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Abstract

This thesis presents a number of methods for the computational analysis of woodwind instru-

ments. The Transmission-Matrix Method (TMM) for the calculation of the input impedance

of an instrument is described. An approach based on the Finite Element Method (FEM) is

applied to the determination of the transmission-matrix parameters of woodwind instrument

toneholes, from which new formulas are developed that extend the range of validity of cur-

rent theories. The effect of a hanging keypad is investigated and discrepancies with current

theories are found for short toneholes. This approach was applied as well to toneholes on a

conical bore, and we conclude that the tonehole transmission matrix parameters developed on

a cylindrical bore are equally valid for use on a conical bore.

A boundary condition for the approximation of the boundary layer losses for use with

the FEM was developed, and it enables the simulation of complete woodwind instruments.

The comparison of the simulations of instruments with many open or closed toneholes with

calculations using the TMM reveal discrepancies that are most likely attributable to internal

or external tonehole interactions. This is not taken into account in the TMM and poses a limit

to its accuracy. The maximal error is found to be smaller than 10 cents. The effect of the

curvature of the main bore is investigated using the FEM. The radiation impedance of a wind

instrument bell is calculated using the FEM and compared to TMM calculations; we conclude

that the TMM is not appropriate for the simulation of flaring bells.

Finally, a method is presented for the calculation of the tonehole positions and dimensions

under various constraints using an optimization algorithm, which is based on the estimation of

the playing frequencies using the Transmission-Matrix Method. A number of simple wood-

wind instruments are designed using this algorithm and prototypes evaluated.



Sommaire

Cette thèse présente des méthodes pour la conception d’instruments de musique à vent à l’aide

de calculs scientifiques. La méthode des matrices de transfert pour le calcul de l’impédance

d’entrée est décrite. Une méthode basée sur le calcul par Éléments Finis est appliquée à la

détermination des paramètres des matrices de transfert des trous latéraux des instruments à

vent, à partir desquels de nouvelles équations sont développées pour étendre la validité des

équations de la littérature. Des simulations par Éléments Finis de l’effet d’une clé suspendue

au-dessus des trous latéraux donnent des résultats différents de la théorie pour les trous courts.

La méthode est aussi appliquée à des trous sur un corps conique et nous concluons que les

paramètres des matrices de transmission développées pour les tuyaux cylindriques sont égale-

ment valides pour les tuyaux coniques.

Une condition frontière pour l’approximation des pertes viscothermiques dans les calculs

par Éléments Finis est développée et permet la simulation d’instruments complets. La com-

paraison des résultats de simulations d’instruments avec plusieurs trous ouverts ou fermés

montre que la méthode des matrices de transfert présente des erreurs probablement attribuables

aux interactions internes et externes entre les trous. Cet effet n’est pas pris en compte dans la

méthode des matrices de transfert et pose une limite à la précision de cette méthode. L’erreur

maximale est de l’ordre de 10 cents. L’effet de la courbure du corps de l’instrument est étudié

avec la méthode des Éléments Finis. L’impédance de rayonnement du pavillon d’un instru-

ment est calculée avec la méthode des matrices de transfert et comparée aux résultats de la

méthode des Éléments Finis; nous concluons que la méthode des matrices de transfert n’est

pas appropriée à la simulation des pavillons.

Finalement, une méthode d’optimisation est présentée pour le calcul de la position et des

dimensions des trous latéraux avec plusieurs contraintes, qui est basé sur l’estimation des

fréquences de jeu avec la méthode des matrices de transfert. Plusieurs instruments simples

sont conçus et des prototypes fabriqués et évalués.
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Preface

The subject of this thesis is the acoustical design of woodwind instruments. The shape of

an instrument’s bore, including the position and dimensions of the toneholes, controls the

playing behaviour of the instrument. In this thesis, acoustical methods for the design of this

geometry are proposed. Mechanical aspects such as the key system or technical aspects such

as fabrication methods are not discussed.

The impetus for this research was the desire to develop a method for the design and opti-

mization of woodwind instruments with the objective of fabricating high quality instruments

for the benefit of professional musicians. This project started many years ago and led to

work on the development of an apparatus for the measurement of the acoustic impedance of

the alto saxophone (Lefebvre, 2006). The first task I worked on when starting my doctoral

studies was to redesign this measurement apparatus to incorporate many improvements and

to experiment with another measurement technique (Lefebvre, Scavone, Abel, & Buckiewicz-

Smith, 2007) as well as to verify the accuracy of the conical waveguide input impedance model

with measurements (Lefebvre & Scavone, 2008). During this research project, I worked on a

software package called The Woodwind Instrument Acoustics Toolkit1 (WIAT), written in the

Python language, which contains code for the Transmission-Matrix Method, the Multimodal-

Decomposition Method, the processing of measurement and simulation data and the calcu-

lation of the positions and dimensions of the toneholes on woodwind instruments. For pur-

poses of calculating the input impedance of woodwind instruments, I started working with the

Boundary Element Method and the Finite Element Method and on the development of solu-

tions to incorporate boundary layer losses. At the same time, I collaborated with my director,

Gary Scavone, on research on the vocal tract influence in saxophone performance (Scavone,

Lefebvre, & Silva, 2008) and with Andrey da Silva on a Lattice Boltzman Modelling of wave

propagation in a duct with a mean flow (A. da Silva, Scavone, & Lefebvre, 2009). I also

worked on an unpublished research project which consisted in using a strain gauge to mea-

sure the vibration of a saxophone reed under playing conditions. The signal acquired from

this strain gauge may be used for scientific investigations on the reed motion or simply as a

feedbackproof microphone. This is work to be continued in the future.

1http://www.music.mcgill.ca/caml/doku.php?id=wiat:wiat

http://www.music.mcgill.ca/caml/doku.php?id=wiat:wiat
http://www.music.mcgill.ca/caml/doku.php?id=wiat:wiat
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Introduction

Unlike electronic instruments and computer sound synthesis, which have undergone extensive

development through research and experimentation in the last 100 years, traditional acoustical

music instruments, such as violins, trumpets, clarinets, flutes and even the more recent sax-

ophone, have remained mostly unchanged. These acoustical instruments were traditionally

developed slowly through trial and error, requiring the innovations of many generations of

makers to attain their modern shapes. Even though many of them have attained a high degree

of perfection, possible innovations remain to be explored, such as exploiting new materials,

modifying the shape of the instruments or seeking new compromises to improve their tun-

ing. The standard practice for the design and fabrication of woodwind instruments consists

in repeating existing designs and incorporating small changes possibly aided by simple desk

calculations. This implies that new makers have to start by copying existing instruments. As a

new instrument maker and an engineer, I wish to develop a software system that would enable

the design of such instruments from scratch. I want to better exploit the scientific knowledge

of woodwind instruments to develop methods for the design of these instruments that do not

rely on a previous design.

The objective of this research is to propose methods for the computer aided design of

woodwind instruments. The design of these instruments is a challenging problem because of

the high accuracy that is required to meet the highly exacting standards professional musi-

cians demand. The smallest frequency difference of successive tones that can be detected by

a listener is approximately 8 cents (0.5%) at a frequency of 200 Hz and diminishes to 3 cents
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(0.2%) at 1 kHz (Hartmann, 1996). The cent is a measure of the frequency interval between

two frequencies f1 and f2. The interval c is calculated as c = 1200log2( f2/ f1). There are

100 cents in one equally tempered semitone. An interval in cents may also be expressed in

percent with % = 100( f2− f1)/ f1 = 100(2c/1200−1). In a musical context, the instrumental-

ists are constantly adjusting the playing frequencies of their instruments through embouchure

manipulations in order to produce the desired frequencies, which are changing as a function

of the musical context. As an example, the instrumentalist playing the major third (5/4) of

a major chord should play 14 cents lower than the frequency of an equally tempered major

third (21/3). Even though the instrumentalists can adjust their pitch by more than this interval,

14 cents remain a relatively significant change and a mistuning of the instrument could possi-

bly increase the required frequency variation. For example, if the note used to play a major

third was itself 10 cents sharp, then the player would be required to lower the frequency by

24 cents. We assume in this thesis that the playing frequencies of modern instruments will

likely be tuned with an equal temperament (division of the octave in 12 equal semitones), but

that may not be the ideal tuning. This thesis does not try to answer this question. Rather,

it is concerned with the development of methods to calculate the positions and dimensions

of the toneholes on an instrument to achieve the desired tuning, whatever that is. Based on

this discussion, we believe that the tuning of an instrument should have a general accuracy of

±5 cents.

There exists no simple way to calculate the position and dimension of each tonehole one

by one, as a consequence of the physics of wave propagation. This implies that the playing

frequency of each fingering depends on each part of the instrument; modifying the geometry

of one part of the instrument, such as a tonehole, results in playing frequency changes for

every note of the instrument. The solution involves using a global optimization algorithm that

can calculate the solution to the problem (that is, the locations and dimensions of the tone-

holes), making use of an underlying method for the estimation of the playing frequencies of

a hypothetical instrument. Apart from being accurate, this method must also be fast because
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the playing frequencies of the instrument under design will be recalculated a large number of

times for each of its fingering during the optimization process. Today, large computer clusters

such as those used by CLUMEQ2 (960 computers, each with 8 cores running at 2.8 GHz and

24 Gbytes of memory), located in Quebec city at Laval University, would enable the optimiza-

tion of woodwind instruments based on computationally expensive methods, such as the Finite

Element Method (FEM). However, we instead aim to develop a software system that can run in

a reasonable amount of time on a personal computer (a single computer with 2 cores running at

2 GHz and 2 Gbytes of memory). One method that executes rapidly and does not require much

memory is the Transmission Matrix Method (TMM). As an example, the TMM calculation

of the input impedance of a conical instrument with 12 toneholes for 1400 frequency points

takes less than 1 second. The same problem, calculated using the FEM, cannot be solved on

a personal computer due to insufficient memory. This problem was solved on a high perfor-

mance “personal” computer in the Computational Acoustic Modeling Laboratory3 (CAML),

located in the Music Technology Area of the Schulich School of Music at McGill University,

Montreal, Canada, which has 8 cores and 8 Gbytes of memory. The time for calculating the

input impedance for 140 frequency points is approximately 2.5 hours. There is a substantial

gain of more than 7×105 in terms of calculation time for this example case. Even though it

would be possible to fine-tune the finite element mesh in order to obtain the required accuracy

with a smaller number of elements and reduce the calculation time, it is unlikely that we can

achieve a similar performance as with the TMM. This is why we chose the TMM method for

the optimization algorithm presented in Chap. 4 and the FEM for the development of TMM

models in Chap. 2.

In Chapter 1, the current state of scientific knowledge regarding the excitation mechanism

and air columns of woodwind instruments is summarized. The Transmission-Matrix Method

(TMM) is presented for the calculation of the input impedance of acoustic systems, with an

2http://www.clumeq.ca/
3http://www.music.mcgill.ca/caml/

http://www.clumeq.ca/
http://www.music.mcgill.ca/caml/
http://www.clumeq.ca/
http://www.music.mcgill.ca/caml/


Introduction 4

extensive review of the literature concerning the modelling of cylindrical and conical waveg-

uides with boundary layer losses, of open and closed toneholes and of the radiation from open

ends and bells.

The accuracy of the input impedance calculated using the FEM depends on the accuracy of

the transmission matrix models of each segment of the instrument, the most important being

the model of an open or closed tonehole. In Chapter 2, the Finite Element Method (FEM)

is used to validate the accuracy and extend the validity of the TMM model of a tonehole.

A method is proposed to obtain the transmission matrix parameters of an object from the

results of simulations using the FEM. This method is applied to the cases of a single unflanged

tonehole and a single tonehole on a thick pipe. Revised one-dimensional transmission-matrix

models of open and closed toneholes are presented to extend the validity of the current models.

Simulation results for the case of a tonehole on a conical waveguide and for the case of a

hanging keypad above such a tonehole are analysed.

One other source of inaccuracy in the TMM comes from a fundamental hypothesis of the

method: that the evanescent modes excited near a discontinuity does not interact with the

evanescent modes from an adjacent discontinuity, i.e. that they are uncoupled. In the case

of woodwind instruments, the toneholes are located sufficiently close from each other for a

coupling to exists. The errors introduced by this neglected coupling may be estimated by

comparing the FEM simulations of complete instruments with TMM calculations. This is the

object of Chapter 3; the input impedance of simple woodwind-like instruments is evaluated

using the FEM and compared to theoretical calculations based on the TMM. Thermoviscous

losses are accounted for with an impedance boundary condition based on acoustic boundary

layer theory. The systems are surrounded by a spherical radiation domain with a second-order

non-reflecting spherical wave boundary condition on its outer surface. This method is also

useful for the calculation of the transmission-matrix parameters of curved bores with varying

cross-section, for which no theoretical solution exists. Furthermore, simulation results of a

bell are compared with theoretical calculations.
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Finally, in Chapter 4, an approach to the design of woodwind instruments is presented.

This includes a discussion of the selection of the instrument’s bore shape and a presentation of

the method for the calculation of the tonehole positions and dimensions. This is followed by

the application of the method to simple six-tonehole instruments, which were built and tested.



Chapter 1

Fundamentals of Woodwind Instrument

Acoustics

Musical acoustics, the branch of acoustics concerned with studying and describing the physics

of musical sound production and transmission, has undergone greatly increased understanding

in the last several decades. In particular, the mechanics of musical instruments has emerged as

a specialized field of research. The state of knowledge at the beginning of the 21st century has

attained the necessary accuracy for the use of scientific methods in the design of instruments

satisfying the highly exacting standards professional musicians demand. Furthermore, com-

puters can now process huge numbers of calculations more quickly and effectively than ever

before, allowing for the simulation of hypothetical changes to an instrument and the determi-

nation of parameters that optimize tuning, timbre and response throughout the instrument’s

entire range.

Although musical instruments rely on a number of mechanisms to produce sound, we are

focusing on instruments that utilize the vibration of a column of air, the length of which can be

effectively varied with closed or open side holes, usually called toneholes. Such instruments

may vibrate under the action of different excitation mechanisms, such as an air jet directed

across an open hole (flutes), a single reed mounted on a mouthpiece (clarinets and saxophones)
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or a double reed (oboes and bassoons). The role of this mechanism is to convert a static

pressure or flow from the instrumentalist into a tone, the frequency of which is controlled

mainly by the properties of the instrument’s body, a linear resonator also called the air column

(Rayleigh, 1896/1945; Backus, 1963; Nederveen, 1969/1998a). The quality of the sound that

radiates from such instruments depends on the coupling between the excitation mechanism and

the instrument’s body. The excitation mechanism works as an oscillating valve modulating the

quantity of air that enters the instrument as a function of its opening. Because it is a non-linear

system, the valve generates a complex wave shape composed of many frequency components

harmonically related to the fundamental rate of vibration. Acoustic waves travel back and

forth from the tip to the first opening in the instrument’s bore and the fundamental period

of vibration is related to the time it takes for acoustic waves to complete this travel, which

depends on the boundary conditions at the ends and the shape of the bore. Any perturbation

in the shape of the bore – enlargements, contractions, discontinuities, roughness, bends, etc.

– affects the wave shape (thus, the frequency content that determines the timbre) and the

travel time. Subtle variations in the body’s geometry, on an order of magnitude smaller than a

millimetre, can have a noticeable effect on the resulting sound and the instrumentalist’s feel.

Great care must be taken in the design of toneholes; their positions and dimensions affect both

the pitch and the timbre of the notes.

This quick overview suggests the level of refinement mathematical models should have.

However, the difficulty in accurately quantifying the mechanical properties of the player’s

embouchure poses a limit to the accuracy of the calculations. Nevertheless, with reasonable

assumptions based on experimentation, mathematical models coming from musical acous-

tic science can be solved to predict an instrument’s behaviour with surprising accuracy and

thereby broaden the field of musical instrument engineering.

In the following sections, current theories describing the mechanics of the excitation mech-

anisms (Sec. 1.2) and the modelling of the air column (Sec. 1.3) are presented. This is preceded

by a review of general considerations important for the design of woodwind instruments.
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1.1 Tuning, Timbre and Ease of Play

There are many influential factors in obtaining a good, well-tuned sound from an instrument,

such as the skill of the player, the quality of the instrument, and the mouthpiece assembly. The

correct tuning of an instrument depends on the use of a properly sized mouthpiece for clarinets

and saxophones, a properly adjusted double reed for oboes and bassoons and the properties of

the embouchure hole and head for the concert flute. The design of an excitation mechanism is

in itself a complicated and subtle problem that is not within the scope of this study. The method

proposed here for the design of an instrument body presupposes that the characteristics of an

existing excitation mechanism are known. This is discussed in Sec. 1.2.

The instrument body itself is a complex assemblage of many parts; and although man-

ufacturers generally sell their instruments in working condition, it is necessary to regularly

readjust the mechanics to ensure a tight sealing of the toneholes in their closed state, to adjust

the spring force, and to adjust the key system timing and the pad’ heights. The procedure to

adjust the instrument consists of gluing on bits of felt or cork of an appropriate thickness and

in bending the metallic parts. A correct adjustment of the instrument is critical; otherwise, it

may become unplayable. Furthermore, the problem of adjustment raises an important point:

the instrumentalist who is faced with the task of evaluating an instrument cannot evaluate its

intrinsic value; he evaluates the quality of the adjustment as much as the instrument itself.

A fair comparison between any two instruments demands that they both be adjusted with the

same care.

Although many researchers believe that the material from which an instrument is made has

no influence at all (Coltman, 1971; Nief, Gautier, Dalmont, & Gilbert, 2008), there is some

evidence that the impact of wall vibration is not negligible in the case of instruments made of

thin metallic sheets, such as brasses and saxophones (Blaikley, 1879; Pyle, 1997; Nederveen,

1969/1998a; Kausel & Mayer, 2008), but that this influence would be limited to subtle timbre

variations noticeable possibly only by experienced musicians. For purposes of the present
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study, we will not consider the material further.

The acoustic properties of woodwind instruments are mainly a consequence of their ge-

ometry. The diameter of the bore as a function of the distance along the instrument’s spine is

the most important factor in determining the instrument’s response. Contrasting examples are

the cylindrical and the conical bore. Slight variations of the basic instrument shape produce a

displacement of the resonances that influence the tuning, the timbre and the playability of the

instrument. The curvature of the bore has a secondary influence.

The sounding pitch of the instrument is controlled by the action of closing or opening

toneholes located along the instrument’s body. The position and geometry of these toneholes,

as well as the height of the pad above them when in the open state, are of primary importance

for the tuning and response of the instrument. Small details, such as the radius of curvature

at the junction of the tonehole with the bore, undercutting1, the thickness of the wall of the

chimney and the type of pad and resonator2, may also have an influence. For an open tonehole,

the resulting playing frequency will be higher if the tonehole is located closer to the excitation

point, if it has a larger diameter and if it has a shorter height. Furthermore, increasing the

distance between a pad and the tonehole has the following result: the pitch is raised, the note

becomes easier to play and the timbre is brighter. Conversely, when the pad is closer to the

tonehole, the pitch is lowered, the note becomes more difficult to play and the timbre is darker.

