗1 is doubled.

Finally, there is an extra term (V′′) in Eq. 7.15, which corresponds to the reflection of

the incoming wave from the outlet by the closed end at the inlet. This term should have

the same amplitude but with an opposite sign as the sum of all other image sources, so that

Eqs. 7.10 and 7.15 are equivalent to each other.

(V′′) = −{[(II′′)− (II′)] + [(III′′)− (III)] + [(IV′′)− (IV)]} . (7.16)

7.3.3 Simulation details

The simulation setup is the same as that described in Sec. 7.1, and the playing parame-

ters are presented in Table 7.2. By applying the measured input impedance to the end of

the mouthpiece through C-TDIBC, four different fingerings of a saxophone are simulated,

including B[4, D5, G5, and B[5.

Table 7.2: The playing parameters used in this section.

Component Parameter Value

Reed Density ρr = 900 kg/m3

Young’s modulus Y = 5.6× 109 Pa
Viscoelastic constant η = 6× 10−7 s
Fluid damping coefficient γair = 4000 s-1

Lip Horizontal position xlip = 6 mm
Vertical position ylip = 1.5 mm
Contact length Llip = 9 mm
Additional damping γlip = 1.6× 104 s-1

Stiffness per unit length klip = 6.5× 104 N/m2

Lay Contact stiffness per unit length klay = 108 N/m2

Mouth Target mouth pressure Pm = 8000 Pa
Ramp up time tr = 5 ms
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To evaluate the FW-H formulations, hydrodynamic variables are sampled at discrete

time k∆t, where k is a non-negative integer, and ∆t is the sampling period. The sampling

frequency is set to 48000 Hz, which is lower than that of the LB simulation in order to save

on storage and computation time.

In order to compute the outgoing pressure p+(x1, k∆t) using the FW-H formulation of

Eq. 7.10 or Eq. 7.15, it is necessary to evaluate the corresponding integrands at the retarded

time t∗ = t−|x−y|/c. However, in practice, the calculation is performed by evaluating each

integrand at its own sampled time m∆t and subsequently adding it to the outgoing pressure

p+ at the time (m+ n)∆t, where n = b|x− y|/c
∆t

e.
The compressive stress p1j and normal vector nj on the solid walls are necessary for

the computation of dipole terms. While p1j is calculated using the immersed boundary

method, nj is initialized based on the B-splines of solid walls and is updated in real-time

for the moving-reed immersed boundary (IB) nodes. The reed velocity, i.e., v̄j in term (III),

is obtained by projecting the reed velocity in the reed model onto the LB coordinate, as

discussed in Sec. 7.1.2. Measuring the pressure and velocity on the inlet surface Sin at the

end of the reed channel is necessary to evaluate the inlet term (IV). As this area varies over

time, different sets of LB nodes are involved in the calculation at each time step, and a

zoomed-in view of the area around the reed channel is shown in Fig. 7.13 for illustration.

The pressure p is calculated by simply averaging the pressure on the LB nodes (red circles).

To compute the velocity, intersection points (black squares) between the inlet surface and

both the mouthpiece and the reed must be identified. These intersection points assume a

zero velocity based on the non-slip boundary condition on the wall. The inlet velocity v1

is computed as v1 =
1

Sin

∑N−1
n=1

vn+1
1 + vn1

2
∆Sn using the set of velocities {vnn} composed of

the LB nodes and the intersection points, where ∆Sn = xn+1
2 − xn2 and Sin = xN2 − x1

2, vn1

represents the x1-direction velocity, and xn2 represents the x2-axis position of the n-th node

in the set.

7.3.4 Results and discussion

7.3.4.1 Validation of the FW-H acoustic analogy

Figure 7.14 presents a comparison of the outgoing pressure waveforms for fingering B[4

obtained from the LB simulation and those estimated using the FW-H acoustic analogy with
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Sin

x1

x2

Fig. 7.13: The illustration of the nodes utilized for measuring inlet velocity and pressure.
LB nodes on the inlet surface are shown in red circles, while the black squares represent the
two additional intersection points of the inlet surface with the mouthpiece and the reed.

the 1D Green’s function for an infinite pipeG. Both transient and steady-state signals exhibit

good overall agreement between the FW-H and LB simulation. The frequency spectra of

steady-state signals are obtained using the period synchronized sampling technique described

in Sec. 7.2 and are compared in Fig. 7.15. This further demonstrates the efficacy of the FW-H

acoustic analogy’s application in saxophone sound generation, with the largest discrepancy

being less than 3 dB.

The observed discrepancy between the FW-H and LB simulation is mainly because the

assumptions made during the FW-H formulation’s derivation are not strictly fulfilled. One

of the main assumptions made when using the 1D Green’s function in FW-H is that the

sound wave propagation from the source to the observer is planar. However, in reality,

the acoustic wave in the mouthpiece travels through a complex geometry and is influenced

by vortices, higher-order acoustic modes, and the spurious reflection from C-TDIBC. As a

result, it cannot be assured that the wave will remain planar while traveling toward the

observer. On the other hand, the convection effect is neglected when deriving the FW-H

formulation in this research, hence both the sources and the observer are assumed to be

located in a region free of background mean flow. Such a convection effect is small enough
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to be neglected at the observer with the measured mean flow around 2 m/s for the studied

fingerings. However, the mean flow velocity varies across the axial direction and is higher

when it is closer to the inlet.

The FW-H estimation of the outgoing pressure using GT is compared with the LB sim-

ulation result in the time- and frequency-domain, which are shown in Figs. 7.16 and 7.17,
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Fig. 7.14: The time-domain comparison of the outgoing pressure between the LB simulation
and FW-H with G (fingering B[4).
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Fig. 7.15: The comparison of the outgoing pressure spectra between the LB simulation and
FW-H with G (top), and the deviation in dB (bottom) (fingering B[4).
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respectively. The FW-H with GT shows a larger discrepancy compared to FW-H with G.

This is because FW-H with GT involves extra assumed planar traveling waves from image

sources to the observer, which results in a larger deviation from the actual wave traveling in

the LB simulation.
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Fig. 7.16: The time-domain comparison of the outgoing pressure between the LB simulation
and FW-H with GT (fingering B[4).
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Fig. 7.17: The comparison of the outgoing pressure spectra between the LB simulation and
FW-H with GT (top), and the deviation in dB (bottom) (fingering B[4).
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7.3.4.2 Comparison of different sound generation mechanisms

One of the main benefits of using the FW-H acoustic analogy is its ability to decompose the

sound into contributions from various sound generation mechanisms. The equivalent sound

level Leq is used to measure the strength of different sound sources:

Leq = 10 log
1

T

∫
p(t)2

p2
0

dt, (7.17)

where p is the sound pressure signal, p0 = 20µPa is the reference pressure, and T is the

period of the signal.

For the FW-H with G, the sound sources are decomposed into the dipole, reed monopole,

and inlet monopole, corresponding to the terms (II′), (III) and (IV) in Eq. 7.10, respectively.

Their time-domain signals are compared in Fig. 7.18, and the Leq of steady-state signals

are 184.1 dB, 170.4 dB, and 152.3 dB, correspondingly. It is clear that the dipole, which is

generated by the unsteady-force exerted by the solid walls to the fluid, dominates the sound

generation. This seems paradoxical because one may assume that the modulated jet flow

through the reed channel to be the main source in the saxophone sound generation. Such a

contrary finding comes from the fact that the fluctuating force that contributes to the dipole

in FW-H with G is not only composed of the fluctuation in rotational fluid fields such as the

vortices, but also the acoustic fluctuation, which is essentially the acoustic response of the

mouthpiece solid walls’ to the incoming wave from the resonator. In other words, the dipole

presented in term (II′) not only accounts for the presence of solid walls in the fluid, but also

for the interaction of reflected sound from the resonator with the solid walls (Howe, 2003,

Sec. 2.3.2). The interaction with the reflected sound reveals the role of the mouthpiece as

an acoustic resonator as discussed in Ch. 6.

The acoustic response of the mouthpiece solid walls is excluded from the dipole when

using FW-H with GT , because the reflection of the incoming acoustic wave appears in a

separate term (V′′) in Eq. 7.15. The comparison of different contributions in FW-H with

GT is shown in Fig. 7.19, and the sound level Leq of the dipole term (II′′)4, reed monopole

term (III′′), and the inlet monopole (IV′′) are 171.2 dB, 158.3 dB, and 173.3 dB, respectively.

Additionally, the term (V′′) that comes from the reflection of the incoming wave at the inlet

4Although the term (II′′) is equivalently a quadrupole composed of the dipole and image dipole, it is
called dipole sound source here to keep the consistency with that in FW-H with G.
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Fig. 7.18: The comparison between different contributions to the outgoing pressure at the
observer using FW-H with G.

contributes 184.5 dB, which dominates the outgoing pressure sound level at the observer.
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Fig. 7.19: The comparison between different contributions to the outgoing pressure at the
observer using FW-H with GT .
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7.3.4.3 Effect of playing frequency

The effect of playing frequency is examined by comparing the relative contribution of monopoles

to dipoles at different playing frequencies. The FW-H with G is used in this analysis.

The root-mean-square of the pressure signal is used to represent the strength of the sound

source

prms =

√
1

T

∫ T

0

p(t)2 dt. (7.18)

The dependency of monopole-dipole prms ratios on playing frequency is shown in Fig. 7.20,

and it shows that the relative contribution of monopoles increases with the playing frequency.

This is due to the nature of the sound source, where the monopole is contributed by the

∂Q/∂t term in the Ffowcs Williams-Hawkings equation, Eq. 3.57, while the dipole is con-

tributed by ∂Fi/∂xi . The frequency dependency of the monopole is better illustrated in

the frequency domain, where ∂Q̂/∂t = iωQ̂, with Q̂ being the Fourier transform of Q. The

dipole term, on the other hand, is not supposed to vary much with the playing frequency.
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Fig. 7.20: prms ratio between different monopole and dipole sound sources at different
playing frequencies.