Because closer pads allow for faster playing action, the optimal location may be the closest

one that still allows the note to be played freely. The playing frequency of the instrument not

only depends on the geometry of the first open tonehole but also on the presence of closed

toneholes above (closer to the mouthpiece) and/or on the presence of one or more open or

closed toneholes below it. In general, closed side holes placed above an open tonehole lower

the playing frequencies.

1A fabrication technique that consists in removing material on the internal side of a tonehole on wooden
instruments. This reduces the sharpness of the corner.

2Some pads are provided with a central disk of various sizes, shapes and materials misleadingly called a
“resonator” in the musical community.
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The first open tonehole is generally followed by a series of more open toneholes; for some

notes, the first open tonehole is followed by one or more closed toneholes and then one or

more open toneholes, a situation called cross-fingering, whereby the playing frequency is low-

ered and the timbre darkened compared to the standard row of open holes. The importance of

this effect depends on the geometry of the first open tonehole; when it is smaller in diameter

and taller, the effect of the following tonehole is more important than if the first open tone-

hole has a larger diameter and a shorter height. This phenomenon is important for the proper

functioning of cross-fingering, which is a common way to play semitones on a simple instru-

ment without a key system, such as the recorder. When designing an instrument, there is some

latitude in choosing the diameter, height and position of the holes because the same playing

frequencies can be obtained from different geometries. If the first open tonehole for a specific

fingering is moved slightly upward (closer to the mouthpiece), the resonance frequency of

the fingering could be preserved if the diameter is reduced and/or the height increased by the

proper amount. Similarly, if this tonehole is moved downward, the diameter must be increased

and/or the height reduced to maintain the same resonance frequency. Even though the playing

frequencies would be the same in each case, the resulting timbre would vary. Furthermore,

if one tonehole is displaced and its geometry adjusted, the resonance frequencies of the other

fingerings would likely be modified, requiring modifications to the other tonehole geometries.

This interdependence of the toneholes complicates the design or modification of woodwind

instruments.

The location and dimension of the register holes also affects the relative tuning of the

registers because their locations are chosen to minimize the negative impact (detuning) they

have when located away from their ideal locations (there is a different optimal location of the

register hole for each note of the first register of an instrument).

The description of wind instrument behaviour is generally based on linear acoustic theories

in which the acoustic wave is supposed to be of sufficiently low amplitude for the second-order
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terms in the Navier-Stokes equation to be negligible (Keefe, 1983). The presence of non-

linear effects (such as vortices, turbulence and acoustic streaming) causes undesirable results

for instrumentalists and must be avoided.

In order to predict the timbre of the resulting sound, one method consists of determining

the Fourier components of the pressure in the mouthpiece by coupling a non-linear reed model

with the linear resonator using the harmonic-balance method (Gilbert, 1991; Fritz, Farner, &

Kergomard, 2004), and eventually, the radiated sound field may be evaluated from the pressure

at each opening of the instrument. Another approach is to calculate the cut-off frequency fc

of the tonehole lattice, which behaves like a high-pass filter. Idealized geometries that consist

of a series of equally spaced identical toneholes were studied by Benade (1960) and Keefe

(1990). This cut-off frequency is expressed as:

fc =
vφ

2π
(b/a)√

2st
, (1.1.1)

where vφ is the phase velocity of the sound in the instrument, b is the tonehole radius, a is

the instrument radius, s is half the spacing between the holes and t is the tonehole height. An

increase of the cut-off frequency correlates with a brighter tone (Benade, 1990) and may be

obtained with wider, shorter height and more closely spaced holes. In the case of instruments

with non-uniformly sized holes, which is always the case with real instruments, the cut-off

frequency may be evaluated from the reflection coefficient; at the cut-off frequency, the mag-

nitude of this coefficient presents a minimum. Evaluating the cut-off frequency is important

for the design of an instrument, particularly because of cross-fingerings, where the inter-hole

distance is much larger than for normal fingerings. In such a case, the darkening of the sound,

due to the greater spacing of the holes needs to be compensated by a larger diameter and/or a

shorter height. For the lowest notes of the instrument, the shape of the bell must be adjusted

to present a cut-off frequency similar to that of the rest of the instrument.
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Ease of play depends upon many factors, including the magnitude of the impedance reso-

nances, the harmonicity (or alignment) of the resonances (Worman, 1971) and the occurrence

of non-linear effects. Gazengel (1994) reports that the importance of the harmonicity of the

higher resonances was recognized by early researchers such as Bouasse in 1929. A more recent

publication discussing the question is that of Fletcher (1978). The magnitude of the impedance

resonances, particularly the one corresponding to the fundamental frequency, determines the

ease of play for soft sounds, for which fewer higher harmonics are present. The occurrence of

non-linear effects, at a relatively loud playing level, may destroy the sound quality and impose

a limit on the available dynamic range. As reported by Keefe (1983), short and small holes,

as well as holes with sharp edges at the junction with the bore, are likely to pose problems at

high dynamic levels.

1.2 The Excitation Mechanism

There are two main types of excitation mechanisms used in woodwind instruments, those op-

erating at impedance minima, based on an air jet directed across an open hole (flutes) and those

operating at impedance maxima, based on a source of pressure activating a non-linear valve

(single and double reed instruments). Even though they are as simple as blowing air across a

hole on a pipe or setting in vibration a piece of cane mounted on a mouthpiece, they happen to

be quite difficult to analyse mathematically. They are very sensitive to small changes to their

geometry and depend heavily on the instrumentalist, which is inherently difficult to charac-

terize. Many researchers have attempted to characterize mathematically and experimentally

these mechanisms; see Chaigne and Kergomard (2008) for a review. The design of the body

of an instrument depends very much on the properties of this mechanism, and any attempt

to calculate the position of the toneholes with an incorrect excitation mechanism model will

inevitably give incorrect results.

The mathematical study of the “air reed” mechanism of flute-like instruments requires a
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complex aeroacoustic analysis and is not fully understood today. Fortunately, for purposes of

designing an instrument, most of these complexities may be ignored, as it has been shown that

the playing frequencies of these instruments are equal to their resonance frequency, including

the effect of the presence of the player’s mouth (Nederveen, 1969/1998a).

For single-reed instruments, the mouthpiece assembly, which consists of the mouthpiece

itself, a cane or synthetic reed and a ligature, has an important role in determining the playing

characteristics of the instrument. The scientific literature on the subject is sparse and mainly

discusses the impact of the mouthpiece volume on the tuning of an instrument. Nederveen

(1969/1998a) showed that the equivalent mouthpiece volume of saxophone mouthpieces (in-

cluding the effect of the reed’s motion) should be approximately the same as the missing

part of the truncated cone. There is some evidence that this requirement is not sufficient; a

short and wide mouthpiece does not behave in the same way as a long and slim mouthpiece

of the same volume. The literature also discusses the coupling of simple reed models (gen-

erally one-dimensional, mass-spring-damper systems) with the linear resonator (Nederveen,

1969/1998a; Gilbert, 1991; Barjau & Gibiat, 1997). The situation for double-reeds is slightly

more complex (Vergez, Almeida, Caussé, & Rodet, 2003). Recently, numerical simulations of

the mouthpiece assembly have been performed using the Finite Element Method (Facchinetti,

Boutillon, & Constantinescu, 2003) and the Lattice Boltzmann Method (A. da Silva, Scavone,

& Walstijn, 2007), and these suggest that the usual approximation of an equivalent mouth-

piece volume may be inadequate, that the interaction of the reed with the mouthpiece lay as

well as the modal vibration of the reed participate in the quality of the resulting sound and

that the fluid-structure interaction in the mouthpiece plays an important role. A mathematical

analysis of the single-reed excitation mechanism is provided in Appendix A, along with ex-

perimental results for the playing frequencies of a simple conical waveguide played with an

alto saxophone mouthpiece.

For the design of a woodwind instrument, the best approach still consists of an experi-

mental characterization. That is, the excitation mechanism for which the instrument is to be
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designed is played on a simplified instrument (such as a cylinder or a cone with no toneholes,

bell or any other kind of discontinuity) of various sizes. Because the acoustic properties of

these types of simple instruments are accurately known, an empirical characterization of the

excitation mechanism is possible. This is the approach that was advocated by Benade and

Keefe (Keefe, 1989) for the design of woodwind instruments, and this is also what we shall

use. To ensure best results, this characterization must be done with professional musicians.

1.3 The Air Column

The analysis of wind instrument air columns is a challenging scientific problem that has cap-

tured the attention of mathematicians and philosophers since the early development of acous-

tics (Lindsay, 1966). The musical acoustician wishing to predict the properties of wind instru-

ments with the level of accuracy that a musician’s remarkably sensitive ear can detect, needs

to take into account very fine details of the physical phenomena involved in the production

of sound. The present state of scientific knowledge in this field is advanced, although some

refinements are necessary if one wants to improve current instruments by scientific calculation.

The air columns of most instruments have quite a complicated geometry. Based on either

a cylindrical or a conical bore, they deviate from these ideal geometries in some of their parts

(Nederveen, 1969/1998a): pipes may be bent for practical reasons, some instruments terminate

in a flaring bell, instruments sometimes present slight contractions or enlargements in some of

their parts and, finally, instruments may be provided with toneholes or valves.

1.3.1 Modelling Methods

Numerical methods such as the Boundary Element Method (BEM), Finite Difference Method

(FDM), Finite Element Method (FEM) and Lattice Boltzmann Method (LBM) have been used

for the analysis of wind instruments (Nederveen, Jansen, & Hassel, 1998; A. R. da Silva,

2008; Kantartzis, Katsibas, Antonopoulos, & Tsiboukis, 2004; Noreland, 2002; Dubos et al.,



1.3 The Air Column 15

1999a). Such methods, based on the discretization of the geometry in small elements for

which fundamental equations can be solved, have the advantage that complex geometries can

be handled easily. On the other hand, they pose serious problems for their use as part of an

automatic optimization design algorithm because of the huge computation time necessary to

solve a complete model of an instrument for all of its fingerings.

Another approach to the modelling of wind instruments is the Transmission-Matrix Method

(TMM) (Plitnik & Strong, 1979; Caussé, Kergomard, & Lurton, 1984; Keefe, 1990; Mapes-

Riordan, 1993; Walstijn & Campbell, 2003). The TMM approximates the geometry of a

structure as a sequence of concatenated segments, each being mathematically represented as a

4x4 matrix, in which the terms are complex-valued and frequency-dependent. Calculating the

acoustic properties of the system at each frequency of interest requires multiplying together

the matrix of each segment. The four terms of these matrices are calculated using mathemati-

cal models that were developed from theoretical calculations, semi-empirical methods or from

the results of numerical simulations.

For purposes of designing wind instruments with the aid of an optimization algorithm, an

efficient method is required in order to obtain results in a reasonable amount of time. The

TMM fulfils this requirement but, even though its accuracy is said to be “good enough”, we

propose to compare the results of the TMM with the FEM for verification purposes and for the

development of transmission-matrix models. This is the subject of Chapters 2 and 3.

The TMM method for calculating the input impedance of woodwind instruments is de-

scribed below, followed by a number of sections presenting results from the literature on

modelling each part of an instrument using the TMM. The input impedance function fully

characterizes the one-dimensional response of a wind instrument when non-linear effects are

negligible. Using the TMM, this impedance can be efficiently and accurately calculated for

frequencies sufficiently low that no higher-order modes are propagated, that is, for cylinders,

when 2π f < 1.841c/a, where c is the speed of sound and a its radius; see Scavone (1997, p. 18)
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for cones. This maximal frequency is above 10 kHz for the concert flute and the clarinet; it be-

comes lower for larger instruments but, because these larger instruments play lower frequency

notes, the higher frequency of interest is also lower. Even thought, to our knowledge, there is

no study that determines a sufficient number of resonances to characterize the behavior of an

instrument, we estimate that from 5 to 10 resonances are enough. A low pitch instrument such

as the barytone saxophone plays its lowest note at a frequency of approximately 70 Hz, which

require to calculate the impedance up to a maximal frequency of a little more than 700 Hz

whereas no higher-order modes are propagated below around 1500 Hz. Therefore, it seems

that these higher-order modes always occurs at frequencies sufficiently high that they do not

perturb the acoustics of the instrument.

Another of the hypotheses on which the TMM is based – that the evanescent modes excited

near each discontinuity decay sufficiently within each segment of the model to be independent

of one another – is only partially fulfilled but generally introduces negligible errors, as reported

by Keefe (1983). The worst case would happen for instruments with closely spaced large holes,

an issue that is investigated further in Chapter 3 to determine the possible consequences of this

effect.

Each section of an instrument is represented by a matrix T relating the pressure and volume

flow from the output to the input plane and is expressed as: pin

Z0Uin

=

T11 T12

T21 T22

 pout

Z0Uout

 , (1.3.1)

where Z0 = ρc/S is approximately equal to the characteristic impedance Zc of the waveguide at

the location of the plane, ρ is the fluid density, c is the speed of sound in free field and S is the

cross-sectional area of the pipe. The properties of the complete instrument are then calculated

from each transmission matrix Tn and the normalized radiation impedance Zrad = pout/Z0Uout
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as:  pin

Z0Uin

=

(
n

∏
i=1

Ti

)Zrad

1

 . (1.3.2)

The normalized input impedance is then calculated simply as Zin = pin/Z0Uin.

1.3.2 Cylindrical and Conical Waveguides

The air columns of woodwind instruments are waveguides comprising cylindrical or conical

sections with open or closed toneholes. The theoretical expression of the transmission matrix

of a lossy cylinder of length L is:

Tcyl =

 cosh(ΓL) Zc sinh(ΓL)

sinh(ΓL)/Zc cosh(ΓL)

 , (1.3.3)

where Γ is a complex-valued propagation wavenumber and Zc =Zc/Z0 is a normalized complex-

valued characteristic impedance. Various sources discuss the theory of wave propagation in

a waveguide with boundary layer losses (Kirchhoff, 1868; Tijdeman, 1975; Keefe, 1984;

Pierce, 1989; Chaigne & Kergomard, 2008). These parameters can be calculated exactly with

Γ =
√

ZvY t and Zc =
√

Zv/Y t , where

Zv = jk
(

1− 2
kva

J1(kva)
J0(kva

)−1

, (1.3.4)

Y t = jk
(

1+(γ−1)
2

kta
J1(kta)
J0(kta)

)
. (1.3.5)
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The meaning of the symbols is:

k = ω/c wavenumber,

ω = 2π f angular frequency,

c speed of sound in free field,

µ fluid viscosity,

ρ fluid density,

a radius of the waveguide,

γ ratio of specific heats,

Pr = cpµ/κ Prandtl number,

kv =
√
− jk/lv viscous diffusion wavenumber,

lv = µ/ρc vortical characteristic length,

kt =
√
− jk/lt thermal diffusion wavenumber,

lt = lv/Pr thermal characteristic length,

J0 Bessel function of the first kind and order 0,

J1 Bessel function of the first kind and order 1.

The values of the fluid properties of air vary with the temperature T in Celcius degrees and
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may be calculated with (Keefe, 1984):

∆T = T −26.85,

µ = 1.8460×10−5(1+0.00250∆T ) [kg/(ms)],

ρ = 1.1769(1−0.00335∆T ) [kg/m3],

c = 3.4723×102(1+0.00166∆T ) [m/s],

γ = 1.4017(1−0.00002∆T ),

Pr = 0.71,

If losses are not considered in the cylindrical waveguide, Eq. (1.3.3) simplifies to:

Tcyl =

 coskL j sinkL

j sinkL coskL

 . (1.3.6)

For a conical waveguide, the transmission matrix is (Kulik, 2007):

Tcone = r

 −tout sin(k̄L−θout) j sin(k̄L)

jtintout sin(k̄L+θin−θout) tin sin(k̄L+θin)

 , (1.3.7)

where xin and xout are, respectively, the distance from the apex of the cone to the input and out-

put planes of the cone; r = xout/xin, L = xout−xin is the length of the cone; θin = arctan(kxin),

θout = arctan(kxout), tin = 1/sinθin, tout = 1/sinθout and k̄ = (1/L)
∫ xout

xin
k(x)dx, where k(x)

is the propagation constant (k = iΓ in our notation) which depends on the radius at position

x. The calculated input impedance of an unflanged open conical waveguide is compared to

impedance measurement data in Fig. 1.1. The length of the cone is 965.2 mm with an input

diameter of 12.5 mm and an output diameter of 63.1 mm. The measurement was made by the

author using a two-microphone transfer function (TMTF) technique reported in Lefebvre and

Scavone (2008).
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When losses are not taken into account, the transmission matrix of a lossless expanding

conical frustum is (Fletcher & Rossing, 1998):

Tcone = r

 −tout sin(kL−θout) j sinkL

jtintout sin(kL−θout +θin) tin sin(kL+θin)

 , (1.3.8)

where the symbols have the same definitions as in the previous equation.

To obtain the transmission matrix of a converging conical frustum, one can reverse the

results obtained in the previous expression. The pressure and acoustic flow at the output of

the diverging cone become those at the input of the converging cone, and vice versa. Because

of the reversal in the direction, both acoustic flows need to be multiplied by negative one. We

obtain:

Treversed =
1

AD−BC

D B

C A

 , (1.3.9)

where A, B, C and D are the coefficients of the diverging cone. This method may be used

to obtain the transmission matrix of any reversed waveguide, that is, when the output plane

becomes the input plane. This is not the same as inverting the transmission matrices; the

inversion would lead to a negative sign before the A and D terms in Eq. (1.3.9).

Because many wind instruments are bent for practical reasons, the question of the effect

of the curvature on the acoustic properties of waveguides has captured the attention of many

researchers. Rayleigh (1896/1945) presupposes that the velocity potential is constant on any

section perpendicular to the main axis to conclude that a curved pipe is equivalent to a straight

pipe of the same length, as measured along the centre line. Nederveen (1969/1998a, p. 60),

considering that the pressure is constant over the same cross-sections, concludes that the bent

pipe appears slightly shorter and wider, which leads to the apparent phase velocity c
√

ρ/ρB,

where ρ/ρB = (R2−R
√

R2−a2)/(1
2a2) and R is the radius of curvature of the centre line

of the pipe. As reported by Brindley (1973), neither of these two assumptions can be true.

Furthermore, such expressions do not consider boundary layer losses.
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Other attempts at estimating the effect of curvature have been reported by Keefe and Be-

nade (1983); Nederveen (1998b); Kim and Ih (1999); Kantartzis et al. (2004); Félix, Ned-

erveen, Dalmont, and Gilbert (2008). The influence of curvature is shown to be frequency

dependent and much more complex than predicted by the simplified theories. Notably, in the

case of the saxophone, the influence of the neck on the overall properties of the instrument de-

pends on the curvature. That is, the neck curvature will have different influences depending on

a given fingering. Furthermore, the boundary layer losses also play a significant role. There-

fore, any attempt at calculating the acoustic properties of a curved bore must take into account

both the curvature and the boundary layer losses. This problem can be tackled with the FEM

and a special impedance boundary condition approximating the losses, as is demonstrated in

Sec. 3.6.
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Figure 1.1: Input impedance of a cylindrical waveguide (top) and a conical waveguide (bot-
tom): measured (filled circles) and calculated (solid line).