In addition, the sound source at the inlet is considered as an equivalent monopole ρv1M1+

ρv+
1 as discussed in Sec. 7.3.1, and the prms ratio between the ρv1M1 contribution and the

total inlet monopole is displayed in Fig. 7.21, and the contribution by the momentum flux

ρv1M1 at the inlet is found to increase over playing frequencies.
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Fig. 7.21: prms ratio between the ρv1v1 contribution and inlet monopole at different playing
frequencies.

7.3.4.4 Dipole characterizations

The dipole sound source is further decomposed into contributions by different solid walls,

including the upper mouthpiece Supper
mp , the lower mouthpiece Slower

mp , and the reed surface

Sr. The time-domain pressure signals are compared in Fig. 7.22. It shows that the upper

mouthpiece contributes the strongest dipole compared to other walls. This is primarily

attributed to the long inclined baffle connecting the tip rail to the mouthpiece throat. The

reed dipole is roughly in phase with the upper mouthpiece dipole, but is out of phase with

the lower mouthpiece dipole. This is because the upper mouthpiece and the reed are oriented

in the positive direction of x1, while the ramped wall of the lower mouthpiece is facing in the

opposite direction, resulting in a different sign of the axial component normal vectors n1 when

computing the dipole contribution, and hence a 180◦ phase difference. The root-mean-square

compressive stress ((p1jnj)rms) distribution on solid walls is plotted in Fig. 7.23, together with

the mouthpiece geometry shown at the bottom. Because the reed is moving over time, its

time-averaged position is used in the plot. Figure 7.24 shows the same compressive stress

distribution and the mouthpiece geometry as Fig. 7.23 and superimposes the absolute value

of the solid wall slope |dy/dx | on the compressive stress plot. The range of the |dy/dx | plot

is scaled so that the peak value of the two plots are aligned. The well-overlapped curves of

the [p1jnj]rms and |dy/dx | demonstrate the dependency of the dipole sound source on the

mouthpiece geometry.
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If [p1jnj]rms can be assumed as a linear function of |dy/dx | for a specific period simulated,

the amplitude contributed by the upper mouthpiece will mainly depend on the height differ-

ence in x2-axis between the bore and the reed channel, and is less influenced by the shape of

the wall. It also means the sound level in the mouthpiece is almost uniform along the wall,

especially for the signal that has a dominant fundamental. This is also why the mouthpiece

can be modeled using the lumped model as discussed in Ch. 6. However, the [p1jnj]rms curve

deviates from the |dy/dx | curve when it is closer to the tip of the mouthpiece. The area

that extends from the end of the reed channel is known as the baffle of the mouthpiece,

whose shape is known to have a significant influence on sound generation. This is also the

area that the jet tends to reattach to after the initial separation at the entrance of the reed

channel. In addition, the two curves on the reed misalign with each other, which is mainly

because the reed movement creates a more complex pressure distribution along the reed.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

-4000

-2000

0

2000

P
re

ss
ur

e 
(P

a)

upper mouthpiece
lower mouthpiece
reed

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
Time (s)

-4000

-2000

0

2000

P
re

ss
ur

e 
(P

a)

Fig. 7.22: The time-domain comparison of dipole sound sources contributed by different
solid walls (fingering B[4).

7.3.5 Conclusion

In this section, the FW-H acoustic analogy is used to analyze the saxophone sound gen-

eration. It relies on the FW-H equation and makes use of the LBM-based computational

aeroacoustic model of the saxophone mouthpiece to characterize the sound generation within

the mouthpiece. The FW-H acoustic analogy provides a distinct perspective on the role of
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Fig. 7.23: (a) The (p1jnj)rms distribution along solid walls, and (b) the mouthpiece geome-
try.

the mouthpiece by taking it as part of the sound generator with sound sources distributed in-

side. This is in contrast to the mouthpiece acoustic modeling in Ch. 6, where the mouthpiece

is viewed as a passive acoustic resonator. The FW-H acoustic analogy improves the under-

standing of sound generation inside the mouthpiece by distinguishing between various sound

generation mechanisms contributed by different parts of the mouthpiece. The application

of different Green’s functions in FW-H formulations leads to different interpretations of the

sound generation mechanisms. When the 1D Green’s function for an infinite pipe G is cho-

sen, the sound at the observer is decomposed as the equivalent monopole source contributed

by the pulsating jet through the reed channel, the monopole due to reed-induced flow, and

the dipole arising from the unsteady force exerted on fluid by solid walls. The dipole sound

source involves the interactions of the wall with fluid aerodynamic force and the reflected

wave from the acoustic resonator, which together make it the dominant sound source in the
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Fig. 7.24: (a) The (p1jnj)rms distribution along solid walls shown in left y-axis, in compare
to the absolute values of solid wall slopes |dy/dx | in right y-axis (a) and the mouthpiece
geometry (b).

mouthpiece. When using the 1D Green’s function for a semi-infinite pipe terminated at the

inlet GT , the monopoles are strengthened when being placed by the closed end of the pipe,

while the dipole sound source turns into a quadrupole, which has less contribution to the

outgoing pressure at the observer.

There exist discrepancies between LB-simulated and FW-H estimated pressure at the



7 Aeroacoustical Modeling of the Saxophone Mouthpiece 163

observer, which can be attributed to two main factors. On the one hand, the spurious

reflection from C-TDIBC disturbs the upstream acoustic fields, which makes it difficult

to assume a planar wave at the observer and affects the calculation of spatially-averaged

pressure in the LB domain. On the other hand, the application of a 1D Green’s function

to solve the FW-H equation assumes a planar wave traveling in a uniform pipe from a

sound source to the observer. However, this assumption is violated due to the complex

geometry of the mouthpiece. In addition, a larger discrepancy is observed when the tailored

1D Green’s function GT is applied. This extra discrepancy arises primarily from the ideally-

assumed closed wall at the inlet, which in reality presents a finite impedance due to the

periodically opening reed channel. Further investigation is required to find a better Green’s

function to account for the geometry’s influence on the traveling wave from the sources to the

observer. One potential option is to adapt the 1D Green’s function for an infinite pipe with

a contraction (Ffowcs Williams and Howe, 1975) to the pipe with expansion. In addition,

it is possible to calculate an impulse response for each point along the axial direction of the

mouthpiece using methods such as digital waveguide. This gives an equivalent 1D Green’s

function for a mouthpiece with a fixed reed position, which can be used to solve the FW-H

equation.
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Chapter 8

Aeroacoustic study of the influence of

saxophone mouthpiece design

Designing a saxophone mouthpiece requires in-depth knowledge of how different geometric

parameters affect oscillation characteristics. Research investigating the relationship between

the mouthpiece geometry and oscillation features can be broadly classified into two groups,

as illustrated in Fig. 8.1. The first group aims at building a direct connection between design

parameters and sound characteristics by measuring and analyzing the sound of a variety of

commercial or customized mouthpieces (Fig. 8.1(a)). Wyman (1972) was one of the first

researchers to explore such direct links. He classified mouthpieces into five categories, and

investigated how different mouthpiece design factors, such as chamber length, baffle shape,

window length and tip opening, influence the tone quality, intonation, and mouthpiece resis-

tance. The oscillation characteristics are extracted from either recorded audio or subjective

surveys completed by saxophone players. Pipes (2018) conducted a similar study, but with

a focus on the timbre of the instrument. Both Wyman (1972) and Pipes (2018) utilized

commercially available mouthpieces. The main problem with using such mouthpieces is that

there are various design changes amongst mouthpieces, making it difficult to explore the

impact of a single design parameter. To address this issue, Wyman (1972) created four sets

of mouthpieces, each of which changed a single design parameter to investigate the effects of

the ramp shape, bore-to-table angle, beak shape, and window length. A more recent research

by Ozdemir et al. (2021) utilized a computer-aided design (CAD) mouthpiece model and 3D

printing technique to generate 27 mouthpieces with customized geometries, which involved
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nine design parameters with three different levels. Furthermore, an artificial blowing ma-

chine was employed to play the saxophone, which helps quantitatively control the playing

parameters and enables a more reliable comparison between measurements.

The second group introduces an intermediate layer between sound and geometric param-

eters to better understand why and how a design parameter is associated with a specific

oscillation characteristic (Andrieux et al., 2016, Lorenzoni et al., 2013). The intermediate

layer is concerned with the physics of the saxophone sound generation, which essentially is

the fluid-structure-acoustics interaction (FSAI) within the mouthpiece. The study in this

chapter falls into the second category by applying acoustic and aeroacoustic modeling tech-

niques provided in Chapters 6 and 7 to explore the influences of the chamber size and baffle

height on sound and playability. The objective of this chapter is to demonstrate the appli-

cation of the models developed in the previous two chapters, and discuss their potential and

limitations.

Geometric
Parameters

Oscillation
Characteristics

Fluid-Structure-Acoustics
Interaction

Geometric
Parameters

Oscillation
Characteristics

(a)

(b)

Fig. 8.1: Illustration of two different research categories.

8.1 Analysis procedures

The analysis procedure is shown in Fig. 8.2 and consists of three main processes: prepro-

cessing, acoustic modeling, and aeroacoustic modeling.

8.1.1 Preprocessing

The preprocessing step prepares mouthpieces with various geometries and converts them

into formats that will be used in acoustic and aeroacoustic modeling. It begins with the
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Fig. 8.2: The analysis procedures.
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selection of commercial mouthpieces as reference models for developing a series of mouth-

pieces with a single design parameter modified. The Meyer 5M and Vandoren A45 Jumbo

Java mouthpieces are used as reference models to study the effects of the chamber size and

baffle height, respectively. The mouthpieces are first scanned using computed tomography

(CT), and then the open-source software Fiji (Schindelin et al., 2012) is used to reconstruct

the 3D mouthpiece from the image stacks. Autodesk Fusion 360 is used to create a 3D para-

metric CAD model based on the definitions of a series of sketches and mouthpiece design

parameters. The scanned mouthpiece is imported into Fusion 360, and the parameters of the

CAD model are manually adjusted to match the scanned one. A single design parameter,

either the baffle height or the chamber size, is modified to develop a succession of mouthpiece

variants. The inner cavities are obtained based on the definition in Sec. 6.2.1, and imported

into COMSOL for the finite element (FE) modeling. The two-dimensional (2D) mouthpiece

geometries are derived by projecting the mouthpiece onto its mid-sagittal plane, and they

will be imported into Palabos for the lattice Boltzmann (LB) simulation.

8.1.2 Acoustic modeling

The acoustic modeling of a saxophone mouthpiece is described in Chapter 6. For a certain

mouthpiece, its inner cavity is first imported into COMSOL for FE modeling, and the two-

load method is applied to derive the transfer matrix representation of the mouthpiece:

T =

[
T11 T12

T21 T22

]
.

Two analyses are performed: the acoustic analysis primarily based on the input

impedance, and the oscillation characteristics analysis relying on synthesized sound

using the model specified in Sec. 6.4.3.1.

The acoustic analysis compares mouthpieces with the following acoustic characteristics:

• the input impedance of a closed mouthpiece calculated with the transfer matrix as

Zclosed = T11/T21, with the volume of each mouthpiece set to the same value.

• the input impedance of a complete saxophone, where a complete saxophone consists of

a mouthpiece and a saxophone body. The input impedance of the saxophone body Z̃1

is applied as an acoustic load to the mouthpiece, and the complete saxophone input
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impedance is calculated using Eq. 6.5, which is rewritten here

Z̃sax =
T11 + T12/Z̃2

T21 + T22/Z̃2

,

where the tilde indicates a normalized input impedance. As discussed in Sec. 6.4.1 and

illustrated in Fig. 6.5, Z̃2 = Z̃1S2/S1 is used to account for the discontinuity between

the mouthpiece and the saxophone neck in the above equation. The mouthpiece volume

is separately adjusted for different mouthpieces and fingerings such that the frequency

of the impedance peak aligns with the corresponding equal-tempered scale frequency.

The first-register notes below D5 (written) use the frequencies of the first peak of

the input impedance f1 to adjust the volume, while the second-register notes use the

frequencies of the second peak f2.

• the radiation transfer function of a complete saxophone that is calculated using Eq. 6.8,

Ẽsax =
Ẽ2

T21Z̃2 + T22

,

where Ẽ2 represents the radiation transfer function of the saxophone body on the

mouthpiece side of the mouthpiece-neck discontinuity.

• the frequency deviation in cents between f1 or f2 of the input impedance and the equal-

tempered scale frequency for each note of an alto saxophone. Different mouthpiece

volumes are tuned independently so that f1 corresponds to the equal-tempered scale

frequency for the F4 (written) fingering.

• the inharmonicity, which is defined as I = (f2− 2f1)/2f1. The same volume is used as

for the frequency deviation.

The sound of the saxophone is synthesized for the oscillation characteristics analysis,

and the following features are extracted to compare different mouthpieces:

• the bifurcation diagram, which is generated by extracting the envelope of the dimen-

sionless mouthpiece pressure p and plotting it as a function of the dimensionless mouth

pressure γ:

• the oscillation thresholds that include

– the oscillation threshold pm,osc,

– the extinction threshold pm,ext,
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– the inverse extinction threshold pinv
m,ext,

– the mouth pressure range ∆pm = pm,ext − pinv
m,ext.

All the thresholds are chosen when the dimensionless mouthpiece pressure hits 0.02.

Comparisons are made between dimensional mouth pressure pm = γPM in Pascals for

a better sense of the difference, where PM = krH is the mouth pressure at which the

reed closes, and kr and H0 represent the reed stiffness and equilibrium tip opening,

respectively. Because the inverse oscillation threshold should always be equal to PM ,

it is not included in the comparison.

• the deviation of the playing frequency from the equal-tempered scale frequency,

• the spectral centroid of the radiated sound that is calculated within the frequency

range of [100, 8000] Hz. The radiated pressure is computed in the frequency domain as

Prad(ω) = E(ω)U(ω), where U(ω) represents the synthesized mouthpiece velocity. It is

worth noting that the direct synthesis of radiated sound in the time domain using the

recursive parallel filter is not employed in the analysis to avoid the potential influence

of fitting errors.

• the radiated sound energy that is calculated using

1

NFFT

K2∑
k=K1

|Prad[k]|2,

where Prad[k] is the discrete Fourier transformed radiated pressure, NFFT is the number

of points used to calculate the discrete Fourier transform, and K1 and K2 correspond

to the frequency bins that define the boundaries of the frequency range [100, 8000] Hz.

8.1.3 Aeroacoustic modeling

The aeroacoustic modeling of the mouthpiece is based on the LB model, which is described

in Ch. 7. The 2D mouthpiece is obtained by projecting the 3D mouthpiece onto its mid-

sagittal plane, and the lay profile is fitted by a fourth-order polynomial, as shown in Eq. 7.6.

The length of the mouthpiece bore is adjusted so that the 2D mouthpiece area is consistent

across all mouthpiece variants.

The aeroacoustic analysis utilizes LB simulation and the Ffowcs-Williams and Hawk-

ings (FW-H) acoustic analogy to compare sound generation mechanisms in different mouth-

piece designs. This analysis is applied to investigate only the influence of the baffle height
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rather than chamber size since the aeroacoustic modeling is more effective in exploring flow-

related phenomena that are highly sensitive to an upstream geometry change near the reed

channel.

8.2 Influence of the chamber size

In this section, a comparison is made between three mouthpieces with different chamber

sizes. The inner cavities of these mouthpieces are illustrated in Fig. 8.3. The Meyer 5M alto

saxophone mouthpiece is employed as the reference model. A CAD sketch is created on a

plane positioned 5 mm away from the throat, and the cross-sectional area of the inner cavity

on this plane is used to define the chamber size. To facilitate easy control and comparison

of chamber sizes, the cross-sectional area is defined as a circle. The circle radii are set to 6.5

mm, 8 mm and 9.5 mm, corresponding to the “small chamber”, “medium chamber”, and

“large chamber” mouthpieces, respectively.

Fig. 8.3: Comparison between inner cavities of mouthpieces with different chamber sizes.
The chamber size increases from right to left.

The closed mouthpiece input impedances are compared in Fig. 8.4, clearly demonstrat-

ing that the mouthpiece resonance frequency increases with the chamber size. Despite the

mouthpiece’s complex geometry, its resonance frequencies are primarily influenced by the

length of the mouthpiece. In mouthpieces with the same volume, a larger chamber mouth-
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piece has a shorter length, resulting in higher resonance frequencies.

To compare complete saxophones, the alto saxophone bodies with fingerings B[3, B[4, and

B[5 are taken as examples. Their input impedances are applied to the mouthpiece transfer

matrix as load impedances, and the overall input impedances of complete saxophones are

compared in Fig. 8.5. It shows that a larger chamber exhibits a slightly higher resonance

frequency and a smaller magnitude for impedance peaks below 1000 Hz. The performance of

intermediate to high frequencies is closely linked to the closed mouthpiece input impedance,

as different mouthpieces emphasize different frequency components corresponding to the

resonances of the mouthpiece itself.

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

10-3

10-2

10-1

100

101
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|Z
|
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Large Chamber

Fig. 8.4: Comparison of input impedances between closed mouthpieces with different cham-
ber sizes.

The deviations in cents between the frequency of the input impedance peak and the equal-

tempered scale frequency of each note are compared in Fig. 8.6(a). A larger chamber is shown

to have higher resonance frequencies, which leads to a larger deviation, particularly noticeable

in the second register. The inharmonicities are compared in Fig. 8.6(b) and it is observed

that a larger chamber mouthpiece corresponds to a greater value of the inharmonicity I.

The sound is synthesized for different mouthpieces with two fingerings B[4 and B[5,

which respectively represent notes in the first and second registers. The same synthesizing

parameters as described in Sec. 6.4.3.1 are used in this analysis. The bifurcation diagram,

deviation of playing frequencies from the equal-tempered scale frequencies, radiated sound

spectral centroids, and radiated sound energy are compared among different mouthpieces in

Figs. 8.7 and 8.8 for the two fingerings.

Different mouthpieces exhibit similar bifurcation characteristics, and the corresponding
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Fig. 8.5: Comparison of input impedances between saxophones consisting of mouthpieces
with varying chamber sizes, and saxophone bodies with the fingering (a) B[3, (b) B[4, and
(c) B[5 (written).
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Fig. 8.6: Comparison of (a) frequency deviations of input impedance peaks from the equal-
tempered scale frequency and (b) inharmonicities of different notes between mouthpieces
with different chamber sizes.

mouth pressure thresholds are presented in Table 8.1. The chamber size has little influence

on the oscillation thresholds in both registers, whereas it has a notable impact on the di-

rect extinction thresholds. The influence is shown to be dependent on the register, with

pm,ext increasing with the chamber size for a high-register note (B[5) and decreasing with the

chamber size for a low-register note (B[4). The dynamics characterstics are typically inter-

preted to provide information about the playability of an instrument (Fréour et al., 2020),

and the comparison of the mouth pressure range ∆pm can be interpreted together with the

comparison of the radiated sound energy. For a large chamber mouthpiece and a low-register

note (Fig. 8.7), the instrument generates a less loud radiated sound and less dynamic range,

but involves a larger mouth pressure range ∆pm. It indicates that a saxophonist needs to

blow harder to play at a same dynamic level as a smaller chamber. For a high-register note

(Fig. 8.8), a large chamber mouthpiece supports both a smaller dynamic range and mouth

pressure range. It is also shown that the slope of the radiated sound energy (as a function of

the mouth pressure) decreases with a larger chamber size, which means that a large chamber

mouthpiece make it harder to crescendo for this fingering, which makes it a mouthpiece with

a larger resistance (Wyman, 1972)1.