1.3 The Air Column 23

1.3.3 Radiation at Open Ends

Acoustic waves propagating in a waveguide are partly reflected and partly transmitted when

they encounter any discontinuity. The portion of the incident wave reflected from the open

end of a wind instrument helps maintain the self-sustained oscillations. At the open end of a

pipe, the phase relation between the reflected and incident waves is non-zero. Thus, it always

behaves as if the pipe was slightly longer than its actual size. This phenomenon occurs because

the air vibrating at the open end accelerates the air surrounding this opening, which produces

mass loading and effectively causes a phase shift between the reflected and the incident waves.

The portion of the incident wave which is transmitted through the open end radiates into the

space surrounding the instrument.

Many wind instruments terminate in a flaring waveguide called the “bell”, which allows

the instrument designer to control the amount of reflected and transmitted energy as well as

the phase shift of the reflected wave in a frequency-dependent way.

In the low-frequency limit, the radiation behaviour can be taken into account by an “end-

correction”, which is the length of pipe that presents the same inertance as the radiation load-

ing. In the case of a flanged termination (pipe opening in an infinite wall), the length correction

is δ∞ = 0.8216a, whereas it is δ0 = 0.6133a for an unflanged termination (semi-infinite pipe

of zero thickness), where a is the radius of the pipe. For a semi-infinite pipe of non-zero wall

thickness, Dalmont and Nederveen (2001) give:

δ/a = δ∞ +
a
b
(δ0−δ∞)+0.057

a
b

[
1−
(a

b

)5
]
, (1.3.10)

where b is the external radius of the pipe.

The radiation impedance is frequency dependent. For an unflanged pipe it was calculated

by Levine and Schwinger (1948). The evaluation of the exact solution demands performing

a number of numerical integrals. An approximate formula for this impedance was given by
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Caussé et al. (1984):

Zr = 0.6113 jka− j(ka)3[0.036−0.034logka+0.0187(ka)2]+

(ka)2/4+(ka)4[0.0127+0.082logka−0.023(ka)2]
(1.3.11)

The analysis of a flaring waveguide, which is often called a “horn” in the literature, involves

a non-separable Laplacian operator (Noreland, 2002). The consequence is that higher-order

evanescent modes couple with the plane wave mode. Any one-dimensional plane wave solu-

tion, such as Webster’s equation (Webster, 1919; Eisner, 1967), is an approximation and has

only limited application to low-frequency and minimal flare contexts. The approach that con-

sists of calculating the input impedance of horns from the multiplication of the transmission

matrix of many truncated cones approximating the geometry is also a plane wave approxima-

tion and suffers from the same limitations as the Webster equation. Furthermore, there is no

model available for the radiation impedance, because the form of the wave front at the opening

is unknown. Nederveen and Dalmont (2008) propose a correction term to the one-dimensional

approximation to account for the additional inertance in rapidly flaring horns.

In order to take into account the complexities of the sound field of horns, as well as the

radiation behaviour from the open end, Noreland (2002) proposes a two-dimensional, finite-

difference, time-domain (FDTD) method. The impedance at the throat of the horn can be

coupled to a standard one-dimensional, transmission-line model for the non-flaring part of the

instrument. Noreland (2002) found that the discrepancies between the TMM and the FDTD

began to be noticeable at around 500 Hz. This numerical method does not include viscothermal

losses.

Another approach to the calculation of the input impedance of horns is the multimodal

decomposition method, originally presented by Pagneux, Amir, and Kergomard (1996). This

method has the advantage that no discretization of the geometry is necessary. It involves solv-

ing a system of ordinary differential equations, the size of which depends on the number of

modes that are to be taken into account. Increased precision of the results demands to change



1.3 The Air Column 25

only one parameter: the number of modes. This method can also accommodate the bound-

ary layer losses for each mode, as presented by Bruneau, Bruneau, Herzog, and Kergomard

(1987). The boundary condition at the open end needs to be specified as a multimodal radia-

tion impedance matrix. Such an impedance matrix can be calculated in the case of a flanged

opening, using the theory presented by Zorumski (1973). Unfortunately, no theories exist to

calculate the multimodal impedance radiation matrix for an unflanged opening, which depends

upon the external shape of the horn. Our solution to this problem consists in using the FEM as

will be shown in Sec. 3.7.

1.3.4 Toneholes

b

L

a

t

δ = b/a

Figure 1.2: Diagram representing a tonehole on a pipe.

The presence of toneholes perturbs the sound field inside the air column. Varying their

locations and geometric proportions provides a way to control the playing frequency and tim-

bre of the instrument. Modelling woodwind instrument toneholes accurately is critical to the

prediction of the playing characteristics of an instrument. In contrast to the bell, which influ-

ences the instrument’s behaviour primarily when all the toneholes are closed, the toneholes

are used for all the other notes and are, therefore, the most important elements of a woodwind
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instrument’s air column. The transmission matrix representing a tonehole is defined as:

Thole =

A B

C D

 , (1.3.12)

which, when inserted between two segments of cylindrical duct, relates the input and output

quantities:  pin

Z0Uin

= TcylTholeTcyl

 pout

Z0Uout

 , (1.3.13)

where Z0 = ρc/S is approximately equal to the characteristic impedance of the waveguide of

cross-sectional area S = πa2 and where the transmission matrix of a cylindrical duct of length

L was defined in Eq. (1.3.6).

Tonehole Transmission Matrices

Za/2 Za/2

Zs

Figure 1.3: Block diagram of a symmetric tonehole

The transmission matrix of a tonehole may be approximated as a symmetric T section

depending on two parameters, the shunt impedance Zs = Zs/Z0 and the series impedance Za =
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Za/Z0 (Keefe, 1981), resulting in:

Thole =

1 Za/2

0 1

 1 0

1/Zs 1

1 Za/2

0 1


=

1+ Za
2Zs

Za(1+ Za
4Zs

)

1/Zs 1+ Za
2Zs

 .
(1.3.14)

This equation was further simplified by Keefe (1981), who replaces all occurrences of Za/Zs

by zero on the assumption that |Za/Zs| � 1, an approximation that introduces small but non-

negligible errors in the calculation of the resonance frequencies.

The impedances Zs and Za must be evaluated for the open (o) and closed (c) states of

the tonehole as a function of geometry and frequency. Mathematical expressions for these

impedances are available in the literature and are reviewed below.

Open Tonehole — Shunt Impedance

The open tonehole shunt impedance may be expressed as (Keefe, 1982b)3:

Z(o)
s =

1
δ2

[
jkt(o)s +ξs

]
, (1.3.15)

where ξs is the open tonehole shunt resistance, t(o)s the tonehole’s equivalent length and δ= b/a

is the ratio of the radius of the tonehole to the radius of the air column. The shunt resistance

does not influence the calculated playing frequencies of a woodwind instrument; thus, most

research efforts concentrate on the determination of the correction of the shunt length. How-

ever, it is potentially important to take this resistance into account if aspects other than the

tuning, such as the “ease of play” or the “response” of the instrument, are to be assessed from

3Z(o)
s = Zs/Z0 = (Z0h/Z0)[ jkt(o)s + ξs], where Z0h = ρc/πb2 and Z0 = ρc/πa2, which leads to Z0h/Z0 =

(a/b)2 = 1/δ2
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TMM calculations. In the most recent literature (Dalmont et al., 2002), t(o)s is written:

kt(o)s = kti + tank(t + tm + tr) (1.3.16)

where t is the height of the tonehole as defined in Fig. 1.2, tm is the matching volume equivalent

length, tr is the radiation length correction and ti the inner length correction. Nederveen et al.

(1998) obtained an accurate approximation for tm:

tm =
bδ
8
(
1+0.207δ3) , (1.3.17)

where δ = b/a is the ratio of the radius of the tonehole to the radius of the main bore.

The terms ti and tr are generally difficult to calculate analytically; and, in the case where

t is short, the coupling between the inner and outer length corrections prevents their sepa-

rate analysis (Dalmont et al., 2002, sec. 2.7). The radiation length correction tr depends on

the external geometry. In the low-frequency approximation, it may be that of a flanged pipe

(0.8216b), an unflanged pipe (0.6133b) or another intermediary value for more complicated

situations. The expressions provided in the literature for the inner length correction ti are sum-

marized in Table 1.1. These expressions are only valid for toneholes of large height (t > b).

Note that the term δ2 in Eq. (5) of Dalmont et al. (2002), which refers to Eq. (55b) of Dubos

et al. (1999b), was removed to make this equation consistent with the convention of the series

length correction used in this thesis, the modified equation is reported here as Eq. 1.3.25.

In the limiting case where t → 0 and b→ 0 (very small radius and chimney), the low-

frequency characteristics of the tonehole are those of a hole in an infinitely thin wall (Pierce,

1989, Eq. 7-5.10) and the total equivalent length of the hole becomes:

te = t +(π/2)b = t +1.5708b. (1.3.18)
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If the tonehole is tall but the radius b→ 0, the tonehole’s equivalent length becomes:

te = t +0.6133b+0.8216b = t +1.4349b, (1.3.19)

that is, the length of the tonehole with an unflanged length correction at the tonehole’s radiating

end and a flanged radiation length correction inside the instrument.

Open Tonehole — Series Impedance

The series impedance of the open tonehole is a small negative inertance (acoustic mass):

Z(o)
a = jkt(o)a /δ2, (1.3.20)

which reduces slightly the effective length of the instrument (raises the resonance frequencies).

No significant resistive term was detected experimentally (Dalmont et al., 2002). This equa-

tion, with the division by δ2, is based on a series impedance defined as Za = jkZ0hta, where

Z0h = ρc/πb2. This definition was used by Keefe (1982b). If, instead, the series impedance

is defined as Za = jkZ0ta such as in (Dalmont et al., 2002), the term δ2 doesn’t appear. De-

pending on the convention used, the equations for the series length corrections will differ by

a factor δ2. Table 1.2 summarizes the equations found in the literature, converted to the form

used in this thesis.

Closed Tonehole — Shunt Impedance

The shunt impedance of a closed tonehole behaves mainly as an acoustic compliance (capaci-

tance in the electric-circuit analog) (Nederveen, 1969/1998a). This can be written:

Z(c)
s =− j

1

δ2kt(c)s

. (1.3.21)
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Nederveen (1969/1998a), Eq. (38.3) t(o)i = (1.3−0.9δ)b (1.3.22)
Keefe (1982b), Eq. (67a) t(o)i = (0.79−0.58δ2)b (1.3.23)
Nederveen et al. (1998), Eq. (40) t(o)i = (0.82−1.4δ2 +0.75δ2.7)b (1.3.24)
Dubos et al. (1999b), Eq. (55b) and (73) t(o)i = t(o)s − t(o)a /4, (1.3.25)

t(o)s = (0.82−0.193δ−1.09δ2 +1.27δ3−0.71δ4)b

Table 1.1: Comparison of the expressions for the open tonehole inner length correction t(o)i

Keefe (1982b), Eq. (68b) t(o)a =− 0.47bδ4

tanh(1.84t/b)+0.62δ2+0.64δ (1.3.26)

Nederveen et al. (1998), Fig. 11 t(o)a =−0.28bδ4 (1.3.27)
Dubos et al. (1999b), Eq. (74) t(o)a =− bδ4

1.78tanh(1.84t/b)+0.940+0.540δ+0.285δ2 (1.3.28)

Dubos et al. (1999b), not numbered t(o)a =−(0.37−0.087δ)bδ4 (1.3.29)

Table 1.2: Comparison of the expressions for the open tonehole series length corrections t(o)a

The simplest expression for the shunt length correction is that of a closed cylinder of equiv-

alent volume:

kt(c)s = tank(t + tm). (1.3.30)

An inner length correction may be considered as well for the closed tonehole, but its influ-

ence is small relative to the cotangent term and becomes significant only in the high frequen-

cies (Keefe, 1990). A recent expression including the inner length correction is (Nederveen et

al., 1998, Eq. 7):

Z(c)
s =

j
δ2

[
kti− cotk(t + tm)

]
, (1.3.31)

where ti is the same as for the open tonehole as defined in Eq. (1.3.24).
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Closed Tonehole — Series Impedance

The closed tonehole series impedance behaves as a small negative inertance, as in the case of

the open tonehole. This can be expressed as:

Z(c)
a = jkt(c)a /δ2, (1.3.32)

where t(c)a is the series length correction. Keefe (1981, Eq. 54) proposed:

t(c)a =− 0.47bδ4

coth(1.84t/b)+0.62δ2 +0.64δ
, (1.3.33)

whereas Dubos et al. (1999a, Eq. 74) calculated the length correction in the same situation as:

t(c)a =− bδ4

1.78coth(1.84t/b)+0.940+0.540δ+0.285δ2 . (1.3.34)

The Effect of a Hanging Pad

If a key is hanging above the hole, the length correction tr increases by (Dalmont & Nederveen,

2001, Eq. (48)):

∆tr =
b

3.5(h/b)0.8(h/b+3w/b)−0.4 +30(h/r)2.6 , (1.3.35)

where r is the radius of the key, h its distance to the hole, b the radius of the tonehole and w the

thickness of the tonehole wall. This expression was obtained from the analysis of an unflanged

pipe with a circular disk using the Finite Difference Method. This expression is thus likely to

be valid for a tonehole of taller height but needs to be verified for shorter toneholes.

Mutual Interaction between Toneholes

Modelling woodwind instruments as a transmission line composed of independent parts, such

as toneholes and segments of waveguides, implicitly assumes there are no higher-order in-

ternal interactions or external couplings between the different parts of an instrument. This
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assumption may break down when the evanescent modes occurring near a discontinuity inter-

act with another part of the instrument or if the radiated sound from one part of the instrument

interacts with another part. This is likely to occur for instruments with large toneholes such as

the saxophone and the concert flute.

This problem has been considered by Keefe (1983). At low frequencies, the evanescent

modes caused by a discontinuity diminish rapidly in amplitude away from the discontinuity.

It is generally assumed that their amplitude is not negligible within a distance of one main

bore diameter on either side of the discontinuity. Thus, Keefe defined an internal interaction

parameter δ:

δ = a/(s−b), (1.3.36)

where a is the radius of the main bore, b is the radius of the tonehole and s is half the distance

between the two holes (centre to centre). Higher values of this parameter indicate a higher

likelihood of internal interaction. He also defined an external interaction parameter:

ε =
1
4

b2

2ste
, (1.3.37)

where te is the effective length of the tonehole. This parameter indicates the importance of the

change in tonehole’s length correction due to the external interaction.

Keefe (1983) measured the pressure on a planar surface in an experimental air column fea-

turing two holes at a distance typical of an alto saxophone and demonstrated that the evanes-

cent modes are still present and not negligible (around 8 to 10 dB differences in SPL at different

points on this surface). Another experiment was designed to measure the effective length of a

tonehole in the presence of a second identical hole at a different distance s. When the toneholes

are far from each other, the effective length of each hole is equal to the single tonehole value

as described previously. When the toneholes are closer to each other, the effective length is

longer than the single tonehole value. This effect becomes even more important when a key is

located above the hole. This problem will be considered using the FEM in Chapter 3 in order
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to quantify the error introduced in the TMM if this effect is neglected.

Non-linear Effects in Toneholes

Keefe (1983) studied the non-linear phenomena in short, wide diameter toneholes. He con-

cluded that the ratio 2b/t of tonehole radius to tonehole height is an important parameter in

the design of an instrument. When a tonehole is short, the acoustic flow in the tonehole may

be subject to a greater convective acceleration (the term~v ·∇~v in the Navier-Stokes equations),

a term that is dropped in the development of linear acoustic equations. Any theory based on

linear acoustics will underestimate the losses when this non-linear effect occurs. It is impor-

tant to remember that the fabrication of prototypes based on the Transmission-Matrix Theory

can lead to dysfunctional instruments because there is no consideration of these losses. These

losses increase with the sound pressure level in the instrument and may pose a limit to the dy-

namic range available to instrumentalists. Woodwind instruments are often constructed with

a radius of curvature at the junction between the bore and the hole, which reduces this con-

vective acceleration. Instrument makers empirically try to minimize these non-linear losses by

smoothing discontinuities at the bore / hole junction. The toneholes of good instruments made

of wood, such as clarinets, oboes, renaissance flutes, and other similar instruments, are known

to be undercut, that is, material was removed from under the tonehole, effectively reducing

the sharpness of the edges. On metal instruments, the corners are rounded. The presence of

non-linearity in toneholes has been investigated experimentally by Dalmont et al. (2002), who

found that non-linear losses add a real part to the series impedance:

ℜ{Za}= KaMhZc, (1.3.38)

where Ka = 0.4±0.05/δ2 and Mh = vh/c. There is also a real part to the shunt impedance:

ℜ{Zh}= KhMhZc, (1.3.39)
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where Kh = 0.5± 0.1 and depends on the radius of curvature at the junction between the

tonehole and the air column.



Chapter 2

Finite Element Simulations of Single

Woodwind Toneholes

The design of a woodwind instrument using computer models requires accurate calculations

of the resonance frequencies of an air column with open and closed toneholes. Although there

have been many theoretical, numerical, and experimental research studies on the single wood-

wind tonehole (Keefe, 1982b, 1982a; Nederveen et al., 1998; Dubos et al., 1999b; Dalmont et

al., 2002), it is known that current Transmission Matrix theories are not valid if the tonehole

height t is shorter than the radius b (see Fig. 1.2) because “in that case the radiation field and

the inner field are coupled” (Dalmont et al., 2002). It is expected that the shunt and series

length corrections of the toneholes vary with the height of the tonehole. Furthermore, the

magnitude of a potential influence of the conicity of the main bore on the tonehole parameters

is unknown and current theories of the effect of a hanging keypad may not be valid for short

toneholes.

The goals of the research presented in this chapter are to apply Finite Element Methods

(FEM) for the calculation of the Transmission Matrix parameters of woodwind instrument

toneholes and to develop new formulas that extend the validity of current tonehole theories.

The FEM allows for a three-dimensional representation of a structure with coupled internal
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and external domains; it solves the Helmholtz equation ∇2 p+ k2 p = 0, taking into account

any complexities of the geometry under study with no further assumptions. For all the sim-

ulation results in this thesis, curved third-order Lagrange elements are used. All open sim-

ulated geometries include a surrounding spherical radiation domain that uses a second-order

non-reflecting spherical-wave boundary condition on its surface, as described by Bayliss, Gun-

zburger, and Turkel (1982). Further discussion of this topic can be found in Tsynkov (1998)

and Givoli and Neta (2003). It should be noted that no boundary layer losses are accounted

for in the FEM simulations in this chapter. The inclusion of these losses greatly complicates

the development of fit formulas because the results no longer scale linearly with the physical

dimensions of the system. This is because the losses depend on the boundary layer thick-

ness. Nevertheless, the inclusion of boundary layer losses in simulations using the FEM is

discussed in Chapter 3. Our FEM simulations were computed using the “pressure acoustic”

module of the software package COMSOL (version 3.5a) with the Matlab interface. The

COMSOL/Matlab scripts for the simulations in this chapter are available from the CAML1

website, by contacting the author2 or, for pdf viewers supporting file attachment, directly in

this document (see the margin icons). Only a few PDF readers, such as Adobe Reader, support

file attachments.