1It should be noted that the ”resistance” is sometimes connected to the direct oscillation thresholds pm,osc
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The playing frequencies, represented by their deviation from the equal-tempered scale

frequencies, increase with the chamber size. This can be attributed to the increasing in-

harmonicity associated with larger chambers, as discussed in Sec. 2.2.2. The large chamber

mouthpiece is shown to have a smaller range of the playing frequencies, which might indicate

less flexibility to bend the pitch (Ozdemir et al., 2021).

Finally, a larger chamber results in a lower spectral centroid and reduced energy of

radiated sound. This observation is consistent with previous studies, which have shown that

larger chambers typically produce a darker and softer sound (Ozdemir et al., 2021, Pipes,

2018, Wyman, 1972). Such a result seems to contradict the comparison of input impedance

and radiation transfer function spectra, in which a larger chamber has a higher resonance

frequency, implying a higher spectral centroid. However, the spectra of the input impedance

and radiation transfer function are different from the radiated sound spectra, where in the

latter spectrum, the harmonic amplitudes decrease with the frequency so that the calculated

spectral centroids are dominated by harmonics at low frequencies. Taking the fingering B[4

as an example, the first impedance peak of different mouthpieces is shown to have comparable

amplitudes in Fig. 8.5, whereas a larger chamber has smaller amplitudes for the second and

third impedance peaks. At low frequencies, the larger chamber is presented like an expansion

in a pipe, which is known to act as a low-pass filter (Kinsler et al., 1999, Sec. 10.11), and

this explains why it has a lower spectral centroid 2.

(Ozdemir et al., 2021), which infers a different playability feature.
2It is worth mentioning that a constriction in a pipe also works as a low-pass filter at low frequencies.

However, the “small chamber” mouthpiece used in this section does not present an obvious constriction area.

Table 8.1: Oscillation thresholds for mouthpieces with different chamber sizes.

Fingering Chamber Size pm,osc (Pa) pm,ext (Pa) pinv
m,ext (Pa) pm,ext − pinv

m,ext (Pa)

B[4 Small 2532.8 17896.9 1888.7 16008.2
Medium 2534.0 18353.9 1912.0 16441.8
Large 2540.6 18477.8 1943.8 16534.0

B[5 Small 2763.2 14171.3 2577.6 11593.7
Medium 2775.4 13866.2 2607.9 11258.3
Large 2789.2 13403.6 2621.3 10782.2
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Fig. 8.7: Comparisons of the bifurcation diagrams, playing frequencies, radiated sound
spectral centroid, and radiated sound energy for linearly increasing (left) and decreasing
(right) mouth pressure profiles between mouthpieces with different chamber sizes attach to
an alto saxophone (fingering B[4).
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8.3 Influence of the baffle height

The baffle height is known to be another important factor in determining the sound of a

saxophone, and it is determined by the distance between the baffle and the reed in the

rest position (table plane). In this section, four mouthpieces with varying baffle heights are

compared. They are denoted as “Baffle 1” through “Baffle 4”, with an increasing baffle-to-

reed distance, and the sagittal view of the inner mouthpiece cavities is illustrated in Fig. 8.93.

This set of mouthpieces is developed based on the Vandoren A45 Jumbo Java mouthpiece,

which itself corresponds to the mouthpiece “Baffle 1”.
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Fig. 8.9: Comparison of mouthpiece inner geometries with different baffle heights in the
sagittal view.

8.3.1 Acoustics modeling

The closed mouthpiece input impedances are compared in Fig. 8.10, and the resonance

frequencies exhibit similar behavior as those observed in Fig. 8.4 for the chamber size com-

parison. A larger baffle-to-reed distance necessitates a shorter mouthpiece to maintain the

same volume. This leads to an increase in resonance frequencies from “Baffle 1” to “Baffle

4”. Figure 8.11 compares the input impedances of complete saxophones, and it is shown that

the impedance curves reflect the resonance structure of closed mouthpieces. While the baffle

height has minimal influence on the first two impedance peaks, higher-frequency impedance

peaks (below 1 kHz) tend to have slightly higher frequencies and smaller magnitudes. The

3It is worth noting that the conventional terminology in the literature refers to “high baffle” or “low
baffle,” where a ”high baffle” typically indicates a smaller baffle-to-reed distance due to the mouthpiece
being positioned with the window facing upward. This is, however, the opposite of the mouthpieces shown
in Fig. 8.9, where a smaller baffle-to-reed distance results in a “low” baffle. To prevent any potential
confusion, a numerical system is adopted to represent the baffle heights.
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baffle height shows a more pronounced influence in the intermediate frequencies from 1 kHz

to 5 kHz, where a smaller baffle-to-reed distance results in larger amplitudes.

In addition, the baffle height has a minor impact on intonation and inharmonicity, as

illustrated in Fig. 8.12.
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Fig. 8.10: Comparison of input impedances between closed mouthpieces with different baffle
heights.

The dynamics characteristics are compared in Figs. 8.13 and 8.14, and the oscillation

thresholds are presented in Table 8.2. Among all the oscillation characteristics, the baffle

height appears to have the most significant influence on the radiated sound spectral centroid.

A smaller baffle-to-reed distance is shown to result in a larger spectral centroid, which aligns

with the findings from the analysis of the saxophone input impedances. This observation is

also consistent with previous studies. For instance, Wyman (1972) stated that “the angle

between the baffle surface and the plane of the table is inversely proportional to the brightness

of the tone”. In this study, the baffle-to-reed angle serves as an alternative metric for the

battle height and is directly proportional to the mentioned angle. In addition, Ozdemir et al.

(2021) identified the baffle height as an effective parameter influencing the spectral centroid,

despite some unexpected trends found in their investigation of three baffle levels.
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Fig. 8.11: Comparison of input impedances between saxophones consisting of mouthpieces
with varying baffle heights, and saxophone bodies with the fingering (a) B[3, (b) B[4, and
(c) B[5 (written).
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Fig. 8.12: Comparison of (a) frequency deviations of input impedance peaks from the equal-
tempered scale frequency and (b) inharmonicities of different notes between mouthpieces with
different baffle sizes.

Table 8.2: Oscillation thresholds for mouthpieces with different baffle heights.

Fingering Chamber Size pm,osc (Pa) pm,ext (Pa) pinv
m,ext (Pa) pm,ext − pinv

m,ext (Pa)

B[4 Baffle 1 2565.0 16995.4 1907.8 15087.6
Baffle 2 2575.6 16646.5 1946.2 14700.3
Baffle 3 2570.7 17037.4 1952.3 15085.2
Baffle 4 2569.3 17128.4 1973.8 15154.6

B[5 Baffle 1 2807.0 12540.2 2628.7 9911.4
Baffle 2 2830.8 12338.9 2647.8 9691.1
Baffle 3 2824.8 12616.6 2633.6 9983.0
Baffle 4 2839.1 12654.8 2626.8 10028.1
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Fig. 8.13: Comparisons of the bifurcation diagrams, playing frequencies, radiated sound
spectral centroid, and radiated sound energy for linearly increasing (left) and decreasing
(right) mouth pressure profiles between mouthpieces with different baffle heights attach to
an alto saxophone (fingering B[4).
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Fig. 8.14: Comparisons of the bifurcation diagrams, playing frequencies, radiated sound
spectral centroid, and radiated sound energy for linearly increasing (left) and decreasing
(right) mouth pressure profiles between mouthpieces with different baffle heights attach to
an alto saxophone (fingering B[5).
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8.3.2 Aeroacoustic modeling

In the aeroacoustic simulation, the 2D mouthpiece geometries are imported into the LB

model, using the same simulation and playing parameters as described in Secs. 7.1 and 7.3.3.

The input impedance of the saxophone body with the fingering B[4 is employed at the end

of the mouthpiece.

The FW-H acoustic analogy with one-dimensional Green’s function for an infinite pipe

G is applied for the aeroacoustic analysis. An observer is located close to the end of the

mouthpiece, and the outgoing pressure is decomposed into contributions from the monopole

source at the inlet Pinlet, the monopole source due to the reed-induced flow Preed, and the

dipole sources arising from the force exerted by the solid walls on the fluid Pdipole. The spectra

of the FW-H estimated outgoing pressure and its different contributions are obtained using

the period synchronized sampling technique introduced in Sec. 7.2.2, and are compared

between mouthpieces in Fig. 8.15. The corresponding spectral centroids are compared in

Fig. 8.16. It is shown that all the spectral centroids decrease with an increase in the baffle-

to-reed distance, which is consistent with the findings from the acoustic analysis in the

previous section.

In addition, the frequency-domain comparison reveals that the baffle height has a more

significant influence in 3-4 kHz range on the dipole source, while it affects higher frequencies

for the inlet and reed monopoles. The difference can be attributed to the nature of the

different sound sources. As discussed in Sec. 7.3.4, when using FW-H with G, the dipole

contribution composes the acoustic response of the mouthpiece to the incoming wave. This

acoustic response is related to the acoustic modeling of the mouthpiece, and the input

impedance comparison in Fig. 8.11 also demonstrates that the influence of the baffle height

is stronger around 3 kHz. On the other hand, the monopole sources are less sensitive to the

acoustic resonance of the mouthpiece itself. Instead, they are directly influenced by the reed

displacement and velocity, which are more affected by the tip opening and the lay profile of

the mouthpiece.

The velocity fields of “baffle 1” and “baffle 4” within one single period are compared in

Fig. 8.17. It can be observed that a smaller baffle-to-reed distance creates a more confined

channel after the reed channel exit, which delays the development of jet instability. It also

leads to a slightly higher jet velocity, which results in a smaller pressure above the reed and

accelerates the reed when it moves toward the tip rail. This observation partially explains



8 Aeroacoustic study of the influence of saxophone mouthpiece design 184

the higher spectral centroid of “baffle 1”.
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Fig. 8.15: Comparisons of spectra of FW-H estimation and different sound sources between
mouthpieces with different baffle heights.
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(a) (b)

Fig. 8.17: Comparison of eight uniformly sampled snapshots of the velocity field within a
single period between mouthpieces (a) “baffle 1” and (b) “baffle 4”.
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8.4 Discussion

This chapter applies the acoustic and aeroacoustic models proposed in the previous two

chapters to investigate the influence of mouthpiece design parameters on oscillation charac-

teristics.

The acoustic modeling of the mouthpiece can be used to analyze both acoustic and os-

cillation characteristics of the mouthpiece, which relies respectively on the input impedance

and the synthesized sound. The input impedances of the mouthpiece, with and without a

saxophone body, provide an efficient way of comparing mouthpieces at the rest condition

of the instrument, which helps factor out the influence of players and focus on the mouth-

piece itself. It provides information on the intonation, timbre, and inharmonicity of the

instrument, and the inharmonicity further implies potential influences of different design

parameters on the playability and intonation (see Sec. 2.2.2). The synthesized sound, on the

other hand, helps explore the incorporation of different mouthpieces with a player, and quan-

tifies the effects of a design parameter on oscillation characteristics such as the oscillation

thresholds and spectral centroids. Compared to the physical measurement and analysis, the

present acoustic analysis procedure circumvents the problem of repeatability, and enables

efficient tests with a larger number of mouthpieces and playing conditions using automated

synthesizing and analyzing scripts. The main limitation of the oscillation characteristics

analysis comes from the sound synthesis model. The synthesizer used in this research is

based on the three-equation model discussed in Sec. 2.1.1, and that has involved a series of

assumptions and simplifications. One of the most important simplifications made is that the

reed is modeled as a single-degree-of-freedom oscillator. This makes it impossible to study

certain design parameters such as the lay profile. In addition, the fluid model is simplified

as the Bernoulli flow model, where the flow pattern is independent of the tip opening. This

also introduces difficulties in investigating the influence of the geometry near the tip of the

mouthpiece, such as the reed channel length and the tip opening.

The aeroacoustic modeling of the mouthpiece relies on the LB simulation and the FW-H

acoustic analogy. On one hand, the LB model resolves the limitation of the acoustic modeling

by representing the reed as a 1D distributed beam, and including the interaction of the reed

with the lay. On the other hand, it provides a detailed modeling of the FSAI within the

mouthpiece, which involves not only the acoustics and the solid, but also the complex fluid

field. The sound pressure simulated in the LB mouthpiece model can be used in the oscillation
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characteristics analysis. It is similar to that of acoustic modeling, except that it is not easy

to obtain the oscillation thresholds because ramping up or down the mouth pressure with

slow changing rates is too expensive to simulate. The FW-H characterizes saxophone sound

generation by decomposing the sound into contributions from different sound sources. This

provides a better understanding of how a design parameter influences sound by connecting

a design parameter to each sound generation mechanism. In general, design parameters

that influence the mouthpiece acoustic response have a stronger effect at the frequencies

around the resonance frequencies of the mouthpiece itself (typically between 2 - 3 kHz).

The design parameters that directly influence the reed motion, such as the tip opening and

the lay profile, will have stronger contributions at higher frequencies. Such speculations are

based on the characteristics of different sound sources but it requires further study of various

mouthpiece design parameters to validate.

There are a few limitations to consider in the aeroacoustic study of the mouthpiece. First,

the use of a 2D LB model restricts the ability to directly compare certain design parameters,

such as the chamber shape and chamber width. The 2D nature of the model oversimplifies

the geometry and may not fully capture the intricacies of the airflow and sound production

in 3D space. Additionally, certain 3D effects, such as turbulent flow, side slits, and the effect

of the side rail4, are either simplified or omitted in the 2D model. Another limitation is

the expensive computational cost. In the present study, it took approximately 2.5 hours to

simulate only 0.1 seconds of sound on an Intel Core i9-10900K CPU 3.70 GHz. Although the

performance can be improved with more powerful processors, the computational overhead

should be carefully calculated and the geometry variations should be selectively generated

when designing numerical experiments.

In conclusion, both acoustic modeling and aeroacoustic modeling have advantages and

disadvantages when studying the mouthpiece design parameters. By combining the insights

gained from both methodologies, a more comprehensive understanding of the mouthpiece

design and its impact on sound production can be achieved, which allows for a more thorough

exploration of the design space while optimizing computational resources.

4While the collision between the reed and the lay is implemented in the reed model, a 2D model does not
distinguish the window and the side rails of the mouthpiece.
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Chapter 9

Conclusions and perspectives

This research focused on the acoustic and aeroacoustic analyses of the saxophone mouthpiece

in order to gain a better understanding of its role in saxophone sound generation and to reveal

the connection between the mouthpiece geometry and oscillation characteristics.

The mouthpiece is an essential component of the saxophone, serving as both a linear

passive resonator and a nonlinear active resonator. These two roles of the mouthpiece were

examined separately through acoustic modeling in Chapter 6 and aeroacoustic modeling in

Chapter 7.

Chapter 6 focused on the characterization of the mouthpiece’s linear acoustic properties

using its input impedance. The study involved measurements of the input impedance, and

using the finite element (FE) model, transfer matrix model (TMM), and transmission line

model (TLM) to investigate the acoustic characteristics of the mouthpiece. TMM was de-

rived from the FE mouthpiece model and was validated by input impedance measurements.

It provided a more accurate mouthpiece representation compared to the lumped mouthpiece

model and cylindrical mouthpiece model, and can be used in comparative acoustic stud-

ies of mouthpieces with different designs. It was also incorporated with sound synthesis,

which helped analyze the oscillation characteristics of the instrument. TLM modeled the

mouthpiece as piecewise cylinder segments, which provided a less accurate but more flexible

mouthpiece representation. A mouthpiece design interface was prototyped in Appendix C

based on TLM.

Chapter 7 focused on the aeroacoustic analysis of the sound generation of the mouthpiece-

reed system. A two-dimensional computational aeroacoustic mouthpiece model was devel-
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oped using the lattice Boltzmann method. A characteristic-based time-domain impedance

boundary condition (C-TDIBC) was proposed in Chapter 5, and it was applied at the end of

the mouthpiece to provide a localized representation of the saxophone body as a boundary

condition using the saxophone body’s input impedance. The Ffowcs Williams and Hawk-

ings acoustic analogy was employed to analyze the sound generation in the mouthpiece-reed

system, and the outgoing acoustic pressure at a downstream observer was decomposed into

the inlet monopole, reed monopole, and dipole sound sources. The interpretation of various

sound sources was demonstrated to be dependent on the choice of the Green’s function.

When the one-dimensional Green’s function for an infinite pipe was used, the dipole source

dominated monopoles because it involved the response of mouthpiece walls to both the aero-

dynamic force and acoustic fluctuations, where the latter contribution is connected to the

acoustic characteristics of the mouthpiece as a linear acoustic filter. The dipole source in-

tensity was reduced to a comparable level as the inlet monopole when the one-dimensional

Green’s function for a semi-infinite pipe was applied, and a new monopole source contributed

by the outlet emerged and dominated all the other contributions to the outgoing pressure at

the observer.

Finally, the acoustic and aeroacoustic analysis routines were employed to study the influ-

ence of two design parameters, specifically the chamber size and the baffle height, on acoustic

and oscillation characteristics in Chapter 8. It was demonstrated that a larger chamber size

leads to a lower spectral centroid and less sound energy in the radiated sound. It also resulted

in a larger resistance of the mouthpiece, which made it harder to crescendo. A baffle height

was found to mainly influence the spectral centroid, with a smaller baffle-to-reed distance

tending to produce a larger spectral centroid.

9.1 Contributions

The present research has contributed to original knowledge from multiple aspects, including:

• A comprehensive discussion on the definition of the mouthpiece input impedance, cov-

ering different choices for the input plane and necessary assumptions to define the input

impedance. Impedance measurements were conducted, and a finite element model was

built to validate the concept.

• A quantitative illustration of the acoustic effect of the mouthpiece through input

impedance measurements, revealing the presence of a “formant” structure in the in-
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strument’s input impedance due to the resonances of the mouthpiece.

• A transfer matrix model (TMM) for the mouthpiece, representing the mouthpiece

acoustic cavity as a transfer matrix. TMM was validated through input impedance

measurements, and was proved to be an accurate acoustic model by comparing it with

the FE model, lumped mouthpiece model, and cylindrical mouthpiece model. It also

showed its strength in the acoustic and oscillation characterization of the mouthpiece.

• A transmission line model (TLM) of the mouthpiece, representing the mouthpiece as

piecewise cylindrical segments. It provides greater flexibility for mouthpiece acoustic

modeling and serves as the base for the mouthpiece design interface prototype.

• A characteristic-based time-domain impedance boundary condition (C-TDIBC), which

is a TDIBC variant based on the characteristic boundary condition (CBC), plane

wave masking (PWM), and a time-domain representation of the input impedance as a

recursive parallel filter structure.