The first section of this chapter presents the results of a validation of the FEM by calculat-

ing the radiation impedance of a flanged and an unflanged pipe. The second section describes

the methodology with which the Transmission Matrix parameters of an object are obtained

from FEM simulations. Next, the main section of this chapter presents the results of the char-

acterization of a single unflanged tonehole and a single tonehole on a thick pipe, including an

estimation of the required accuracy of the equivalent lengths, a description of our data-fit pro-

cedure, an investigation of the influence of the keypad and a study of the impact of the conicity

of the main bore. Finally, a summary section reiterates the various findings and contributions

1http://www.music.mcgill.ca/caml/doku.php?id=projects:fem
2antoine.lefebvre2@mail.mcgill.ca

http://www.music.mcgill.ca/caml/doku.php?id=projects:fem
mailto:antoine.lefebvre2@mail.mcgill.ca
http://www.music.mcgill.ca/caml/doku.php?id=projects:fem
mailto:antoine.lefebvre2@mail.mcgill.ca
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to the field presented in this chapter.

2.1 Validation of the FEM

In this section, we verify the validity of the acoustic FEM and of the non-reflecting boundary

condition with two simple simulation cases in 3D. We calculated, from the results of simula-

tions, the radiation impedance of a flanged cylindrical pipe and an unflanged cylindrical pipe

as a function of frequency and compared the results with theoretical expressions.

A schema of the models for both cases is depicted in Fig. 2.1, where a = 10 mm. Only

one quarter of the model was solved, taking advantage of the symmetries. On the symmetry

planes, a null normal acceleration boundary condition (BC) is imposed. In order to obtain

accurate results, the mesh along the circular edge at the opening of the pipe was refined to 64

points on the circumference. The mesh, for the unflanged pipe case, is displayed in Fig. 2.2

and, for the flanged pipe case, in Fig. 2.3. The maximal frequency simulated corresponds to

ka = 1 (approximately 5.5 kHz), which has a wavelength of about 63 mm. The number of de-

grees of freedom (DOF) in a model is recommended to be at least 1728 per wavelength cubed

(12 DOF/wavelength in each direction). At our maximal frequency, this is approximately

7×106 DOF/m3.

In the case of the unflanged pipe, our model has 41259 DOF (1825 mesh points and 8362

elements), which results in a density 45 times higher than the requirement. Many DOF are

concentrated near the open end of the pipe. The density of the DOF is much smaller near the

spherical surface but is still within the requirement.

In the case of the flanged pipe, our model has 25319 DOF (1144 mesh points and 5062

elements), which results in a density more than 200 times higher than the requirement. Once

again, many DOF are concentrated near the open end of the pipe.

The COMSOL/Matlab simulation scripts used for these simulations are unflangedpipe.m

and flangedpipe.m .


%

% COMSOL / Matlab script

% Calculation of the acoustic radiation impedance of an unflanged pipe 

% with the FEM (Helmholtz equation)

%

% Antoine Lefebvre, McGill University

%

% Copyright (c) 2010 Antoine Lefebvre

%

flclear fem



rho = 1.25;

c = 343;

a = 0.01;

L = 0.03;

N = 5;



ka = [0.01 colon(0.1,0.1,1.0)];

k = ka/a;



block = block3(2*N*a,2*N*a,2*N*a, 'pos',[0,0,-N*a]);

sphere = sphere3(N*a)*block;

pipe = cylinder3(a,L,'pos', [0,0,-L])*block;

radiation = sphere-pipe;



% Analyzed geometry

clear s

s.objs={radiation,pipe};

s.name={'rad','pipe'};

s.tags={'rad','pipe'};



fem.draw=struct('s',s);

fem.geom=geomgroup(fem,'imprint','off','paircand','none');





edge=0.001;

fem.mesh=meshinit(fem, 'hmax',0.005, 'hmaxfact',0.8, 'hcurve',0.5, ...

                       'hgrad',1.3, 'hcutoff',0.02, 'hnarrow',0.6, ...

                       'hmaxedg', [13,edge,23,edge], 'point',[], ...

                       'edge',[], 'face',[], 'subdomain',[2]);



fem.mesh=meshcopy(fem, 'source',11, 'target',5, 'mcase',0);





fem.mesh=meshinit(fem, 'hmax',0.025, 'hmaxfact',0.8, 'hcurve',0.5, ...

                       'hgrad',1.3, 'hcutoff',0.02, 'hnarrow',0.6, ...

                       'hmaxedg', [13,edge,23,edge], 'point',[], ...

                       'edge',[], 'face',[], 'subdomain',[1], ...

                       'meshstart',fem.mesh);





% Constants

fem.const = {'v0','1 [m/s]', 'a','0.01 [m]', 'S','pi*a^2', 'c','343 [m/s]', ...

             'rho','1.25 [kg/m^3]'};



clear appl

appl.mode.class = 'AcoPressure';

appl.module = 'ACO';

appl.sshape = 3;

appl.assignsuffix = '_acpr';

clear prop

prop.elemdefault='Lag3';

appl.prop=prop;

clear bnd

bnd.p0 = {0,0,1,0};

bnd.type = {'SH','RAD','RAD','NA'};

bnd.wavetype = {'PL','SPH','PL','PL'};

bnd.ind = [4,4,2,1,1,2,1,4,4,3,1,1];

clear pair

pair.type = 'cont';

pair.pair = 'open end';

bnd.pair = pair;

appl.bnd = bnd;

appl.var = {'freq','freq'};

fem.appl{1} = appl;

fem.border = 1;



% Boundary pairs

clear pair

pair{1}.type= 'identity';

pair{1}.name= 'open end';

pair{1}.src.dl = [11];

pair{1}.src.operator = 'src2dst_ip1';

pair{1}.dst.dl = [5];

pair{1}.dst.operator = 'dst2src_ip1';

bnd.pair = pair;



fem.bnd = bnd;

fem.expr = {'freq','ka*c/(2*pi*a)','a0','i*omega_acpr*v0'};

fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'blocksize','auto', ...

		       'pname','ka', 'plist',ka, 'oldcomp',{});



pin = postint(fem,'p/S','Dl',[10],'Edim',[2],'Solnum',[1:length(ka)]);

ZcUin = -postint(fem,'rho*c*nv_acpr/S','Dl',[10],'Edim',[2],'Solnum',[1:length(ka)]);



Zin = pin./ZcUin;

Zr = (Zin.*cos(k*L)-i*sin(k*L))./(-i*Zin.*sin(k*L)+cos(k*L));

flsave('unflanged_pipe_quarter.mph', fem);

save('unflanged_pipe_quarter.mat', 'Zr','a','ka');
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%
% COMSOL / Matlab Script
% Calculation of the acoustic radiation impedance of a flanged pipe 
% with the FEM (Helmholtz equation)
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%

flclear fem

rho = 1.25;
c = 343;
a = 0.01;
L = 0.03;
N = 3; % ratio of sphere radius to cylinder radius

radiation_domain = ...
  block3(2*N*a,2*N*a,N*a,'base','corner','pos',[-N*a,-N*a,0]) * sphere3(N*a);
model = (cylinder3(a,L,'pos',[0,0,-L]) + radiation_somain) * ...
  block3(2*N*a,2*N*a,2*N*a,'pos',[0,0,-N*a]);

ka = [0.01 colon(0.1,0.1,1.0)];
k = ka/a;

clear s
s.objs={model};
s.name={'CO1'};
s.tags={'model'};

fem.draw=struct('s',s);
fem.geom=geomcsg(fem);

% Constants
fem.const = {'a','0.01 [m]', 'L','0.03 [m]', 'rho','1.25 [kg/m^3]', ...
             'c','343 [m/s]', 'v0','1 [m/s]', 'Zc','rho*c', 'S','pi*a^2'};

% Initialize mesh
edge = 0.001;
fem.mesh=meshinit(fem, 'hmax',0.005, 'hmaxfact',0.8, 'hcurve',0.5,  ...
                       'hgrad',1.3, 'hcutoff',0.02, 'hnarrow',0.6, ...
                       'hmaxedg',[12,edge]);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.sshape = 3;
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop=prop;
clear bnd
bnd.p0 =  {0,0,0,1,0};
bnd.type = {'SH','cont','RAD','RAD','NA'};
bnd.wavetype = {'PL','PL','SPH','PL','PL'};
bnd.ind = [5,5,4,5,5,2,3,1,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'c';
equ.ind = [1,1];
appl.equ = equ;
appl.var = {'freq','freq'};
fem.appl{1} = appl;
fem.frame = {'ref'};
fem.border = 1;
clear units;
units.basesystem = 'SI';
fem.units = units;

fem.expr = {'a0','i*omega_acpr*v0', 'freq','ka*c/(2*pi*a)'};

clear ode
clear units;
units.basesystem = 'SI';
ode.units = units;
fem.ode=ode;

fem=multiphysics(fem);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'solcomp',{'p'},'outcomp',{'p'}, 'pname','ka', ...
                       'plist', ka, 'oldcomp',{});
pin   =  postint(fem,'p/S',            'Dl',[3],'Edim',[2],...
                     'Solnum',[1:length(ka)]);
ZcUin = -postint(fem,'rho*c*nv_acpr/S','Dl',[3],'Edim',[2],...
                     'Solnum',[1:length(ka)]);

Zin = pin./ZcUin;
Zr = (Zin.*cos(k*L)-i*sin(k*L))./(-i*Zin.*sin(k*L)+cos(k*L));
flsave('flanged_pipe_quarter.mph', fem);
save('flanged_pipe_quarter.mat', 'Zr','a','ka');


Antoine Lefebvre
Flanged Pipe Radiation Impedance
FEM Simulation Script for the Flanged Pipe Radiation Test Case



2.1 Validation of the FEM 38

The radiation impedance is obtained from the input impedance Zin = pin/ZcUin with this

equation:

Zr =
Zin cos(kL)− j sin(kL)
cos(kL)− jZin sin(kL)

. (2.1.1)

The results are compared with theory in Fig. 2.4. The unflanged pipe theoretical curve was

evaluated from a numerical integration of the Levine and Schwinger (1948) solution. The

match is very good in this case. The flanged pipe theoretical curve was calculated from an

approximate formula from Norris and Sheng (1989, Eq. (29)). The differences between our

simulations and theory grow with frequency but comparison with Norris and Sheng (1989,

Fig. 7) reveal similar discrepancies with their numerical calculations, suggesting that the ap-

proximate formula is the cause.

These results confirm the validity of the FEM used in this thesis and suggest refining the

mesh along edges where the flow displays strong acceleration. Our procedure consisted in

solving the same problem with a gradually finer mesh until the results stabilize. The same

procedure was applied for the simulation of toneholes in the next sections.
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Figure 2.1: Diagrams of the FEM models for the radiation of an unflanged pipe (top) and a
flanged pipe (bottom).
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Figure 2.2: Visualisation of the FEM mesh for the unflanged pipe test case. The pipe (top) and
the radiation domain (bottom) are separated to help visualize the details.
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Figure 2.3: Visualisation of the FEM mesh for the flanged pipe test case.
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Figure 2.4: Real part (bottom graph) and imaginary part (top graph) of the radiation impedance
of the pipes: FEM results for the unflanged pipe (squares) and for the flanged pipe (circles)
compared with theory (dashed).
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2.2 From FEM Results to Transmission Matrices

In this section, we present a method to calculate the transmission matrix Tob j of an object from

the FEM. This method is useful to characterize an object that is part of a waveguide, i.e. which

has an input and an output plane. It can be used to obtain the Transmission Matrix of any type

of discontinuity in a waveguide. One requirement is that the evanescent modes occurring near

the discontinuity must be sufficiently damped at the input and output planes of the simulated

model. In general, cylindrical segments are thus required before and after the discontinuity.

These modes decay exponentially with distance and a length of five times the radius will

ensure that they have decayed by a factor of more than 1×10−3 following calculations based

on the theory of guided waves presented in Pierce (1989, Chapter 7). The transmission matrix

obtained from the simulations is given by T = Tcyl1Tob jTcyl2 where the Transmission Matrix

of a cylindrical duct was defined in Eq. (1.3.6). The effect of the cylinders is removed by

calculation using the inverse of the cylinder’s transmission matrix:

Tob j = T−1
cyl1

TT−1
cyl2

. (2.2.1)

A transmission matrix T contains four frequency-dependent, complex-valued parameters re-

lating input quantities to output quantities, as previously defined in Eq. (1.3.1). In order to

obtain these four parameters from finite element simulation results, we need to simulate the

problem two times with different boundary conditions. By combining the results for the two

simulation cases (subscripts 1 and 2), we can write a system of linear equations to solve for

the four parameters of the transmission matrix:
pout1 Z0Uout1 0 0

0 0 pout1 Z0Uout1

pout2 Z0Uout2 0 0

0 0 pout2 Z0Uout2




T11

T12

T21

T22

=


pin1

Z0Uin1

pin2

Z0Uin2

 . (2.2.2)
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If the object under investigation is symmetric (reversing the input and output conditions leads

to exactly the same system), we can take advantage of this feature to solve only one-half of

the geometry. On the symmetry plane, we define alternatively a null normal acceleration for

the symmetric case (case 1) and a null pressure for the anti-symmetric case (case 2). From the

values of the pressure and normal velocity on the input plane of the model, we can deduce the

values on the output plane for both simulation cases:

pout1 = pin1, (2.2.3)

Z0Uout1 =−Z0Uin1, (2.2.4)

pout2 =−pin2, (2.2.5)

Z0Uout2 = Z0Uin2. (2.2.6)

2.2.1 Transmission Matrix Parameters of a Tonehole

The transmission matrix representing a tonehole is defined as the matrix Thole which, when

inserted between two segments of cylindrical duct, relates the input and output quantities as

presented in Sec. 1.3.4. The matrix T = TcylTholeTcyl is obtained with the procedure described

above. The transmission matrix for the tonehole is then retrieved by removing the effect of the

cylindrical pipes:

Thole =

A B

C D

= T−1
cyl TT−1

cyl . (2.2.7)

The tonehole transmission matrix is approximated as a symmetric T section depending on

two parameters, the shunt impedance Zs and the series impedance Za, which becomes:

Thole =

1 Za/2

0 1

 1 0

1/Zs 1

1 Za/2

0 1

=

1+ Za
2Zs

Za(1+ Za
4Zs

)

1/Zs 1+ Za
2Zs

 . (2.2.8)
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Thus, we may extract the two impedances from the finite element simulation results with:

Zs = 1/C, (2.2.9)

Za = 2(A−1)/C, (2.2.10)

and the shunt and series equivalent lengths with:

ts = ℜe
(

δ2Zs

jk

)
, (2.2.11)

ta = ℜe
(

δ2Za

jk

)
. (2.2.12)

2.2.2 Tonehole Model Validation

The results of our FEM simulations are compared with the experimental data obtained by

Dalmont et al. (2002) and Keefe (1982a). Dalmont et al. (2002) measured the shunt and series

equivalent lengths of a single flanged tonehole on a pipe of radius a = 10 mm as a function

of frequency for two different tonehole geometries: (1) δ = 0.7, t/b = 1.3 and (2) δ = 1.0,

t/b = 1.01. Both tonehole geometries were flanged at their open end. We have also compared

our simulation results with data obtained by Keefe (1982a), who measured the shunt and series

equivalent lengths of a single unflanged tonehole on a cylinder of radius a = 20 mm for two

tonehole geometries: (1) δ = 0.66, t/b = 0.48 and (2) δ = 0.32, t/b = 3.15. The geometry of a

tonehole is shown in Fig. 1.2 for an unflanged opening. In the case of the flanged tonehole, the

same parameters are used and the only difference is that the tonehole terminates in an infinite

wall.

The mesh of the FEM model for the tonehole with δ = 0.7 studied by Dalmont et al. (2002)

is shown in Fig. 2.5. It consists of 56015 DOF (2512 mesh points and 11236 elements). The

refinement of the mesh along the edge at the opening of the tonehole is such that there are

approximately 100 elements on the circumference (25 elements for one quarter). The mesh is
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Figure 2.5: Visualisation of the FEM mesh for the flanged tonehole

similar for the second tonehole. The COMSOL/Matlab simulation script for the simulation of

both toneholes is toneholeflangeddalmont.m.

The mesh of the FEM model for the tonehole with δ = 0.66 studied by Keefe (1982a) is

shown in Fig. 2.6. It consists of 176210 DOF (7382 mesh points and 36750 elements). The

refinement of the mesh along the edge at the opening of the tonehole is such that there are

approximately 100 elements on the circumference (25 elements for one quarter). The mesh is

similar for the second tonehole. The COMSOL/Matlab simulation script for the simulation of

both toneholes is toneholeunflangedkeefe.m.

The shunt equivalent length t(o)s obtained from our FEM simulations is displayed in Figs. 2.7


%
% COMSOL / Matlab script
% FEM Simulation of two toneholes with the same geometry as in 
% Dalmont et al. (2002), Experimental determination of the equivalent circuit
% of an open side hole: Linear and non linear behavior. Acustica, 88, 567-575.
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c   = 346.16; % speed of sound
a   = 0.01; % radius of the body
S   = pi*a^2;
Zc  = rho*c/S;

ka = [0.01 0.1:0.05:1.00];

k = ka/a;
f = k*c/(2*pi);

L = 0.05; % half length of the body

cases{1} = [0.007, 0.0092]; %b, t
cases{2} = [0.010, 0.0101]; %b, t

R = 0.15; % radius of the radiation sphere

for i=1:2
  b = cases{i}(1);
  t = cases{i}(2);

  mesh_edge_size = 2*pi*b/100;

  S_hole = pi*b^2;
  Zc_hole = rho*c/S_hole;
  
  filename = sprintf('case%d.mat',i);

  % Geometry
  body=cylinder3(a,2*L,'pos',[-L,0,0],'axis',[1,0,0],'rot','0');
  tonehole=cylinder3(b,a+t);
  instrument=geomdel(body+tonehole);
  exterior=sphere3(R,'pos',[0,0,a+t]);
  block=block3(2*R,2*R,R,'base','corner','pos',[-R,-R,a+t]);
  model=instrument+exterior*block;
  halfmodel=model*block3(2*R,2*R,2*a+t+R,'base','corner','pos',[-R,0,-a]);
  fourthmodel=halfmodel*block3(R,R,2*a+t+R,'base','corner','pos',[-R,0,-a]);

  % Analyzed geometry
  clear s
  s.objs={fourthmodel};
  s.name={'CO1'};
  s.tags={'halfmodel'};

  fem.draw=struct('s',s);
  fem.geom=geomcsg(fem);

  fem.const = {'rho_air','1.184 [kg/m^3]', 'cs_air','346.16 [m/s]', ...
               'Zc','rho_air*cs_air/S', 'a','0.01 [m]', 'S','pi*a^2', ...
	       'L','0.05 [m]'};

  fem.mesh=meshinit(fem, 'hauto',5, 'hmaxedg', ...
                         [11,mesh_edge_size,13,mesh_edge_size]);


  clear appl
  appl.mode.class = 'AcoPressure';
  appl.module = 'ACO';
  appl.assignsuffix = '_acpr';

  clear prop
  prop.elemdefault='Lag3';
  appl.prop = prop;

  %%%% symmetric boundary condition (normal acceleration is null)
  clear bnd_s
  bnd_s.p0 = {0,0,0,1,0};
  bnd_s.type = {'SH','RAD','NA','RAD','cont'};
  bnd_s.wavetype = {'PL','SPH','PL','PL','PL'};
  bnd_s.ind = [3,1,2,4,3,1,1,1,5,3,3];

  appl.bnd = bnd_s;

  %%%% anti-symmetric boundary condition (pressure is null)
  clear bnd_a
  bnd_a.p0 = {0,0,0,1,0,0};
  bnd_a.type = {'SH','RAD','NA','RAD','cont','SS'};
  bnd_a.wavetype = {'PL','SPH','PL','PL','PL','PL'};
  bnd_a.ind = [3,1,2,4,3,1,1,1,5,6,6];
 
  clear equ
  equ.rho = 'rho_air';
  equ.cs = 'cs_air';
  equ.ind = [1,1];
  appl.equ = equ;
  appl.var = {'freq','freq'};
  fem.appl{1} = appl;
  fem.border = 1;

  fem=multiphysics(fem);
  fem.xmesh=meshextend(fem);

  fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname','freq', ...
                         'plist',f, 'oldcomp',{},'linsolver','gmres');

  pin_s   =  postint(fem,'2*p/S',                     'Dl',[4],'Edim',[2],...
                         'Solnum',[1:length(f)]);
  ZcUin_s = -postint(fem,'2*rho_air*cs_air*nv_acpr/S','Dl',[4],'Edim',[2],...
                         'Solnum',[1:length(f)]);

  fem.appl{1}.bnd = bnd_a;
  fem=multiphysics(fem);
  fem.xmesh=meshextend(fem);
  fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname','freq',...
                         'plist',f, 'oldcomp',{},'linsolver','gmres');

  pin_a   =  postint(fem,'2*p/S',                     'Dl',[4],'Edim',[2],...
                         'Solnum',[1:length(f)]);
  ZcUin_a = -postint(fem,'2*rho_air*cs_air*nv_acpr/S','Dl',[4],'Edim',[2],...
                         'Solnum',[1:length(f)]);

  TH = CalculateTMfromSymmetricResults(k*L, pin_s, ZcUin_s, pin_a, ZcUin_a);

  Zs = Zc./TH(3,:);
  Za = 2*( TH(1,:)-1) .* Zs;

  ta = real(Za./(j*k*Zc_hole));
  ts = real(Zs./(j*k*Zc_hole));
  shunt_losses = real(Zs./Zc_hole)./((k*b).^2);

  delta=b/a;
  save(filename,'t','b','a','delta','k','Zs','Za','ts','ta','TH','Zc',...
                'Zc_hole','shunt_losses');
end
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%

% COMSOL / Matlab script

% FEM Simulation of two toneholes with the same geometry as in

% Keefe (1982). Experiments on the single woodwind tonehole. 

% J. Acoust. Soc. Am., 72, 688-699

%

% Antoine Lefebvre, McGill University

%

% Copyright (c) 2010 Antoine Lefebvre

%

flclear fem



rho = 1.25;

c = 343; % speed of sound

a = 0.02; % radius of the body

S = pi*a^2;

Zc=rho*c/S;



ka = [0.01 0.1:0.05:1.00];



k = ka/a;

f = k*c/(2*pi);



L = 0.06; % half length of the body



cases{1} = [0.0132, 0.0064]; %b, t

cases{2} = [0.0063, 0.01985]; %b, t



R = 0.12; % radius of the radiation sphere



for i=1:2

  b = cases{i}(1);

  t = cases{i}(2);



  mesh_edge_size = 2*pi*b/100;



  S_hole = pi*b^2;

  Zc_hole = rho*c/S_hole;

  

  filename = sprintf('case%d_keefe.mat',i);

  if exist(filename,'file') == 0



    % Geometry

    body=cylinder3(a,2*L,'pos',[-L,0,0],'axis',[1,0,0],'rot','0');

    tonehole=cylinder3(b,a+t);

    instrument=geomdel(body+tonehole);

    b = block3(R,R,2*R,'base','corner','pos',[-R,0,-R+a+t]);

    I = instrument*b;

    E =sphere3(R,'pos',[0,0,a+t])*b - I;



    % Analyzed geometry

    clear s

    s.objs={I,E};

    s.name={'Instrument','Exterior'};

    s.tags={'I','E'};



    fem.draw=struct('s',s);

    fem.geom=geomgroup(fem,'imprint','off','paircand','none');



    fem.const = {'rho','1.25 [kg/m^2]', 'cs','343 [m/s]', 'a','0.02 [m]',...

                 'S','pi*a^2'};



    fem.mesh=meshinit(fem, 'hauto', 5, 'hmaxedg',...

                           [11,mesh_edge_size,13,mesh_edge_size,...

			    29,mesh_edge_size,31,mesh_edge_size]);

    fem.mesh=meshdel(fem, 'point',[], 'edge',[], 'face',[], 'subdomain',[1],...

                          'mcase',0);

    fem.mesh=meshcopy(fem, 'source',15, 'target',8, 'mcase',0);

    fem.mesh=meshinit(fem, 'hauto', 5, 'hmaxedg',...

                           [11,mesh_edge_size,13,mesh_edge_size,...

			    29,mesh_edge_size,31,mesh_edge_size],...

			   'point','auto', 'edge','auto', 'face','auto',...

			   'subdomain','auto', 'meshstart', fem.mesh);



    clear appl

    appl.mode.class = 'AcoPressure';

    appl.module = 'ACO';

    appl.assignsuffix = '_acpr';



    clear prop

    prop.elemdefault='Lag3';

    appl.prop = prop;



    clear bnd_s

    bnd_s.p0 = {0,0,0,1};

    bnd_s.type = {'SH','RAD','NA','RAD'};

    bnd_s.wavetype = {'PL','SPH','PL','PL'};

    bnd_s.ind = [3,2,2,1,1,1,1,1,3,4,3,1,1,1,1,3];



    clear bnd_a

    bnd_a.p0 = {0,0,0,1,0};

    bnd_a.type = {'SH','RAD','NA','RAD','SS'};

    bnd_a.wavetype = {'PL','SPH','PL','PL','PL'};

    bnd_a.ind = [3,2,2,1,1,1,1,1,5,4,3,1,1,1,1,5];



    clear pair

    pair.type = 'cont';

    pair.pair = 'open end';

    bnd_s.pair = pair;

    bnd_a.pair = pair;



    appl.bnd = bnd_s;

    clear equ

    equ.rho = 'rho';

    equ.cs = 'cs';

    equ.ind = [1,1];

    appl.equ = equ;

    appl.var = {'freq','freq'};

    fem.appl{1} = appl;

    fem.border = 1;



    clear bnd

    bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

    bnd.dim = {'p'};



    clear pair

    pair{1}.type= 'identity';

    pair{1}.name= 'open end';

    pair{1}.src.dl = [15];

    pair{1}.src.operator = 'src2dst_ip1';

    pair{1}.dst.dl = [8];

    pair{1}.dst.operator = 'dst2src_ip1';

    bnd.pair = pair;



    fem.bnd = bnd;



    fem=multiphysics(fem);

    fem=meshcaseadd(fem,'mgauto','shape');

    fem.xmesh=meshextend(fem);



    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, ...

                           'blocksize','auto','pname','freq', 'plist',f, ...

			   'oldcomp',{},'linsolver','gmres','prefun','gmg',...

			   'mcase',[0 1]);



    pin_s   =  postint(fem,'2*p/S',             'Dl',[10],'Edim',[2],...

                           'Solnum',[1:length(f)]);

    ZcUin_s = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[10],'Edim',[2],...

                           'Solnum',[1:length(f)]);



    fem.appl{1}.bnd = bnd_a;

    fem=multiphysics(fem);

    fem.xmesh=meshextend(fem);

    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, ...

                           'blocksize','auto','pname','freq', 'plist',f, ...

			   'oldcomp',{},'linsolver','gmres','prefun','gmg', ...

			   'mcase',[0 1]);



    pin_a   =  postint(fem,'2*p/S',             'Dl',[10],'Edim',[2],...

                           'Solnum',[1:length(f)]);

    ZcUin_a = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[10],'Edim',[2],...

                           'Solnum',[1:length(f)]);



    TH = CalculateTMfromSymmetricResults(k*L, pin_s, ZcUin_s, pin_a, ZcUin_a);



    Zs = Zc./TH(3,:);

    Za = 2*( TH(1,:)-1) .* Zs;



    ta = real(Za./(j*k*Zc_hole));

    ts = real(Zs./(j*k*Zc_hole));

    shunt_losses = real(Zs./Zc_hole)./((k*b).^2);



    delta=b/a;

    save(filename,'t','b','a','delta','k','Zs','Za','ts','ta','TH',...

                  'Zc','Zc_hole','shunt_losses');



else

	filename

end

end
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and 2.8 in comparison to the experimental results found in the literature. Our FEM simulation

results are in good general agreement with the experimental results of Dalmont et al. (2002),

but a few interesting observations are worth mentioning: (1) the experimental data reveals a

larger shunt equivalent length t(o)s at low frequencies for both tonehole geometries compared to

both the theoretical formula and our simulation results, which match; (2) the equivalent length

t(o)s predicted by our FEM simulation results matches the experimental data for the larger di-

ameter tonehole in the higher frequency range, predicting a larger length correction than the

current theory.

In the case of the unflanged toneholes studied by Keefe (1982a), we found good agreement

between the theoretical values, our simulations and his experimental data for the tonehole

of tall height. For the unflanged tonehole of short height, there are discrepancies: the ex-

perimental data and our simulation results give larger shunt equivalent lengths for the higher

frequencies compared to the theory.

The shunt losses ξs in the FEM results are 0.25(kb)2 for all values of δ and t/b in the

low-frequency limit, in agreement with the theory.

Tables 2.1 and 2.2 compare the values of the series equivalent lengths t(o)a found in the

FEM with published experimental values and predictions of the theoretical equations. For

the results in Table 2.1, our FEM simulations for the smaller tonehole (δ = 0.7) agree with

the values predicted by the theoretical formulas and with the experimental values obtained

by Dalmont et al. (2002). For the larger tonehole (δ = 1.0), our simulations agree with the

experimental data provided by Dalmont et al. (2002) and with all of the theoretical formulas

except that from Keefe, Eq. (1.3.26). The agreement with the results in Table 2.2 is satisfactory.
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Tonehole

δ t/b Description t(o)a /δ2 [mm]

0.7 1.3 FEM 1.02
Dalmont et al. 0.95±0.3
Eq. (1.3.26) 0.94
Eq. (1.3.27) 0.96
Eq. (1.3.28) 1.06
Eq. (1.3.29) 1.06

1.0 1.01 FEM 2.90
Dalmont et al. 2.8±0.3
Eq. (1.3.26) 2.12
Eq. (1.3.27) 2.80
Eq. (1.3.28) 2.89
Eq. (1.3.29) 2.83

Table 2.1: Series equivalent length t(o)a in mm. Comparison between simulation, theories, and
experimental data for the toneholes studied by Dalmont et al. (2002).

Tonehole

δ t/b Description t(o)a [mm]

0.66 0.48 FEM 0.78
Keefe 0.8±0.2
Eq. (1.3.26) 0.84
Eq. (1.3.27) 0.70
Eq. (1.3.28) 0.93
Eq. (1.3.29) 0.78

0.32 3.15 FEM 0.000019
Keefe not measurable
Eq. (1.3.26) 0.000024
Eq. (1.3.27) 0.000018
Eq. (1.3.28) 0.000021
Eq. (1.3.29) 0.000021

Table 2.2: Series equivalent length t(o)a in mm. Comparison between simulation, and theories
and experimental data for the toneholes studied by Keefe (1982a).
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Figure 2.6: Visualisation of the FEM mesh for the unflanged tonehole
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Figure 2.7: Shunt length correction t(o)s as a function of ka for the two toneholes studied by
Dalmont et al. (2002): δ = 0.7 and t/b = 1.3 (top graph), δ = 1.0, t/b = 1.01 (bottom graph).
FEM results (filled circles), experimental data from Dalmont et al. (2002) (solid lines) and
theoretical results with Eq. (1.3.16) (dashed).
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Figure 2.8: Shunt equivalent length t(o)s as a function of ka for the two toneholes studied by
Keefe (1982a): δ= 0.66 and t/b= 0.48 (bottom curves), δ= 0.32 and t/b= 3.15 (top curves).
FEM results: for δ = 0.66 (filled circles) and for δ = 0.32 (filled squares). Experimental data
from Keefe (1982a) (markers with error bar) and theoretical results with Eq. (1.3.16) (dashed).
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2.3 Characterization of Woodwind Toneholes

In this section, we present the characterization of two types of woodwind instrument toneholes

using the FEM and the procedure described in the previous section. This is preceded by an

estimation of the required accuracy of the equivalent lengths and a description of the data-fit

procedure used for developing formulae. The influence of the keypad and the angle of conicity

of the main bore are also studied.

2.3.1 Estimation of the Required Accuracy of the Equivalent Lengths

We previously estimated that an accuracy of ±5 cents of the calculated frequency of the res-

onances of an instrument is sufficient (see Introduction). We investigated the minimum error

range necessary to achieve this accuracy for the shunt and series equivalent lengths of open

and closed toneholes. To estimate this error, we calculated the frequency displacement of the

resonances of various woodwind instruments for each of their fingerings with an increment

artificially added to the equivalent lengths.

In total, 18 instruments were analyzed. One half of the instruments were based on a conical

bore, the other half, on a cylindrical bore. Each instrument was equipped with 12 toneholes of

identical values of δ and t/b. The instruments we configured with 9 different combinations of

tonehole parameters. The ratio δ = b/a of the toneholes were alternately 0.5, 0.7 and 0.9 and,

for each of these values, three heights were studied: t/b = 0.2, 0.5 and 1.0. In order for the

results to be representative of real instruments, the positions of the toneholes were calculated

using the optimization algorithm that is presented in Chap. 4 for the instruments to play a

chromatic scale by opening the toneholes one by one, starting from a D3 (146.83 Hz).

We found that an increment of 0.1b to the shunt equivalent length of open side holes

resulted in a frequency shift varying between 2 to 4 cents for every fingering. This value was

smaller for tall toneholes on a cylindrical bore and larger for the conical bore (for all heights).

The value was also larger for notes of higher fundamental frequency. As a safe error tolerance,
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we selected ±0.1b. An increment of 0.1bδ4 to the series equivalent length for open side holes

causes a frequency shift smaller than 2 cents.

For closed toneholes, the error on the series equivalent length has a cumulative effect. The

maximal error always occurs when all the toneholes are closed. The value estimated here is

based on an instrument with 12 toneholes. The error would be larger for an instrument with

more toneholes. The impact on the resonance frequencies is much more important for larger

diameter toneholes. For the conical instrument, with δ = 0.9 and for all heights, we found that

an increment of 0.1bδ4 causes a frequency shift of 25 cents. It becomes 4 cents when δ = 0.5.

This error is smaller on the cylindrical instrument, for δ = 0.9, the frequency shift is 16 cents

for the same increment in the series equivalent length. We found an expression as a function

of δ for the error on the series length correction that cause a frequency shift of approximately

±5 cents: 0.015/δ3.

In the following sections, these estimated values are used to display the range of validity

of the various length corrections in the figures using gray regions.

2.3.2 Data-fit Formulae Procedure

In the following sections, equations are developed from the FEM simulation results using a

data-fit procedure. We used the “leastsq” method from the SciPy.Optimize python module

which is a wrapper around the Fortran Minpack “lmder” function which implements a modi-

fied Levenberg-Marquardt algorithm to minimize the sum of the squares of M nonlinear func-

tions in N variables. The output of the method includes an estimate of the parameters and the

variance-covariance matrix from which a standard deviation estimate of the parameters can be

calculated.

The data-fit procedure requires that an equation of a valid form is supplied to the algorithm.

Many different equation forms were tried until the results displayed a small residual for all

values of the independent variables. This required inspection of the simulation results visually
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and to “intuitively” determine the form of the equations that are likely to be valid. The result is

that a polynomial equation works for the dependance of the length corrections with δ whereas

a hyperbolic tangent works for the dependance with t/b.

2.3.3 The Single Unflanged Tonehole

In this section, we present the results of FEM simulations for the characterization of a single

unflanged tonehole, as depicted in Fig. 1.2. This is the type of tonehole found on instruments

made of thin sheet metal, such as the concert flute and the saxophone. The goal of the research

presented here is to derive TMM tonehole parameters that are valid over a wider range of

geometries than those previously available. The mesh is similar to that used for the validation

test cases presented in Sec. 2.2.2. The COMSOL/Matlab simulation script for the simulations

in this section is toneholeunflanged.m.

The single open tonehole was simulated using the FEM for a wide range of geometric

parameters (δ= b/a from 0.2 to 1.0 by step of 0.05, t/b from 0.1 to 0.3 by step of 0.05 and from

0.3 to 1.3 by step of 0.2 and ka from 0.1 to 1.0 by step of 0.05 with an additional low-frequency

point at ka = 0.01). The lowest frequency simulated was 55Hz. For all parameters, the four

terms of the transmission matrix were obtained and the shunt and series length corrections

calculated using the procedure previously described in Sec. 2.2. The accuracy of the results

from the FEM is estimated to be better than 1% on the shunt and series equivalent length,

which is an order of magnitude better than the required accuracy.

For the low-frequency value of the shunt equivalent length te, we were able to obtain a data-

fit formula that matches the complete set of results with a standard deviation on the parameters

smaller than 5×10−7. No data was obtained for toneholes with δ < 0.2 because, for such

small-diameter toneholes, we were not able to obtain valid results. In order to ensure that the

data-fit formula would be valid for all values of δ, we added the two theoretical constraints


%

% COMSOL / Matlab script

% Calculation of transmission matrix parameters of an unflanged tonehole

% with the FEM (Helmholtz equation)

%

% Antoine Lefebvre, McGill University

%

% Copyright (c) 2010 Antoine Lefebvre

%

flclear fem



% COMSOL version

clear vrsn

vrsn.name = 'COMSOL 3.5';

vrsn.ext = 'a';

vrsn.major = 0;

vrsn.build = 603;

vrsn.rcs = '$Name:  $';

vrsn.date = '$Date: 2008/12/03 17:02:19 $';

fem.version = vrsn;



rho = 1.25;

c = 343; % speed of sound

a = 0.01; % radius of the body

S = pi*a^2;

Zc=rho*c/S;



ka = [0.01 0.1:0.05:1.00];



k = ka/a;

f = k*c/(2*pi);



L = 0.05;



all_delta = 0.05:0.05:1.0;

all_t_b = [0.1:0.05:0.3 0.3:0.2:1.3 2.0];



R = 0.2;



B = 2*R; % to make sure the block are sufficiently large



for dn=4:length(all_delta)

  delta = all_delta(dn);

  b = delta * a;



  mesh_edge_size = 2*pi*b/100; %0.00015;

  

  for tn=1:length(all_t_b)

    t = all_t_b(tn)*b;



    S_hole = pi*b^2;

    Zc_hole = rho*c/S_hole;

  

    filename = sprintf('t%d_b%d.mat',tn,dn);

    if exist(filename,'file') == 0



    % Geometry

    body=cylinder3(a,2*L,'pos',[-L,0,0],'axis',[1,0,0],'rot','0');

    tonehole=cylinder3(b,a+t);

    ballend = sphere3(b,'pos',[0,0,a+t]);

    instrument=geomdel(body+tonehole+ballend);

%    b1 = block3(2*B,B,2*B,'base','corner','pos',[-B,0,-B+a+t]);

    b2 = block3(R,R,2*R,'base','corner','pos',[-R,0,-R+a+t]);

    I = instrument*b2;

    E = sphere3(R,'pos',[0,0,a+t])*b2 - I;



    % Analyzed geometry

    clear s

    s.objs={I,E};

    s.name={'Instrument','Exterior'};

    s.tags={'I','E'};



    fem.draw=struct('s',s);

    fem.geom=geomgroup(fem,'imprint','off','paircand','none');



    fem.const = {'rho','1.25 [kg/m^2]', 'cs','343 [m/s]', 'a','0.01 [m]','S','pi*a^2'};

    

    if dn == 20

       edges = [28,mesh_edge_size,30,mesh_edge_size];

    else

       edges = [29,mesh_edge_size,31,mesh_edge_size]

    end



    fem.mesh=meshinit(fem,'hauto',5,'point',[],'edge',[],'face',[],'subdomain',[2],...