• A novel two-dimensional lattice Boltzmann computational aeroacoustic (CAA) model

that is unique in comparison with other single-reed instrument CAA models by using

C-TDIBC to model the resonator. C-TDIBC was applied for the first time in a self-

sustained system and a single-reed instrument study.

• The first application of the Ffowcs Williams and Hawkings acoustic analogy in the

context of single-reed instrument sound generation, which provided a new insight of

the sound generation characteristics based on the mechanisms of various sound sources.

• Investigations of the influence of mouthpiece chamber size and baffle height on the

acoustics and oscillations through acoustic and aeroacoustic analyses.

9.2 Suggestions for future work

A number of avenues for future work are possible from this research, including:

• Given the reasonable acoustic approximation of the mouthpiece provided by TLM, it

is worthwhile to revisit the model proposed by Stewart and Strong (1980). A one-

dimensional distributed reed model was employed in the model, and the mouthpiece

was represented by a cross-area function and modeled with an equivalent circuit of

the transmission line. It allows a distributed interaction between the reed, flow and

mouthpiece, which will provide features that have been omitted by a single-degree-of-

freedom representation of the reed.
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• The TLM-based mouthpiece design interface provides basic functionality for interac-

tive mouthpiece design with real-time feedback on acoustic and sound properties. It

can be improved by incorporating optimization algorithms so that users can create

mouthpieces by directly defining and tuning acoustic and oscillation characteristics,

such as the “formant” of the mouthpiece or even a desired sound spectrum.

• A main limitation of the present aeroacoustic analysis is the two-dimensional nature

of the computational aeroacoustic model, which cannot replicate certain phenomena

observed in a real single-reed instrument such as turbulent flow and the influence of

side slits in the mouthpiece-reed system. The present model shall be extended to

three dimensions with the simulation and analysis results compared with the findings

presented in this thesis. The extension shall be straightforward, as C-TDIBC can

be readily applied to three-dimensional problems using the framework proposed in

Chapter 5, and along with the same Green’s function employed in the thesis, a similar

aeroacoustic analysis can be conducted using the FW-H acoustic analogy.

• Another limitation of the aeroacoustic analysis comes from the large kinematic viscosity

employed in the lattice Boltzmann model. The larger value was chosen in the present

thesis to ensure the stability of the simulation, but it is worthwhile to use the air

viscosity and compare the results of the simulation and FW-H analysis to those found

in Ch. 7.

• In this thesis, FW-H analysis was performed with two different one-dimensional Green’s

functions. It would be valuable to conduct a FW-H analysis using a two-dimensional

free-field Green’s function in the frequency domain, and compare the results to those

provided in this study.

• The performance of C-TDIBC has been shown to degrade when strong vortices are

present near the boundary. It is worth investigating alternative boundary conditions

to mitigate spurious reflection in such scenarios. The key to improving the C-TDIBC

performance relies on the effectiveness of the boundary condition as a non-reflecting

boundary condition. The C-TDIBC scheme proposed in this thesis made use of a

local one-dimensional inviscid (LODI) model with transverse terms and transverse

relaxation, but its performance may be improved by including viscous terms in the

boundary condition formulation, as discussed by Yoo et al. (2005). In addition, the use

of a zonal characteristic boundary condition (Gill et al., 2017, Sandberg and Sandham,

2006) deserves further investigation.
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• Since C-TDIBC was built based on the characteristic-based reflecting boundary con-

dition, a digital waveguide method can be used to represent the resonator.

• While this thesis primarily focuses on the aeroacoustics analysis of sound generation,

further exploration of the aerodynamics, particularly the hysteresis effects as discussed

in Section 2.1.3, is necessary.

• Regarding the influence of mouthpiece design parameters, it is possible to investigate

more design parameters using the same analysis process proposed in Chapter 8. In

addition, it is worthwhile to print the mouthpieces using a 3D printer for physical

measurement and subjective evaluations.
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Appendix A

Review on artificial blowers

This appendix serves as a supplement to Sec. 2.3.2 and aims to provide a focused review on

artificial blowers for single-reed instruments.

As mentioned in Sec. 2.3.2, measurements of a single-reed instrument under playing con-

ditions can provide valuable insights into the oscillation characteristics and their relationship

with both the instrument and its interactions with the player.

Taking measurements while the instrument is playing requires the incorporation of a

player, which can be either a human or a machine. While a human player provides a more

realistic playing condition, it is more challenging to quantitatively control the instrument

and guarantee the experiment repeatability. In addition, the use of sensors is constrained due

to the limited space within the player’s mouth. Artificial blowers are employed to address

such problems by providing precise control over the playing parameters using electronic or

mechanical systems, and flexibility in integrating different sensors for measurement purposes.

The early development of artificial blowers can be traced back to the work by McGinnis

and Gallagher (1941), where an artificial blower was designed to study the motion of a clarinet

reed. In the pioneering research conducted by Backus (1961, 1963), an artificial blower was

employed to investigate the sound generation mechanisms of a clarinet, which helped advance

our early understanding of the underlying physics (Sec. 2.1.1). Numerous research groups

have been actively involved in developing artificial players or artificial blowers, including

Laboratory of Mechanics and Acoustics (LMA - Laboratoire de Mécanique et d’Acoustique)

at Aix-Marseille University (Ferrand and Vergez, 2008), Laboratory of acoustics at University

of Le Mans (LAUM - Laboratoire d’Acoustique de l’Université du Mans) (Dalmont et al.,
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2003, Gazengel et al., 2007, Muñoz Arancón, 2017), Music Acoustic Group at University

of New South Wales (Almeida et al., 2010, 2017, Li et al., 2016b), Department of Musical

Acoustics Wiener Klangstil (IWK - Institut für Musikalische Akustik - Wiener Klangstil) at

University of Music and Performing Arts Vienna (Chatziioannou et al., 2017, Mayer, 2003),

Computational Acoustic Modeling Laboratory (Kemp et al., 2019) and others. Artificial

blower designs are subject to change depending on different applications, and different designs

may employ different methods to control the embouchure and different sensors to measure

the signal. The overall development of the artificial blower can be roughly divided into

two parts, namely the control and the measurement, which will be separately discussed in

Secs. A.1 and A.2, respectively.

A.1 Control

The present discussion on the control of the instrument focuses on the embouchure, which

involves the mouth cavity, lips, and the tongue.1

A.1.1 Blowing pressure

As introduced in Sec. 2.1, the mouth pressure drives the airflow into the instrument and

largely influences the oscillation characteristics. It creates pressure differences across the

reed, which is a crucial factor in sound generation. When using an artificial player, there are

two options for creating the desired pressure difference.

The first option is to construct an artificial mouth that is placed upstream of the in-

strument to blow the air into it. In most applications, the influence of the vocal tract is

typically ignored, making the shape and the volume of the artificial mouth less critical. A

rectangular box or a cylindrical tube, typically made of plexiglass with occasional metal

reinforcement, is generally used to represent the “oral cavity”. The volume of the mouth

box varies a lot depending on the specific applications. For example, Ferrand and Vergez

(2008) used a mouth box with a volume of 30 cm3, which corresponds to the average volume

of an actual mouth, while Lorenzoni and Ragni (2012) used a much larger mouth box with a

1The control of fingers and other gestures will not be addressed in this review since they are less included in
previous research. To the author’s best knowledge, Almeida et al. (2010) may have built the only automated
clarinettist that has been used in scientific research, and readers interested in fingering control may refer to
that paper for more details.
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volume of 1300 cm3 for particle image velocimetry (PIV) measurements. An air compressor

or air pump is commonly used as the air source, and a muffler can be installed between the

air source and the artificial mouth to suppress source noise. A regulator is necessary to con-

trol the mouth pressure. Manual regulators are typically used for simplicity, although there

have been attempts to achieve automatic and precise control of the mouth pressure, such

as the use of proportional servo-valves combined with proportional-integral-derivative (PID)

controller schemes by Bergeot et al. (2014), Ferrand and Vergez (2008) and Chatziioannou

et al. (2017). Almeida et al. (2010) and Li et al. (2016b) also implemented a PID loop to

control air leakage from the system using a shaker to achieve the desired mouth pressure.

The second option involves placing a vacuum downstream of the instrument to aspirate

the air out of the instrument. A vacuum cleaner (Backus, 1985, Muñoz Arancón et al., 2018)

or a pump (Almeida et al., 2017) can be applied at the end of the instrument. A reservoir and

a muffler need to be installed between the instrument and the aspiration system to minimize

the influence of the aspiration system on the radiation impedance of the instrument. The

choice of the pressure driving system depends on specific experiment requirements. In the

case of Muñoz Arancón (2017)’s experiment, the aspiration system enables convenient in-

place reed calibration and testing. It also allows a human player to play the instrument

while the aspiration system is off, which enables direct comparisons between different playing

conditions.

A.1.2 Lip

When constructing an artificial lip for an artificial blower, there are several important con-

siderations, including the choice of material, and means of controlling the lip position and

exerting force on the reed.