        'hmaxedg',edges,'hmaxsub',[2,0.005]);%,

%	'hmaxfac',[]);



    fem.mesh=meshdel(fem, 'point',[], 'edge',[], 'face',[], 'subdomain',[1], 'mcase',0);



    fem.mesh=meshcopy(fem, 'source',15, 'target',8, 'mcase',0);

    fem.mesh=meshcopy(fem, 'source',14, 'target',7, 'mcase',0);



    fem.mesh=meshinit(fem, 'hauto',5, 'point','auto', 'edge','auto', 'face','auto', 'subdomain','auto', 'meshstart',fem.mesh);



    clear appl

    appl.mode.class = 'AcoPressure';

    appl.module = 'ACO';

    %appl.sshape = 2;

    appl.assignsuffix = '_acpr';



    clear prop

    prop.elemdefault='Lag3';

    appl.prop = prop;



    clear bnd_s

    bnd_s.p0 = {0,0,0,1};

    bnd_s.type = {'SH','RAD','NA','RAD'};

    bnd_s.wavetype = {'PL','SPH','PL','PL'};

    bnd_s.ind = [3,2,2,1,1,1,1,1,3,4,3,1,1,1,1,3];



    clear bnd_a

    bnd_a.p0 = {0,0,0,1,0};

    bnd_a.type = {'SH','RAD','NA','RAD','SS'};

    bnd_a.wavetype = {'PL','SPH','PL','PL','PL'};

    bnd_a.ind = [3,2,2,1,1,1,1,1,5,4,3,1,1,1,1,5];



    clear pair

    pair.type = 'cont';

    pair.pair = 'open end';

    bnd_s.pair = pair;

    bnd_a.par = pair;



    appl.bnd = bnd_s;

    clear equ

    equ.rho = 'rho';

    equ.cs = 'cs';

    equ.ind = [1,1];

    appl.equ = equ;

    appl.var = {'freq','freq'};

    fem.appl{1} = appl;

    fem.border = 1;



    clear bnd

    bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

    bnd.dim = {'p'};



    clear pair

    pair{1}.type= 'identity';

    pair{1}.name= 'open end';

    pair{1}.src.dl = [15];

    pair{1}.src.operator = 'src2dst_ip1';

    pair{1}.dst.dl = [8];

    pair{1}.dst.operator = 'dst2src_ip1';

    bnd.pair = pair;



    fem.bnd = bnd;



    fem=multiphysics(fem);

    fem=meshcaseadd(fem,'mgauto','shape');

    fem.xmesh=meshextend(fem);



    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'blocksize','auto', 'pname','freq', 'plist',f, 'oldcomp',{}, 'linsolver','gmres', 'prefun','gmg', 'mcase',[0 1]);



    pin_s = postint(fem,'2*p/S','Dl',[10],'Edim',[2],'Solnum',[1:length(f)]);

    ZcUin_s = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[10],'Edim',[2],'Solnum',[1:length(f)]);

%

    fem.appl{1}.bnd = bnd_a;

    fem=multiphysics(fem);

    fem.xmesh=meshextend(fem);

%

    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'blocksize','auto','pname','freq', 'plist',f, 'oldcomp',{}, 'linsolver','gmres', 'prefun','gmg', 'mcase',[0 1]);



    pin_a = postint(fem,'2*p/S','Dl',[10],'Edim',[2],'Solnum',[1:length(f)]);

    ZcUin_a = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[10],'Edim',[2],'Solnum',[1:length(f)]);



    TH = CalculateTM_fromSymmetricResults(k*L, pin_s, ZcUin_s, pin_a, ZcUin_a);



    Zs = Zc./TH(3,:);

    Za = 2*( TH(1,:)-1) .* Zs;



    ta = real(Za./(j*k*Zc_hole));

    ts = real(Zs./(j*k*Zc_hole));

    shunt_losses = real(Zs./Zc_hole)./((k*b).^2);



    delta=b/a;

    save(filename,'t','b','a','delta','k','Zs','Za','ts','ta','TH','Zc','Zc_hole','shunt_losses');



else

	filename

end

end

end
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expressed in Eqs. (1.3.18) and (1.3.19). The equation that we obtained is:

te/b = lim
k→0

t(o)s /b = t/b+[1+ f (δ)g(δ, t/b)]h(δ), (2.3.1)

with

f (δ) = 0.095−0.422δ+1.168δ2−1.808δ3 +1.398δ4−0.416δ5,

g(δ, t/b) = 1− tanh(0.778t/b),

and

h(δ) = 1.435+0.030δ−1.566δ2 +2.138δ3−1.614δ4 +0.502δ5.

The open shunt impedance as a function of frequency is then evaluated as:

Z(o)
s =

j
δ2 tankte, (2.3.2)

where te is evaluated with Eq. (2.3.1). This expression works well when ka < 0.2. Attempts

were made to develop a formula that matches the simulation data for frequencies up to ka =

1. However, none of the forms of equations that were tried with the least mean square data

fitting procedure allowed to reduce the residual sufficiently. The frequency dependance of

the equivalent length vary too significantly as a function of the geometrical parameters of the

toneholes.

In Fig. 2.9, the simulation results are shown for the two extreme cases of short (circles) and

tall (squares) toneholes as well as the data-fit formula (dotted) and the theoretical Eq. (1.3.16).

This figure shows the sum of the radiation length correction and the inner length correction.

As expected, for the toneholes of short height, this length correction is larger than for the tall

toneholes, because the unflanged tonehole ending becomes gradually “flanged” by the body

of the instrument. Even for a tonehole of greater height, the new data-fit formula does not

match exactly with the current theory, suggesting that the inner length correction found with
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Figure 2.9: Difference between the shunt length correction t(o)s and the tonehole height t di-
vided by the tonehole radius b as a function of δ for a single unflanged tonehole: FEM results
for tall (squares) and short (circle) toneholes. Data-fit formula (dotted) and the TMM results
using Eq. (1.3.16) (dashed). Validity range in gray (see Sec. 2.3.1).

our FEM simulation is different. We can obtain the inner length correction ti by subtracting

the unflanged pipe radiation length correction tr = 0.6133b and the matching volume length

correction tm, Eq. (1.3.17), from Eq. (2.3.1) with t→ ∞:

ti/b = 0.822−0.095δ−1.566δ2 +2.138δ3−1.640δ4 +0.502δ5. (2.3.3)

This formula is compared with the formulas from the literature in Fig. 2.10. The gray area

in Fig. 2.9 shows the region of validity of the current theoretical expression. It appears that

the details of this open shunt length correction are not important with respect to the required

accuracy and that the dependance over the tonehole height may be neglected. A sufficiently

accurate approximate formula to the low-frequency value of the equivalent length of the tone-

hole, including the matching volume, the inner correction and the radiation correction could
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Figure 2.10: Comparison of the expressions for the inner length correction t(o)i /b: new formula
Eq. (2.3.3) (solid curve) and equations from the literature Eq. (1.3.23) (dash-dot), Eq. (1.3.24)
(dashed) and Eq. (1.3.25) (dotted).

be:

te = t +b(1.50−0.55δ). (2.3.4)

The most important discrepancy between current tonehole theories and our simulation re-

sults concerns the frequency dependence of the shunt length correction for toneholes of short

height, which is displayed in Fig. 2.11 for three tonehole with t/b = 0.1: (1) δ = 0.2, (2)

δ = 0.5 and (3) δ = 1.0. For each of these toneholes, the shunt length correction increases

more than predicted with frequency. Eq. (2.3.2) in this chapter better predicts the frequency

dependence compared to current theory, but discrepancies remain. Similar results were ob-

tained by Keefe (1982a) (see Fig. 2.8). One consequence of this behaviour is that the higher

resonances of an instrument with a short chimney height are lower in frequency than predicted

by the current theory. This effect tends to shrink the ratio of higher resonances relative to the
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Figure 2.11: Difference between the shunt length correction t(o)s and the tonehole height t
divided by the tonehole radius b as a function of kb for three values of δ (0.2, 0.5 and 1.0, from
top curve to bottom curve) and a value of t/b = 0.1 for a single unflanged tonehole: results
of FEM simulations (filled circles), current TMM theory with Eq. (1.3.16) (dashed) and new
results with Eq. (2.3.2) (dotted). Validity range in gray (see Sec. 2.3.1).

fundamental. For conical instruments, this counteracts the natural spreading of the resonances

that occurs in truncated cones.

For the low-frequency value of the series length correction, we obtained the following

data-fit formula with a standard deviation on the parameters smaller than 6×10−5:

t(o)a /bδ4 =− f (δ, t/b)g(δ), (2.3.5)

where

f (t/b) = 1+(0.333−0.138δ)
[
1− tanh(2.666t/b)

]
,
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Figure 2.12: Series length correction t(o)a /bδ4 as a function of δ for a single unflanged tonehole.
FEM results: limit for large t/b (filled squares), limit for small t/b (filled circles). Theoretical
formulas: Eq. (1.3.26) (dash-dot), Eq. (1.3.27) (dashed) and Eq. (1.3.28) (dotted). Validity
range in gray (see Sec. 2.3.1).

and

g(δ) = 0.307−0.022δ−0.002δ2.

Fig. 2.12 displays the results of our simulations for two extreme cases: short chimney height

(circles) and tall chimney height (squares), in comparison to theoretical formulas from the

literature and an experimental data point from Keefe (1982a). In the case of tall chimney

height, Eq. (1.3.27) provides a good approximation. The dependence of the series length

correction on the tonehole height is displayed in Fig. 2.13 for a tonehole with δ = 1.0, which

reveals that neither Eq. (1.3.28) nor Eq. (1.3.26) matches our FEM results. The range of

validity represented by the gray region shows that the discrepancies are mostly affecting short-

height large-diameter toneholes.

The results of our simulations for closed toneholes confirm the validity of the low-frequency
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Figure 2.13: Series length correction t(o)a /bδ4 as a function of t/b for δ = 1.0 for a single
unflanged tonehole. FEM results (filled circles). Data fit formula Eq. (2.3.5) (dotted). Theory:
Eq. (1.3.28) (dashed), Eq. (1.3.26) (dash-dot). Validity range in gray (see Sec. 2.3.1).

limit of the shunt length correction. Fig. 2.14 shows that the low-frequency value of the

shunt length correction is very well represented by the length t + tm, that is, by the volume

of the tonehole. The cotangent term in Eq. (1.3.31) tends toward infinity when k(t + tm)→ 0;

consequently, the influence of an inner length correction is expected to be maximal when

k(t + tm)≈ π/2 and negligible when it goes toward zero. As an example, for a tonehole height

of 5 mm, the maximal influence of the inner length correction occurs above 20 kHz; whereas

for a tonehole of 50 mm chimney height, this occurs above 2 kHz. Therefore, this term has a

negligible influence even in the higher frequency range of woodwind instruments, except pos-

sibly for instruments with very tall toneholes, such as the bassoon (for which t varies between

5 to 40 mm). Nevertheless, to study this term, it is useful to define the impedance of the closed

side hole as:

Z(c)
s =− j

δ2 cotk(t + tm + t(c)i ), (2.3.6)



2.3 Characterization of Woodwind Toneholes 61

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

δ

0

5

10

15

20

25

t(c
)

s
[m

m
]

Figure 2.14: Shunt length correction t(c)s as a function of δ with t/b = 0.1 (bottom) and t/b =
2.0 (top) for a single closed tonehole. FEM results (filled circles). Theoretical value (t + tm)
where tm is calculated using Eq. (1.3.17) (dashed).

where tm is the matching volume length correction defined in Eq. (1.3.17) and t(c)i is the inner

length correction (located inside the cotangent term rather than outside, thus it is not equivalent

to the value from the literature). We can obtain the value of t(c)i from our simulation results

with:

t(c)i =
1
k

tan−1

(
1

jδ2Z(c)
s

)
− t− tm. (2.3.7)
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Figure 2.15: Inner length correction t(c)i /b for closed toneholes as a function of kb for δ =

0.2,0.5,0.8,1.0. Results of FEM simulations (filled circles) compared to theory (dashed).

Top: t/b = 0.5, bottom: t/b = 2.0. The dotted line is a visual aid.
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This value may be compared with the current theoretical values by applying the previous

equation to the calculated impedance of the closed side hole using Eq. (1.3.31). This is shown

in Fig. 2.15. Discrepancies between the simulation results and the theoretical values exist. In

the case of the short-height tonehole (top graph), the magnitude of the inner length correction

is very small, but it is noteworthy that its value is negative for the two larger-diameter toneholes

(δ values of 0.8 and 1.0). Discrepancies are also apparent for the tall tonehole (bottom graph).

In this case, the discrepancies are also more important for the larger-diameter toneholes. Fur-

ther research is required to characterize this effect fully. For instruments with normal-sized

toneholes (flutes, clarinets, saxophones), this is likely negligible, as explained previously.
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Figure 2.16: Series length correction t(c)a /bδ4 as a function of δ for a closed tonehole. FEM
results: limit for large t/b (filled squares), limit for small t/b (filled circles). Theoretical
formulas: Eq. (1.3.26) (dash-dot), Eq. (1.3.27) (dashed) and Eq. (1.3.28) (dotted). Validity
range in gray (see Sec. 2.3.1).

In the case of the series length correction of closed toneholes, we obtained a new formula
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Figure 2.17: Series length correction t(c)a /bδ4 as a function of t/b for δ = 1.0 for a closed tone-
hole. FEM results (filled circles). Data fit formula Eq. (2.3.5) (dotted). Theory: Eq. (1.3.28)
(dash-dot), Eq. (1.3.26) (dashed). Validity range in gray (see Sec. 2.3.1).

that takes into account more precisely the height and radius of the toneholes:

t(c)a

bδ4 =− f (δ, t/b)g(δ), (2.3.8)

where

f (δ, t/b) = 1− [0.923−0.363δ] [1− tanh(2.385t/b)] ,

g(δ) = 0.302−0.019δ+0.003δ2.

For every parameters, the standard deviation is smaller than 2.5×10−5.

In Fig. 2.16, we consider the low-frequency limit of the series length correction t(c)a for

short and tall tonehole heights compared to previous theories. The results for the tall tonehole

are the same as for an open hole (see Fig. 2.12). When the toneholes are short in height, the
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series length correction term diminishes in magnitude. Fig. 2.17 presents this length correction

as a function of the ratio t/b for one tonehole (δ = 1.0) compared with current theories.

2.3.4 The Single Tonehole on a Thick Pipe

b

L

a

t

Figure 2.18: Diagram representing a tonehole on a pipe.

For many woodwind instruments, the toneholes are directly drilled in the wall of a thick

pipe and no chimneys are used. This is the case for most of the simple keyless instruments

made of wood, such as flutes, recorders, shepherd’s pipes, chalumeaux, and many others.

Some of the toneholes found on clarinets are also of this type. The previously developed

model is not valid in this case because the radiation condition at the opening of the tonehole

is not the same; instead of resembling that of an unflanged pipe, it becomes “flanged” by a

cylindrical surface, that of the instrument’s body. Furthermore, the volume of the tonehole is

smaller. Such a tonehole is depicted in Fig. 2.18.

The FEM model and the mesh refinement is similar to that of the previous section. The

COMSOL/Matlab simulation script for the simulations in this section is toneholethickpipe.m.

Toneholes of this kind are often closed directly by the instrumentalist’s fingers, thus re-

ducing the internal volume of the tonehole in the closed state. If the instrument walls are thin,

the volume of the instrument may even be reduced, compared to a situation without toneholes,

which would raise the sounding pitch slightly.


%
% COMSOL / Matlab script
% Calculation of transmission matrix parameters of a tonehole on a thick pipe
% with the FEM (Helmholtz equation)
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.25;
c = 343; % speed of sound
a = 0.01; % radius of the body
S = pi*a^2;
Zc=rho*c/S;

ka = [0.01 0.1:0.05:1.00];

k = ka/a;
f = k*c/(2*pi);

%L = 0.03; % half length of the body
L = 0.05;

all_delta = 0.05:0.05:1.0;
all_t_b = [0.1:0.05:0.3 0.3:0.2:1.3 2.0];



%R = 0.06; % radius of the radiation sphere

R = 0.2;

B = 2*R; % to make sure the block are sufficiently large

for dn=4:length(all_delta)
  delta = all_delta(dn);
  b = delta * a;

  mesh_edge_size = 2*pi*b/100; %0.00015;
  
  for tn=1:length(all_t_b)
    t = all_t_b(tn)*b;

    S_hole = pi*b^2;
    Zc_hole = rho*c/S_hole;
  
    filename = sprintf('t%d_b%d.mat',tn,dn);
    if exist(filename,'file') == 0

    % Geometry
    body_in=cylinder3(a,2*L,'pos',[-L,0,0],'axis',[1,0,0],'rot','0');
    body_out=cylinder3(a+t,2*L+2*t,'pos',[-L-t,0,0],'axis',[1,0,0],'rot','0');
    tonehole=cylinder3(b,a+t);
    instrument=geomdel(body_out-body_in-tonehole);
    b2 = block3(R,R,2*R,'base','corner','pos',[-R,0,-R+a+t]);
    model = (sphere3(R,'pos',[0,0,a+t])-instrument)*b2;

    % Analyzed geometry
    clear s
    s.objs={model};
    s.name={'model'};
    s.tags={'I'};

    fem.draw=struct('s',s);
    fem.geom=geomgroup(fem,'imprint','off','paircand','none');

    fem.const = {'rho','1.25 [kg/m^2]', 'cs','343 [m/s]', 'a','0.01 [m]','S','pi*a^2'};
    
    fem.mesh=meshinit(fem,'hauto',5,...
        'hmaxedg', [17,mesh_edge_size,18,mesh_edge_size],...
	'hmaxfac',[7,0.003,8,0.003,9,0.003]);

    clear appl
    appl.mode.class = 'AcoPressure';
    appl.module = 'ACO';
    appl.assignsuffix = '_acpr';

    clear prop
    prop.elemdefault='Lag3';
    appl.prop = prop;

    clear bnd_s
    bnd_s.p0 = {0,0,0,1};
    bnd_s.type = {'SH','RAD','NA','RAD'};
    bnd_s.wavetype = {'PL','SPH','PL','PL'};
    bnd_s.ind = [3,2,2,1,1,1,4,1,1,1,3];

    clear bnd_a
    bnd_a.p0 = {0,0,0,1,0};
    bnd_a.type = {'SH','RAD','NA','RAD','SS'};
    bnd_a.wavetype = {'PL','SPH','PL','PL','PL'};
    bnd_a.ind = [3,2,2,1,1,1,4,1,1,1,5];


    appl.bnd = bnd_s;
    clear equ
    equ.rho = 'rho';
    equ.cs = 'cs';
    appl.equ = equ;
    appl.var = {'freq','freq'};
    fem.appl{1} = appl;
    fem.border = 1;

    fem=multiphysics(fem);
    fem=meshcaseadd(fem,'mgauto','shape');
    fem.xmesh=meshextend(fem);

    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'blocksize','auto', 'pname','freq', 'plist',f, 'oldcomp',{});
%
    pin_s = postint(fem,'2*p/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
    ZcUin_s = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
%
    fem.appl{1}.bnd = bnd_a;
    fem=multiphysics(fem);
    fem.xmesh=meshextend(fem);

    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'blocksize','auto','pname','freq', 'plist',f, 'oldcomp',{});
%
    pin_a = postint(fem,'2*p/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
    ZcUin_a = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
%
    TH = CalculateTM_fromSymmetricResults(k*L, pin_s, ZcUin_s, pin_a, ZcUin_a);
%
    Zs = Zc./TH(3,:);
    Za = 2*( TH(1,:)-1) .* Zs;
%
    ta = real(Za./(j*k*Zc_hole));
    ts = real(Zs./(j*k*Zc_hole));
    shunt_losses = real(Zs./Zc_hole)./((k*b).^2);
%
    delta=b/a;
    save(filename,'t','b','a','delta','k','Zs','Za','ts','ta','TH','Zc','Zc_hole','shunt_losses');

else
	filename
end
end
end




Antoine Lefebvre
Tonehole on a Thick Pipe
FEM Simulation Script for the Tonehole on a Thick Pipe
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The method to characterize the shunt and series impedance for this tonehole geometry is

the same as for the unflanged tonehole presented previously; the details are not repeated here.