There are two main types of materials commonly used as an artificial lip. The first option

is rubber foam, which can be either polyester(Chatziioannou et al., 2017), polyurethane (Li

et al., 2016b), neoprene (Backus, 1961) and silicone rubber (Idogawa et al., 1993, McGinnis

and Gallagher, 1941). Another option is a latex tube filled with liquid (water or glycerin)

or liquid-saturated foam (Dalmont et al., 2003, Ferrand and Vergez, 2008, Lorenzoni and

Ragni, 2012). While Gazengel et al. (2007) demonstrated that a glycerin-filled artificial lip

performs better than a water-filled one, further comparative investigations between different

materials are still needed.
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To control the lip force and lip position, a mechanical structure is necessary. The lip

is normally assumed to be applied perpendicularly to the reed, and the lip force can be

controlled by adjusting the height of the lip. The simplest approach to implement a lip force

is by using screws to control the vertical position of a bar or plate with the artificial lip

attached. This type of structure has been widely employed due to its simplicity (Backus,

1961, Dalmont et al., 2003, Idogawa et al., 1993, Lorenzoni and Ragni, 2012, McGinnis

and Gallagher, 1941). However, quantitatively controlling the lip force with a screw can be

challenging. Alternative methods for lip force control have been proposed, such as using a

hanging mass (Li et al., 2016b), a translation stage (Chatziioannou et al., 2017), or servos

(Almeida et al., 2010). It should be noted that the lip force control is closely related to lip

force measurement, and it sometimes requires incorporating force sensors like load cells.

The lip position of an artificial player is mostly assumed to be fixed, which is located

approximately 1 to 1.5 cm from the tip of the reed. However, certain clarinet artificial

blowers, which hold the mouthpiece through an external integrated barrel, allow for adjusting

the relative lip position by sliding the mouthpiece in and out while keeping the lip position

fixed (Dalmont et al., 2003, Idogawa et al., 1993).

A.1.3 Tonguing

Tonguing is important in studies of articulations. In the work of Chatziioannou et al. (2017,

2019), an electric-controlled shaker was used to mimic the action of the tongue, and a cellular

polyethylene foam was attached to the shaker as tongue material. Other options include

the use of a servo to provide a binary control of the tongue (Almeida et al., 2010), and a

system composed of two beams and two masses to control the tonguing with an adjustable

acceleration (Li et al., 2016b).

A.2 Measurements

A.2.1 Mouth and mouthpiece pressure

When measuring mouth pressure in artificial players, a uniform static pressure is normally

assumed within the mouth box. This allows to employ a manometer for the pressure mea-

surement, which can be placed at an arbitrary position in the box.

It is the opposite when measuring the mouthpiece pressure, where static pressure is
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usually assumed to be zero so that only the dynamic pressure is measured. A pressure

sensor is typically placed after the mouthpiece baffle (Almeida et al., 2017, van Zon et al.,

1990), and it requires to modify the mouthpiece to flush mount the transducer.

A differential pressure sensor can be used to measure the pressure difference between the

mouth and mouthpiece (Dalmont et al., 2003). It can also be applied in the experiment

with an aspiration system, where the “mouth pressure” is always equal to the atmosphere

pressure (Muñoz Arancón, 2017).

A.2.2 Reed displacement and tip opening

The reed displacement y and tip opening h = y + H are two related quantities that are

commonly used in different studies. The conversion between these two quantities requires to

know the equilibrium tip opening, H, of the reed. The reed displacement is typically used

for characterizing the behavior of a reed, whereas the tip opening is more important in the

flow characterization.

There exist several measures to measure the tip opening, which include optical methods,

laser Doppler velocimetry, strain gauges, and high-speed cameras.

The application of optical methods was first introduced by McGinnis and Gallagher

(1941)2, who measured the reed vibration frequency by adjusting the stroboscope flash speed.

Backus (1961) was the first to apply the photoelectric method, which employed a photomul-

tiplier tube to capture the reed motion by detecting light passing through the reed aperture

from a light source placed at the bell of the clarinet. This method has been widely ap-

plied in various studies, especially for clarinets (Dalmont et al., 2003, Idogawa et al., 1993,

Muñoz Arancón, 2017). It is occasionally applied in a saxophone mouthpiece without a

resonator, because the bends in a saxophone may impede the optical signal from reaching

the tip opening effectively.

A high-speed camera was used by Li et al. (2016b) to capture both the reed and tongue

motions, and the reed positions are extracted using an image analysis routine.

Laser Doppler velocimetry (LDV) has been applied to measure the reed velocity (Gazen-

gel, 1994). The velocity signal can then be integrated to obtain the reed displacement.

Chatziioannou et al. (2017, 2019) used strain gauges to measure the reed displacement,

with the strain gauge calibration conducted using a high-speed camera (Pàmies-Vilà et al.,

2It may have been introduced even earlier by Aschoff (1936), but it is difficult to find the article online.
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2017). Although the strain gauge may have some influence on the reed properties (Chatzi-

ioannou et al., 2016), it still provides an effective way of measuring the reed displacement

considering that the playing frequency is normally lower than the reed resonant frequency.

It should be noted that while it is trivial to convert from h to y (as H simply corresponds

to h at a rest condition when y = 0), the conversion from y to h is not always straightforward

because neither LDV nor the strain gauge provides information about H.

A.2.3 Air flow rate

The air flow rate is an important variable in characterizing the nonlinear flow-pressure re-

lationship. In a quasi-static experiment, the flow rate can be directly measured with a flow

meter, or estimated using an orifice (Dalmont et al., 2003). For dynamic flow measurement,

the hot-wire anemometry can be employed (Gilbert, 1991, Idogawa et al., 1993, Maurin,

1992). It is typically placed in the mouth box, right before the mouthpiece tip window to

measure the flow velocity at the entrance of the instrument, and an addition calibration is

required to convert the flow velocity to the flow rate.

A.2.4 Lip force

The lip force can be measured with a force sensor (Chatziioannou et al., 2017), contact

pressure gauge (Mayer, 2003) or a load cell (Yokoyama et al., 2020).
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Appendix B

LBM benchmark problems

B.1 Acoustic Point Source

In this section, an acoustic point source is simulated using the lattice Boltzmann method with

three different collision models, including Bhatnagar-Gross-Krook (BGK), multirelaxation

time (MRT) and recursive regularized BGK (rrBGK). A point source is set at the center of

a 100× 100 domain in the lattice grid unit:

ρ(x, t) = ρ0 + ρs sin

(
2π

T
t

)
, (B.1)

where ρs = 0.01 is the strength of the source, and T = 20∆t is its period. The relaxation

frequency is set as ω = 1/τ = 1.993. The simulation lasts 80 time steps, which terminates

before the wavefront arrives at the boundary. The isocontours of the acoustic density ρ′ =

ρ − ρ0 at time t = 75∆t are compared in Fig. B.1, and the acoustic density along y =

50∆x is presented in Fig. B.2. According to the results, BGK is shown to introduce strong

spurious fluctuations, which is a well-known problem that prevents BGK from being applied

in acoustic problems (Suss et al., 2023, Xu and Sagaut, 2011). On the other hand, both

MRT and rrBGK work better in mitigating such spurious fluctuations due to the higher

dissipation of the model, which provides the base of a more stable simulation at high Mach

number and Reynolds number flow. However, as shown in Fig. B.2, the density amplitude

of MRT is over-dissipated because the numerical dissipation of MRT is too large. Xu and

Sagaut (2011) observed a similar behavior of MRT and proposed an optimized MRT scheme,

which tunes different MRT relaxation parameters independently to minimize the numerical
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dispersion and dissipation. A comparison of the scheme proposed by Xu and Sagaut (2011)

and rrBGK is left to further work.

(a) (b) (c)

Fig. B.1: Isocontours of ρ′ at time t = 75∆t: (a) BGK; (b) MRT; (c) rrBGK.
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Fig. B.2: Comparisons of ρ′ at y = 50∆x and t = 75∆t between three different collision
models. (The y-axis of the plot is zoomed-in to [−0.001, 0.001] for a better comparison.)

B.2 Flow passing 2D cylinder

The Aeolian tone generated by a two-dimensional circular cylinder immersed inside a low

Mach number uniform flow is simulated with rrBGK-LBM in this section. The simulation
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follows the same setup as described in the paper by Brogi et al. (2017), including a multi-

domain grid refinement (Lagrava et al., 2012) and the non-reflective boundary condition (Xu

and Sagaut, 2013). The only difference in this simulation is that Taylor-Green vortices are

deployed around the cylinder as an initial condition to facilitate a faster transition to a stable

vortex shedding from the cylinder. In Fig. B.3, the snapshots of the vorticity and acoustic

fields at two different times corresponding to the minimum and maximum points of the lift

coefficient, clearly present the dipole sound generation by the vortices. The calculated lift

coefficient CL ≈ 0.55 and Strouhal number St ≈ 0.182 agree well with the experimental

values for a flow of Mach number Ma = 0.2. In addition, the acoustic pressure ∆p̃(r, θ) at

different times measured along r at θ = 90◦ is plotted in Fig. B.4, demonstrating the sound

pressure decay proportional to r−1/2, which corresponds to the theoretical value.

(a) (b)

(c) (d)

Fig. B.3: The snapshots of the vorticity (left) and acoustic (right) fields at t (up) and
t+ 2.74 (bottom), where t corresponds to the negative peak of lift coefficient.

B.3 Sound radiation of cylindrical ducts

In this section, the acoustic radiation of cylindrical ducts in the presence of the mean flow

is tested using rrBGK. The far-field acoustic directivity at two different flow speeds, Mach
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Fig. B.4: (a) Comparison of acoustic pressure (r, 90◦) at time t+ 1.83 ( ), t+ 2.28 ( ),
t+ 2.74 ( ), with t corresponding to the negative peak of the lift coefficient. (b) Decay of
pressure peaks (◦,◦,◦) and the reference line of r−1/2 ( ).

number 0.036 and 0.15, is investigated and compared with the analytical solution derived by

Gabard and Astley (2006) (Gabard and Astley, 2006).

In order to save the computation cost, an axisymmetric rrBGK scheme is employed, which

will be shown in Sec. B.5. The computational domain is displayed in Fig. B.5 with a domain

size of 2000×1000. The lower boundary of the domain is the axis of symmetry. As shown in

the figure, a cylindrical pipe with a length of L = 1001 and a radius of a = 30 is placed inside

the rectangular fluid domain. The inner wall of the pipe is set as a free-slip boundary and the

outer wall as a no-slip boundary. The absorbing boundary condition (ABC) (introduced in

Sec. 4.3.2) is applied to absorb the outgoing acoustic waves by deploying buffer zones outside

the fluid domain with the target density ρt = 1.0 and the target flow velocity ut = (0, 0).

An extra buffer is placed next to the inlet of the pipe, working as a sound source. The sound

source is defined by the impulse response I(n) of an FIR filter, with a length of 501 and

normalized cutoff frequency fc = 0.015 corresponding to the Helmholtz number ka = 4. The

target velocity and density are given as
vt = (v0 +H(n−Nt)v

′I(n), 0) ,

ρt = ρ0 +H(n−Nt)
v′ρ0

cs
I(n),

(B.2)

where v0 = Mcs, v
′ = 0.05u0, ρ0 = 1.0 and H(n − Nt) is the Heaviside step function. By



B LBM benchmark problems 203

applying the Heaviside function, the acoustic sound source is activated after Nt = 3Lx/v0

time steps, when the flow has reached the downstream boundary and the system has achieved

a steady state. Lx is the width of the computational domain.

Absorbing Boundary Condition

sound
source

a
L

d

θ

far-field radiation probes 

axis of symmetry

r
x

r

Fig. B.5: Schematic view of the computational domain.

A series of probes are set as a semicircle with a radius of d, centered at the pipe outlet.

The probe pressure is recorded for the sound directivity calculation and the acoustic pressure

is given by:

p(t) = (ρ(t)− ρ0)c2
s, (B.3)

where ρ(t) is the instantaneous density and ρ0 is calculated by averaging the steady-state

part of the signal to remove the steady-state components. The far-field sound directivity is

then calculated using

G(θ, f) =
P (θ, f)

Prms(f)
, (B.4)

where P (θ, f) is the discrete Fourier transform of p(t) at the radiation probes and Prms(f) is

the root-mean-square of the P (θ, f). The normalized G(θ, f) is compared with theoretical

results in Figs. B.6 and B.7 for different Mach numbers and shows good agreements.

B.4 Sound radiation of horns

The acoustic directivity of a circular horn is studied in this section. As shown in Fig. B.5,

a quarter circle of radius r = 2a is placed at the end of the cylindrical duct as a horn to

replace the corresponding cylindrical part while maintaining the same total pipe length.

In order to better describe the effect of the horn on the acoustic directivity under different
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Fig. B.6: Comparison between LBM simulation results ( ) and the analytical solution
Gabard and Astley (2006) ( ) at Ma=0.036.
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Fig. B.7: Comparison between LBM simulation results ( ) and the analytical solution
Gabard and Astley (2006) ( ) at Ma=0.15.

flow velocities, a new coefficient is defined as

D(θ, f) =
P 2

horn(θ, f)− P 2
cyl(θ, f)

P 2
cyl,rms(f)

, (B.5)
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where subscripts ‘horn’ and ‘cyl’ represent the cases with and without a horn for the same

flow velocity, respectively. The difference of their radiated acoustic energy is then normalized

by the root-mean-square of the radiation energy of a cylinder. D(θ, f) shows directly how

much the horn helps radiate the sound. In Fig. B.8, D(θ, ka) is plotted for different Mach

numbers in the θ − ka space.

As expected, the simulation results show that the horn generally helps the duct sound

radiation both with and without a uniform flow. Such an improvement is because the horn

works as an impedance matcher which decreases the sound reflection and increases the sound

radiation. As shown in Fig. B.8, the effect of the horn on radiation is not uniform in the

θ− ka space. There exists a triangle zone about the range [θ ∈ (0◦, 50◦), ka ∈ (0.5, 2)] where

the radiation is boosted the most. However, in the area of [θ ∈ (50◦, 170◦), ka ∈ (0.5, 3)], the

horn has a negative contribution to sound radiation. Such an effect is due to the geometry of

the horn that blocks the sound wave from traveling in large angle directions. In this case, the

low-frequency components are more easily diffracted than the high-frequency components to

provide a better radiation efficiency.

In Table B.1, the maximum value of D(θ, ka) in the θ−ka map of different flow velocity is

found and the corresponding radiation angle θ, the Helmholtz number ka, and the value Dmax

are listed. Though the ka doesn’t change that much, the θ increases with the Mach number.

This effect is similar to the directivity characteristic called the zone of relative silence where

the radiated acoustic power is relatively smaller near the center axis of the pipe. The angle

that has the largest sound radiation is called the characteristic angle θs = cos−1( 1
1+M

) and

will increase with the Mach number. This similarity might be because both effects are related

to the flow instability at the end of the pipe due to the non-zero ambient-pipe flow Munt

(1977). However, more simulations of different flow velocity and horn geometries need to be

tested before any conclusion can be drawn.

Table B.1: The maximum D(θ, ka) in the ka− θ map.

Mach number θ (degree) ka Dmax(θ, ka)
M = 0.0 0.1434 0.8120 10.5580
M = 0.05 9.9969 0.8071 8.1911
M = 0.1 13.3172 0.6775 7.9801
M = 0.15 15.5907 0.6825 7.7125
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(a) Ma = 0.0 (b) Ma = 0.05

(c) Ma = 0.10 (d) Ma = 0.15

Fig. B.8: The comparison of D(θ, f) LBM simulation results of the horn (r = 2a) for
different flow speeds.

B.5 Axisymmetric LBM

The two-dimensional axisymmetric scheme is frequently used in simulating the 3D axisym-

metric flow. The axisymmetric LBM proposed by Zhou (2011) is used in solving sound

radiation from a pipe. In order to be able to recover the axisymmetric Navier-Stokes equa-

tion using Chapman-Enskog analysis, the original LBE is reformulated and added with the

sink or source and the force terms, written as

fi(x+ ei∆t, t+ ∆t) = fi(x, t)− ωi [fi(x, t)− f eq
i (x, t)] + wiS∆t+

∆t

6e2
eiαFα, (B.6)

where S is a source or sink term,

S = −ρur
r
, (B.7)
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and Fα the force term

Fα = −ρuαur
r
− 2ρνuα

r2
δαr (B.8)

with α = {x, r} in the axisymmetric coordinate, where x and r represent the axial and radial

directions, correspondingly. ωi is the effective relaxation frequency1 defined as

ωi =


1

τ
, r = 0,

1

τ

[
1 +

(2τ − 1)eir
2r

]
, r 6= 0.

(B.9)

Finally, it is trivial to get the axisymmetric LBM with the rrBGK collision operator. The

right-hand side (RHS) of Eq. (B.6) can be rewritten in terms of f eq
i and fneq

i :

fi(x+ ei∆t, t+ ∆t) = f eq
i (x, t) + (1− ωi) fneq(x,t)

i + wiS∆t+
∆t

6
eiαFα, (B.10)

where f eq
i and fneq

i can be calculated with Eqs. 4.43 and 4.44, respectively.

1Despite that the term ωi defined here was denoted as τi and called an effective relaxation time in the
original paper by Zhou (2011), it is essentially an equivalent relaxation frequency, which is the reciprocal of
the relaxation time τ .
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Appendix C

TLM-based mouthpiece design

interface

In this section, a transmission line model (TLM)-based mouthpiece design interface is de-

veloped using the MATLAB App Designer. The interface consists of three main modules,

as illustrated in Fig. C.1: Area Function (AF) Creator, Impedance Calculator, and Sound

Synthesizer.

The AF Creator modules allows the users to define the geometry of the mouthpiece

by specifying a series of “Mouthpiece Basic Parameters” and adjusting the area of each

individual cylindrical segment interactively using a graphical interface with computer-mouse

control. The “Mouthpiece Basic Parameters” include the number of cylindrical segments of

AF, mouthpiece volume, equivalent radius of the tip window, and radius of the mouthpiece

bore, where the latter two radii define the areas of the first and last cylindrical segments,

respectively. By switching on the “DRAW” button and holding the key “d”, users can

customize the AF by moving the mouse on the “Area Function Drawing Canvas”. The user

can click on “Update AF” button to confirm the modification, which temporarily stores a

selected AF. The AF Creator allows storing up to three mouthpiece AFs for comparison and

provides options to load or save AFs from/to a file.

The Impedance Calculator module allows users to calculate the closed mouthpiece input

impedance, which will be updated automatically when a change is made to a selected AF.

It also allows users to import measured or simulated input impedances of a saxophone

bore, which can be taken as a load impedance applied to the mouthpiece. By selecting the
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Fig. C.1: User interface of TLM-based mouthpiece design interface.

“Resonator” option in the “Load Impedance Selection” tab and a fingering in the imported

“Fingering List”, the input impedance of the entire instrument (mouthpiece+saxophone) can

be calculated by clicking on “Recompute Z” button. The module provides a comparison of

input impedance modulus of mouthpieces with different AFs along with the load impedance.

Figures. C.2 and C.3 demonstrate the definitions of three customized AFs, as well as the

corresponding input impedance comparisons.

Finally, the Sound Synthesizer module allows users to synthesize sound using the cal-

culated input impedance. The synthesis is implemented using the reflection coefficients as

described in the paper by Gazengel et al. (1995). Users can adjust parameters including

equilibrium tip opening H, reed resonant frequency fr, reed damping coefficient qr and the

reed stiffness kr to tune the synthesized sound.
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Fig. C.2: Comparison of AFs and closed mouthpiece input impedances.

Fig. C.3: Comparison of AFs and saxophone input impedances.
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printed saxophone mouthpiece personalization: Acoustical analysis of design variations.
Acta Acustica, 5:46, 2021.
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