For small-diameter toneholes (δ→ 0), the length correction for a short hole remains as in

the previous model (te = t +(π/2)b). For tall toneholes (t → ∞), however, the total length

correction becomes te = t + 1.643b, that is, t plus two times a flanged end correction. Using

these theoretical results combined with the FEM results, the following data-fit formula for the

shunt length correction was obtained with a standard deviation on the parameters smaller than

3×10−5:

te/b = lim
k→0

t(o)s /b = t/b+[1+ f (δ)g(δ, t/b)]h(δ), (2.3.9)

with

f (δ) =−0.044+0.269δ−1.519δ2 +2.332δ3−1.897δ4 +0.560δ5,

g(δ, t/b) = 1− tanh(0.788t/b),

and

h(δ) = 1.643−0.684δ+0.182δ2−0.394δ3 +0.295δ4−0.063δ5.

The FEM results for short and tall toneholes, as well as this data-fit formula, are displayed in

Fig. 2.19 in comparison to a theoretical curve; no theoretical results were directly applicable to

this type of hole, which explains the difference. The displayed theoretical curve corresponds

to the previous type of tonehole with an infinite flange instead of an unflanged termination.

One observation is that the dependency upon thickness is reversed: the tall toneholes have a

larger shunt length correction; whereas for the unflanged tonehole, the short toneholes have a

larger correction. The shunt impedance as a function of frequency is then obtained with:

Z(o)
s =

j
δ2 tankte, (2.3.10)

which is only valid for the lower frequencies (see Fig. 2.20).
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Figure 2.19: Difference between the shunt length correction t(o)s and the tonehole height t
divided by the tonehole radius b as a function of δ for a tonehole on a thick pipe: FEM results
for tall (squares) and short (circle) toneholes. Data fit formula (dotted). Current theory with
Eq. (1.3.16) (dashed). Validity range in gray (see Sec. 2.3.1).

For the low-frequency value of the open series length correction, we obtained, with a

standard deviation of the parameters smaller than 2.5×10−5:

t(o)a /bδ4 =− f (δ, t/b)g(δ), (2.3.11)

where

f (t/b) = 1+(0.261−0.022δ)
[
1− tanh(2.364t/b)

]
,

and

g(δ) = 0.302−0.010δ−0.006δ2.

This is similar to the expression for the unflanged toneholes, and the differences are mainly

for the short-height toneholes. This is displayed in Fig. 2.21
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Figure 2.20: Difference between the shunt length correction t(o)s and the tonehole height t
divided by the tonehole radius b as a function of kb for three values of δ (0.2, 0.5 and 1.0, from
top curve to bottom curve) and a value of t/b = 0.5 for a tonehole on a thick pipe. Results
of FEM simulations (filled circles), current theory with Eq. (1.3.16) (dashed) and new results
with Eq. (2.3.10) (dotted). Validity range in gray (see Sec. 2.3.1).

The shunt losses ξs in the FEM results are 0.25(kb)2 for all values of δ and t/b in the

low-frequency limit, in agreement with the theory.

For closed side holes, contrary to the unflanged toneholes previously shown, there are two

matching volume length corrections: one that must be added as usual, but another that has

to be removed from the top of the hole. The total equivalent length of the closed side holes

becomes:

te = t +
bδ
8
(
1+0.207δ3)− b2

8(a+ t)

(
1+0.207(

b
a+ t

)3
)
. (2.3.12)

This equivalent length is further reduced by the finger of the instrumentalist, because these

toneholes generally do not use a keypad. We may suppose that the finger is a sphere of a

certain radius R, and that it occupies the volume of the spherical cap of radius b and height
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Figure 2.21: Series length correction t(o)a /bδ4 as a function of δ for an open tonehole on a
thick pipe. FEM results: limit for large t/b (filled squares), limit for small t/b (filled circles).
Theoretical formulas: Eq. (1.3.26) (dash-dot), Eq. (1.3.27) (dashed) and Eq. (1.3.28) (dotted).
Validity range in gray (see Sec. 2.3.1).

h = R−
√

R2−b2, that is, Vcap = (1/6)πh(3b2 + h2). The associated equivalent length is

t f = Vcap/Sh = (1/6)πh(3+ (h/b)2). This presence of the finger significantly reduces the

volume of the closed side hole as δ increases. For purposes of the FEM simulations, the

closed tonehole did not take into account the presence of a finger; it is closed by a circular

surface corresponding to the outside of the instrument.

From the simulation results, we found that the shunt length correction is well approximated

by the volume of the tonehole, as can be seen in Fig. 2.22.

The low-frequency limit of the series length correction for the closed side hole (without

fingers) was found to be, with a standard deviation smaller than 3.5×10−5:

t(c)a /bδ4 =− f (δ, t/b)g(δ), (2.3.13)
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where

f (t/b) = 1− (0.956−0.104δ)
[
1− tanh(2.390t/b)

]
,

and

g(δ) = 0.299−0.018δ+0.006δ2.

This is displayed in Fig. 2.23.
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Figure 2.22: Shunt length correction t(c)s as a function of δ for a closed tonehole on a thick
pipe. FEM results: t/b = 2 (top curve), t/b = 0.1 (bottom curve). Theoretical Eq. (2.3.12)
(dashed).
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Figure 2.23: Series length correction t(c)a /bδ4 as a function of δ for a closed tonehole on a
thick pipe. FEM results: limit for large t/b (filled squares), limit for small t/b (filled circles).
Theoretical formulas: Eq. (1.3.26) (dash-dot), Eq. (1.3.27) (dashed) and Eq. (1.3.28) (dotted).
Validity range in gray (see Sec. 2.3.1).
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2.3.5 Influence of the Keypad

Geometry length corrections tp/b

t/b h/a FEM Eq. (1.3.35) Error [%]

0.1 0.1 1.408 1.187 18.6
0.3 0.505 0.455 11.0
0.5 0.260 0.234 11.1

0.25 0.1 1.313 1.187 10.6
0.3 0.482 0.455 5.9
0.5 0.249 0.234 6.4

0.5 0.1 1.283 1.187 8.1
0.3 0.469 0.455 3.1
0.5 0.242 0.234 3.4

1.0 0.1 1.268 1.187 6.8
0.3 0.460 0.455 1.1
0.5 0.236 0.234 0.9

2.0 0.1 1.261 1.187 6.2
0.3 0.455 0.455 0.0
0.5 0.232 0.234 0.9

Table 2.3: Shunt length correction increment due to the presence of a hanging keypad

The presence of a hanging keypad above a tonehole adds a significant length correction to

the radiation impedance of the tonehole. The most recent characterization of this effect was

developed by Dalmont and Nederveen (2001), reported here in Eq. (1.3.35). This equation

requires verification. The geometry simulated by Dalmont and Nederveen (2001) was a long

open-ended unflanged pipe and not a tonehole on the side of a cylindrical pipe. It is likely

that their results are valid for tall toneholes, where the inner acoustic field is uncoupled to the

radiation condition. In the case of toneholes of shorter height, this equation may not be valid.

Using the FEM, we calculated the shunt length correction for a tonehole with a hanging keypad

(with a radius of 1.4b). We solved the model for a value of δ = 0.7 and different values of the

chimney height t/b = 0.1, 0.25, 0.5, 1.0 and 2.0. For each of these tonehole geometries, we
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used three keypad heights h/b = 0.1, 0.3 and 0.5. The radius a of the main bore was 10 mm,

the thickness of the tonehole wall was 0.67 mm and the thickness of the keypad 2.5 mm. The

COMSOL/Matlab simulation script is toneholeunflangedthickwithpad.m.

The length correction of the tonehole without keypad was subtracted from the length

correction with keypad to obtain the value tp/b, which was compared to the prediction of

Eq. (1.3.35). From the data presented in Table 2.3, we can conclude that the equation obtained

by Dalmont and Nederveen (2001) is valid for toneholes with taller chimney heights, but that

the length correction is larger than predicted when the tonehole is shorter.

2.3.6 Impact of Conicity

Zau Zad

Zs

Figure 2.24: Block diagram of an unsymmetric tonehole

Previous studies of woodwind instrument toneholes have only considered holes in cylin-

drical waveguides. Although the influence of an air column taper on the transmission matrix

parameters of the tonehole is likely small, because the taper angle of woodwind instruments is

generally small, the magnitude of this potential effect is unknown.

A tonehole on a conical bore is no longer symmetric. In this situation, we propose to

modify the model represented by Eq. (1.3.14) with:

Thole =

1 Zau

0 1

 1 0

1/Zs 1

1 Zad

0 1

=

1+Zau/Zs Zau +Zad +ZauZad/Zs

1/Zs 1+Zad/Zs

 , (2.3.14)


%
% COMSOL / Matlab script
% Calculation of the transmission-matrix parameters of a tonehole with keypad
% with the FEM (Helmholtz equation)
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.25;
c = 343; % speed of sound
a = 0.01; % radius of the body
S = pi*a^2;
Zc=rho*c/S;

ka = [0.01];

k = ka/a;
f = k*c/(2*pi);

L = 0.06; % half length of the body

%all_delta = 0.05:0.05:1.0;
all_t_b = [0.1 0.25 0.5 1.0 2.0];

all_h_a = [0.1 0.3 0.5];


R = 0.15; % radius of the radiation sphere

B = 2*R; % to make sure the block are sufficiently large

delta = 0.7;
b = delta * a;

mesh_edge_size = 2*pi*b/200;
  
for tn=1:length(all_t_b)
  t = all_t_b(tn)*b;

  for hn=1:length(all_h_a)
    h = all_h_a(hn)*b;

    S_hole = pi*b^2;
    Zc_hole = rho*c/S_hole;
  
%    filename = sprintf('t%d_b%d.mat',tn,dn);
%    if exist(filename,'file') == 0

    % Geometry
    body_in=cylinder3(a,2*L,'pos',[-L,0,0],'axis',[1,0,0],'rot','0');
    tonehole_in=cylinder3(b,a+t);
    instrument_in=geomdel(body_in+tonehole_in);

    w=0.00067;
    body_out=cylinder3(a+w,2*L+w,'pos',[-L-w,0,0],'axis',[1,0,0],'rot','0');
    tonehole_out=cylinder3(b+w,a+t);
    instrument_out=geomdel(body_out+tonehole_out);

    keypad = cylinder3(1.4*b,0.0025,'axis',[0,0,1],'pos',[0,0,a+t+h]);
    
    b2 = block3(R,R,2*R,'base','corner','pos',[-R,0,-R+a+t]);
    model=(sphere3(R,'pos',[0,0,a+t])-instrument_out+instrument_in-keypad)*b2;

    % Analyzed geometry
    clear s
    s.objs={model};
    s.name={'Model'};
    s.tags={'I'};

    fem.draw=struct('s',s);
    fem.geom=geomgroup(fem,'imprint','off','paircand','none');

    fem.const = {'rho','1.25 [kg/m^2]', 'cs','343 [m/s]', 'a','0.01 [m]','S','pi*a^2'};

    fem.mesh=meshinit(fem, 'hauto',5,'hmaxedg',[24,mesh_edge_size,28,mesh_edge_size]);

    clear appl
    appl.mode.class = 'AcoPressure';
    appl.module = 'ACO';
    %appl.sshape = 2;
    appl.assignsuffix = '_acpr';

    clear prop
    prop.elemdefault='Lag3';
    appl.prop = prop;

    clear bnd_s
    bnd_s.p0 = {0,0,0,1,1,0,0};
    bnd_s.type = {'SH','RAD','NA','RAD','SH','cont','SS'};
    bnd_s.wavetype = {'PL','SPH','PL','PL','PL','PL','PL'};
    bnd_s.ind = [3,2,2,1,1,1,4,3,1,5,1,1,1,1,1,1,6,3,3];

        clear bnd_a
    bnd_a.p0 = {0,0,0,1,1,0,0};
    bnd_a.type = {'SH','RAD','NA','RAD','SH','cont','SS'};
    bnd_a.wavetype = {'PL','SPH','PL','PL','PL','PL','PL'};
    bnd_a.ind = [3,2,2,1,1,1,4,3,1,5,1,1,1,1,1,1,6,7,7];

    appl.bnd = bnd_s;
    clear equ
    equ.rho = 'rho';
    equ.cs = 'cs';
    equ.ind = [1,1];
    appl.equ = equ;
    appl.var = {'freq','freq'};
    fem.appl{1} = appl;
    fem.border = 1;

    clear bnd
    bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];
    bnd.dim = {'p'};

    fem.bnd = bnd;

    fem=multiphysics(fem);
    fem=meshcaseadd(fem,'mgauto','shape');
    fem.xmesh=meshextend(fem);

    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname','freq', 'plist',f, 'oldcomp',{}, 'linsolver','gmres', 'prefun','gmg', 'mcase',[0 1]);
%
    pin_s = postint(fem,'2*p/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
    ZcUin_s = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
%
    fem.appl{1}.bnd = bnd_a;
    fem=multiphysics(fem);
    fem.xmesh=meshextend(fem);
%
    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'},'pname','freq', 'plist',f, 'oldcomp',{}, 'linsolver','gmres', 'prefun','gmg', 'mcase',[0 1]);
%
    pin_a = postint(fem,'2*p/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
    ZcUin_a = -postint(fem,'2*rho*cs*nv_acpr/S','Dl',[7],'Edim',[2],'Solnum',[1:length(f)]);
%
    TH = CalculateTM_fromSymmetricResults(k*L, pin_s, ZcUin_s, pin_a, ZcUin_a);
%
    Zs = Zc./TH(3,:);
    Za = 2*( TH(1,:)-1) .* Zs;
%
    ta = real(Za./(j*k*Zc_hole));
    ts = real(Zs./(j*k*Zc_hole));
    shunt_losses = real(Zs./Zc_hole)./((k*b).^2);
%
    delta=b/a;
    fprintf('The length correction for t/b=%.1f and h/a=%.1f is %.3f mm\n',t/b,h/b,1000*ts);

end
end


Antoine Lefebvre
Influence of the Keypad
FEM Simulation Script for the estimation of the Influence of the Keypad
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where Zau is the series impedance for the upstream half of the tonehole and Zad for the down-

stream half.

In a manner similar to that for toneholes on cylindrical bores, we obtained the Transmission

Matrix of the tonehole on a conical bore using Finite Element simulations. The transmission

matrix Thole of the tonehole was obtained from the transmission matrix T of the simulated sys-

tem by multiplying this matrix by the inverse of the Transmission Matrix of the two segments

of truncated cones, Tconeu and Tconed :

Thole = T−1
coneu

TT−1
coned

, (2.3.15)

where the Transmission Matrix of a conical waveguide is defined by Eq. (1.3.8)

We were interested in determining whether or not the shunt impedance Zs is different from

that derived for a cylindrical bore and to determine the effect of the asymmetry on the values

of Zau and Zad . The tonehole parameters were obtained for two conical waveguides with taper

angles of 3 and 6 degrees. The COMSOL/Matlab simulation script for the simulation of the

tonehole on a conical bore is toneholeunflangedconical.m. This script is for an angle of 3

degrees and must be edited to simulate the 6 degree case.

As for toneholes on a cylindrical bore, we developed a data-fit formula for the shunt equiv-

alent length of the open tonehole from the simulation data (with the same set of parameters).

Then we calculated the differences between the two fit formulas and determined that the maxi-

mal difference is 4×10−5 b in both cases. This is a very small difference and we are confident

in concluding that the shunt length corrections are unchanged relative to their values on a

cylindrical bore.

A conclusion for the series length correction is more difficult to obtain. As can be seen

in Fig. 2.25, the upstream and downstream values of the series length correction are very

close to one another. Since the impact of the series length correction is relatively small and

becomes increasingly less important as the toneholes grow smaller, this difference is likely to


%

% COMSOL / Matlab script

% Calculation of the transmission-matrix parameters of a tonehole on a 

% conical bore with the FEM (Helmholtz equation)

%

% Antoine Lefebvre, McGill University

%

% Copyright (c) 2010 Antoine Lefebvre

%

flclear fem



% COMSOL version

clear vrsn

vrsn.name = 'COMSOL 3.5';

vrsn.ext = 'a';

vrsn.major = 0;

vrsn.build = 603;

vrsn.rcs = '$Name:  $';

vrsn.date = '$Date: 2008/12/03 17:02:19 $';

fem.version = vrsn;



rho = 1.25;

c = 343; % speed of sound

a = 0.01; % radius of the body

S = pi*a^2;

Zc=rho*c/S;



ka = [0.01 0.1:0.05:1.00];



k = ka/a;

f = k*c/(2*pi);



L = 0.06; % half length of the body



all_delta = 0.05:0.05:1.0;

all_t_b = [0.1:0.05:0.3 0.3:0.2:1.3 2.0];





alpha = 1.5*pi/180;

Ltan_a = L*tan(alpha);

a0 = a - Ltan_a;

a1 = a + Ltan_a;

S0 = pi*a0^2;

S1 = pi*a1^2;





R = 0.15; % radius of the radiation sphere



B = 2*R; % to make sure the block are sufficiently large



for dn=4:length(all_delta)

  delta = all_delta(dn);

  b = delta * a;



  mesh_edge_size = 2*pi*b/300; %0.00015;

  

  for tn=1:length(all_t_b)

    t = all_t_b(tn)*b;



    S_hole = pi*b^2;

    Zc_hole = rho*c/S_hole;

  

    filename = sprintf('t%d_b%d.mat',tn,dn);

    if exist(filename,'file') == 0



    % Geometry

    body=cone3(a0,2*L,-alpha,'pos',[-L,0,0],'axis',[1,0,0],'rot','0');

    tonehole=cylinder3(b,a+t,'pos',[a*sin(alpha),0,a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

    instrument=geomdel(body+tonehole);

    b2 = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R+a+t]);

    I = instrument*b2;

    E = sphere3(R,'pos',[0,0,a+t])*b2 - I;



    % Analyzed geometry

    clear s

    s.objs={I,E};

    s.name={'Instrument','Exterior'};

    s.tags={'I','E'};



    fem.draw=struct('s',s);

    fem.geom=geomgroup(fem,'imprint','off','paircand','none');



    fem.const = {'rho','1.25 [kg/m^2]', 'cs','343 [m/s]', 'a','0.01 [m]','S','pi*a^2',  'v0', '1[m/s]'};





   if dn == 20

        edges = [34,mesh_edge_size,38,mesh_edge_size]

    else

        edges = [34,mesh_edge_size,38,mesh_edge_size]

    end

    

    fem.mesh=meshinit(fem,'hauto',5,'point',[],'edge',[],'face',[],'subdomain',[2],'hmaxedg',edges,'hmaxsub',[2,0.005]);



    fem.mesh=meshcopy(fem, 'source',18, 'target',8, 'mcase',0);



    fem.mesh=meshinit(fem,'hauto',5,'point','auto', 'edge','auto', 'face','auto', 'subdomain','auto', 'meshstart',fem.mesh);





    clear appl

    appl.mode.class = 'AcoPressure';

    appl.module = 'ACO';

    appl.sshape = 3;

    appl.assignsuffix = '_acpr';



    clear prop

    prop.elemdefault='Lag3';

    appl.prop = prop;



    clear bnd_1

    bnd_1.nacc = {'iomega_acpr*v0',0,0,0,0};

    bnd_1.type = {'NA','SH','RAD','NA','RAD'};

    bnd_1.wavetype = {'PL','PL','SPH','PL','PL'};

    bnd_1.ind = [4,3,3,2,2,2,2,2,2,3,3,2,1,4,2,2,2,2,2,5];



    clear bnd_2

    bnd_2.nacc = {'iomega_acpr*v0',0,0,0,0};

    bnd_2.type = {'NA','SH','RAD','NA','RAD'};

    bnd_2.wavetype = {'PL','PL','SPH','PL','PL'};

    bnd_2.ind = [4,3,3,2,2,2,2,2,2,3,3,2,5,4,2,2,2,2,2,1];



    clear pair

    pair.type = 'cont';

    pair.pair = 'open end';

    bnd_1.pair = pair;

    bnd_2.par = pair;



    appl.bnd = bnd_1;

    clear equ

    equ.rho = 'rho';

    equ.cs = 'cs';

    equ.ind = [1,1];

    appl.equ = equ;

    appl.var = {'freq','freq'};

    fem.appl{1} = appl;

    fem.border = 1;



    clear bnd

    bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

    bnd.dim = {'p'};



    clear pair

    pair{1}.type= 'identity';

    pair{1}.name= 'open end';

    pair{1}.src.dl = [18];

    pair{1}.src.operator = 'src2dst_ip1';

    pair{1}.dst.dl = [8];

    pair{1}.dst.operator = 'dst2src_ip1';

    bnd.pair = pair;



    fem.bnd = bnd;



    fem=multiphysics(fem);

    fem=meshcaseadd(fem,'mgauto','shape');

    fem.xmesh=meshextend(fem);



    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'blocksize','auto', 'pname','freq', 'plist',f, 'oldcomp',{}, 'linsolver','gmres', 'prefun','gmg', 'mcase',[0 1]);



    pin1 = 2*postint(fem,'p','Dl',[13],'Edim',[2],'Solnum',[1:length(f)])/S0;

    ZcUin1 = -2*postint(fem,'nv_acpr','Dl',[13],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S0;

    pout1 = 2*postint(fem,'p','Dl',[20],'Edim',[2],'Solnum',[1:numel(f)])/S1;

    ZcUout1 = 2*postint(fem,'nv_acpr','Dl',[20],'Edim',[2],'Solnum',[1:numel(f)])*rho*c/S1;

%

    fem.appl{1}.bnd = bnd_2;

    fem=multiphysics(fem);

    fem.xmesh=meshextend(fem);

%

    fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'blocksize','auto','pname','freq', 'plist',f, 'oldcomp',{}, 'linsolver','gmres', 'prefun','gmg', 'mcase',[0 1]);

%

    pin2 = 2*postint(fem,'p','Dl',[13],'Edim',[2],'Solnum',[1:length(f)])/S0;

    ZcUin2 = -2*postint(fem,'nv_acpr','Dl',[13],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S0;

    pout2 = 2*postint(fem,'p','Dl',[20],'Edim',[2],'Solnum',[1:numel(f)])/S1;

    ZcUout2 = 2*postint(fem,'nv_acpr','Dl',[20],'Edim',[2],'Solnum',[1:numel(f)])*rho*c/S1;

%

    for i=1:numel(f)

        A = [ pout1(i) ZcUout1(i)  0         0;...

              0        0           pout1(i)  ZcUout1(i);... 

              pout2(i) ZcUout2(i)  0         0;...

              0        0           pout2(i)  ZcUout2(i)];

        B = [ pin1(i); ZcUin1(i);  pin2(i);  ZcUin2(i);];

        TH(:,i) = A\B;

    end



    delta=b/a;



    filename = 'test.mat'

    save(filename,'t','b','a','delta','k','TH','Zc');



else

	filename

end

end

end







Antoine Lefebvre
Tonehole on a Conical Bore
FEM Simulation Script for the Tonehole on a Conical Bore
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Figure 2.25: Series length correction t(o)a in mm for a tonehole on a conical bore with taper
angle of 3 degrees: limit for tall (squares) and short (circles) toneholes – upstream part (filled),
downstream part (unfilled).

be negligible.

From this analysis, we conclude that the use of Transmission-Matrix parameters developed

for toneholes on cylindrical bores are valid for conical bores, at least up to an angle of 6 degrees

and probably for wider angles as well.

2.4 Summary

In this chapter, we have developed a methodology to obtain the transmission-matrix parame-

ters of an object from simulations using the FEM. Using this method, the transmission-matrix

parameters of any type of waveguide geometry may be obtained. This method was validated

against published experimental measurements of toneholes. Good general agreement is found,
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but the low-frequency value of the shunt equivalent length t(o)s is slightly larger in the experi-

mental measurement of Dalmont et al. (2002).

The methodology was applied to the case of open and closed toneholes for a wide range of

geometrical parameters. Two types of toneholes were studied: (1) unflanged toneholes such

as those found on saxophones and concert flutes, and (2) toneholes on a thick pipe such as

those found on the clarinet, oboe, recorder and many other instruments. From these results,

data-fit formulas were developed for the low-frequency values of the shunt and series length

correction of the toneholes in the open and closed states.

These new formulas extend the validity of current tonehole models to toneholes of shorter

height and improve their general accuracy. Noteworthy for toneholes of short height, the shunt

equivalent length found with the FEM increases with frequency more than is predicted by

current theories. The new formulas better match this behaviour. Moreover, the dependence

of these series length corrections on the tonehole height t is found to be much different from

that suggested in the literature. This is particularly important for closed toneholes, because the

effect of the series length correction cumulates along the instrument.

The shunt equivalent length of closed side holes found with the FEM is shown to be in

good agreement with current theories, even though the inner length correction, which becomes

significant only for higher frequencies, does not match the values proposed in the literature.

This is negligible for the frequencies of interest in musical instrument design.

In Sec. 2.3.6, we found that the shunt equivalent length for a tonehole on a conical waveg-

uide (up to a 6◦ taper angle) is the same as for a tonehole on a cylindrical waveguide, with

a difference smaller than 4×10−5b. The upstream and downstream series length corrections

differ slightly, but the impact on the acoustics of woodwind instruments is probably negligible.

We concluded that tonehole parameters developed on a cylindrical bore can be used equally

for conical instruments.

In Sec. 2.3.5, the effect of a hanging keypad was studied and compared to the predictions

of Eq. 1.3.35, which match our FEM results for tall toneholes and values of h/a > 0.3. For
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toneholes of shorter height (t/b < 0.5) and when the keypad is closer to the tonehole (h/a <

0.3), the length correction due to the presence of a pad is larger by more than 10% of that

predicted.



Chapter 3

Finite Element Simulations of Woodwind

Instrument Air Columns

In this chapter, we use the FEM to calculate the input impedance of complete woodwind-

like instrument geometries of increasing complexities and compare these with results obtained

using the TMM. Contrary to the TMM, the input impedance calculated with the FEM accounts

for any potential internal or external interaction of the evanescent modes excited near each

discontinuity. Therefore, a comparison of the resonance frequencies of multi-tonehole systems

calculated with both methods will allow us to determine the amount of error to be expected

from TMM calculations, which do not account for such interactions. This verification is useful

to know if the TMM is sufficiently accurate to be used for the design of woodwind instruments

using an optimization method. The FEM provides a valuable computational approach for

woodwind instrument modelling, both for the verification of the accuracy of the TMM and for

handling complex geometries. The main disadvantage of the FEM compared to the TMM is

its long calculation time (hours instead of seconds as discussed in the Introduction).

The simulation of woodwind-like instrument geometries requires accounting for boundary

layer losses to obtain accurate results. The phase velocity of the travelling waves in the air

column is reduced and their magnitude attenuated. This shifts the resonance frequencies and
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attenuates their magnitudes by non-negligible amounts. Most of this effect occurs on the inner

wall of the instrument rather than on the tonehole wall. However, in this chapter, the boundary

layer losses are added to the tonehole models as a means of verifying to what extent these

losses may influence the resonance frequencies of the instrument. As in Chapter 2, the in-

struments are surrounded by a spherical domain with a non-reflecting, second-order boundary

condition.

Thermoviscous boundary layer losses may be approximated with a special boundary con-

dition, such as that presented by Pierce (1989, p. 528), Bossart, Joly, and Bruneau (2003) or

Chaigne and Kergomard (2008, p. 211, Eq. 5.138). The expression that we implemented as

our boundary condition is:

Ywall =−
vn

p
=

1
ρc

√
jk
[
sin2 θ

√
lv +(γ−1)

√
lt
]
. (3.0.1)

The meanings of the mathematical symbols are:

vn normal velocity on the boundary,

k = 2π f/c wavenumber,

θ angle of incidence of the wave,

µ fluid viscosity,

ρ fluid density,

γ ratio of specific heats,

c speed of sound in free space,

Pr Prandtl number,

lv = µ/ρc vortical characteristic length,

lt = lv/Pr thermal characteristic length.
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The angle of incidence may be calculated from cosθ = n̂ · v̂/||v̂||, where the normal vector

n̂ is unit length and v̂ is the particle velocity vector. The COMSOL/Matlab scripts for the

simulations in this chapter are available from the CAML1 website, directly by contacting the

author2 or, for pdf viewers supporting file attachment, directly in this document (see the margin

icons). The properties of air at 25◦C are used for all the simulation cases.

From the simulation results, the input impedance is evaluated by dividing the complex

values of the pressure and normal velocity found on the input plane. Because the solution is

computed as a plane wave near the input end (which is defined as at least 3 to 5 times the diam-

eter of the pipe away from the first tonehole), these values are constant on the surface. In order

to average any numerical errors, we perform an average on the surface: pin = (1/Sin)
∫

Sin
pdS

and vin = (1/Sin)
∫

Sin
vdS. The normalized input impedance is then Zin = pin/ρcvin.

The resonance frequencies of the simulated objects are estimated by a linear interpolation

of the zeros of the angle of the reflection coefficient R = (Z−1)/(Z+1). The simulations are

performed from 100Hz to 1500Hz in steps of 10Hz.

Two different tonehole models are compared to the FEM results, including that of Dalmont

et al. (2002) and the updated model presented in Chapter 2. The transmission matrix of the

tonehole is defined by Eq. (1.3.14). For the model of Dalmont et al. (2002), the parameters

are:

Z(o)
s = ( j/δ2)(kti + tank(t + tm + tr)) , (3.0.2)

Z(o)
a = ( j/δ2)kta, (3.0.3)

Z(c)
s =−( j/δ2)cotk(t + tm), (3.0.4)

Z(c)
a = ( j/δ2)kta, (3.0.5)

where ti/b = 0.82− 1.4δ2 + 0.75δ2.7, ta/b = −0.28δ4, tm/b = δ(1 + 0.207δ3)/8 and tr is

1http://www.music.mcgill.ca/caml/doku.php?id=projects:fem
2antoine.lefebvre2@mail.mcgill.ca

http://www.music.mcgill.ca/caml/doku.php?id=projects:fem
mailto:antoine.lefebvre2@mail.mcgill.ca
http://www.music.mcgill.ca/caml/doku.php?id=projects:fem
mailto:antoine.lefebvre2@mail.mcgill.ca
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calculated with Eq. (1.3.11). The boundary layer losses on the tonehole walls may be included

by replacing k with kc = ω/c+(1− j)α, where α = (1/b)
√

kν/(2ρc)(1+(γ−1)/ν) and ν is

the square root of the Prandtl number.

For the updated tonehole model, Eqs. (2.3.2), (2.3.5) and (2.3.8) are used with a modifica-

tion to the open shunt impedance to include boundary layer losses, thus:

Z(o)
s = ( j/δ2) tan{ktr + kc(ti + t + tm)}. (3.0.6)

In the formulation by Dalmont et al. (2002), the inner length correction does not include

boundary layer losses. We found a better match with the simulation results if the inner length

correction, but not the radiation length correction, includes boundary layer losses. The open

end of our instrument-like systems is modelled with a semi-infinite unflanged pipe radiation

impedance given by Eq. (1.3.11).

3.1 Validation

The FEM approach was validated for geometries where the TMM is known to be accurate (for

1D wave propagation). These configurations included a cylindrical and a conical waveguide

with varying boundary conditions at their ends. We were particularly interested in verifying

the accuracy of the boundary layer impedance model and non-reflecting radiation boundary

condition.

A 3D FEM simulation of a closed cylindrical pipe of diameter 15mm and length 300mm

was first computed. To minimize computation time, system symmetries were exploited. The

cylinder was split in two along its primary axis and a null normal acceleration boundary con-

dition was imposed on the plane of symmetry. A rigid boundary (v̂n = 0) was created at the

pipe end, while the boundary condition along the side walls was that given by Eq. (3.0.1). The

COMSOL/Matlab simulation script is cylinder_closed.m.


%
% COMSOL / Matlab script
% FEM Simulation of a closed cylinder with boundary layer losses
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

d = 0.015;
L = 0.3;

S = pi*(d/2)^2;

body = cylinder3(d/2,L,'pos',[-L/2,0,0],'axis',[1,0,0])
block = block3(L,L,L,'base','corner','pos',[-L/2,0,-L/2]);
instrument = body*block;

clear s
s.objs={instrument};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]'};

fem.mesh=meshinit(fem,'hauto',5); 

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.sshape = 3;
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,0,1,0};
bnd.type = {'SH','NA','RAD','IMP'};
bnd.Z = {'1.25*343','1.25*343','1.25*343','1/Y'};
bnd.ind = [3,2,4,4,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd
bnd.expr = {
  'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,0)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))'};
fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = 2*postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cylinder_closed.mph', fem);
save('cylinder_closed.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');
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Figure 3.1: Normalized input impedance of a closed cylinder of diameter 15mm and length
300mm: FEM results (filled circles) and theoretical solution (solid line).

The results of the FEM simulation (filled circles) are shown in Fig. 3.1 compared to the

TMM calculations (solid line). The mesh consists of 2003 cubic elements, giving a total of

12354 degrees of freedom. The first resonance frequencies obtained using the FEM and TMM

were 571.74Hz and 571.69Hz, respectively, a negligible difference smaller than 0.2 cent. The

ratio of the resonance magnitude was about 0.1 dB. Results for the second resonance were

even closer, indicating that the boundary condition for wall losses provides accurate results.

The second validation simulation involved replacing the rigid boundary at the pipe output

with the impedance boundary condition of Eq. (1.3.11), which is the same expression used

for the TMM calculations. The COMSOL/Matlab simulation script is cylinder_zrad.m.

Discrepancies were again below 0.2 cent.

Next, we simulated the same cylindrical pipe but with the open end radiating into a spher-

ical radiation domain of 50cm radius and a non-reflecting boundary condition on its outer

surface (cylinder_unflanged.m). The exterior of the pipe was considered rigid (boundary


%

% COMSOL / Matlab script

% FEM Simulation of a cylinder with radiation impedance and boundary layer 

% losses

%

% Antoine Lefebvre, McGill University

%

% Copyright (c) 2010 Antoine Lefebvre

%

flclear fem



% COMSOL version

clear vrsn

vrsn.name = 'COMSOL 3.5';

vrsn.ext = 'a';

vrsn.major = 0;

vrsn.build = 603;

vrsn.rcs = '$Name:  $';

vrsn.date = '$Date: 2008/12/03 17:02:19 $';

fem.version = vrsn;



rho = 1.184;

c = 346.16;

mu = 1.8375e-5;

gamma = 1.40175;

Pr = 0.7078;



f = 100:10:1500;



d = 0.015;

L = 0.3;



S = pi*(d/2)^2;



body = cylinder3(d/2,L,'pos',[-L/2,0,0],'axis',[1,0,0])



clear s

s.objs={body};

s.name={'Instrument'};

s.tags={'I'};



fem.draw=struct('s',s);

fem.geom=geomgroup(fem,'imprint','off','paircand','none');



fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]','a','0.0075 [m]'};



fem.mesh=meshinit(fem, ...

                  'hauto',5, ...

                  'hmaxfac',[1,0.003,6,0.003], ...

                  'hmaxsub',[1,0.005]);



% Application mode 1

clear appl

appl.mode.class = 'AcoPressure';

appl.module = 'ACO';

appl.sshape = 3;

appl.assignsuffix = '_acpr';

clear prop

prop.elemdefault='Lag3';

appl.prop = prop;

clear bnd

bnd.p0 = {0,1,0};

bnd.type = {'IMP','RAD','IMP'};

bnd.Z = {'Zrad','1.25*343','1/Y'};

bnd.ind = [2,3,3,3,3,1];

appl.bnd = bnd;

clear equ

equ.rho = 'rho';

equ.cs = 'cs';

appl.equ = equ;

fem.appl{1} = appl;

fem.border = 1;



clear equ

equ.expr = {

  'vxx','-pxx/(iomega_acpr*rho_acpr)', ...

  'vyy','-pyy/(iomega_acpr*rho_acpr)', ...

  'vzz','-pzz/(iomega_acpr*rho_acpr)'};

fem.equ = equ;



% Boundary settings

clear bnd



bnd.expr = {

  'divvt', '(t1x+t2x)*vxx+(t1y+t2y)*vyy+(t1z+t2z)*vzz',...

  'lvor2','2*mu/(rho*cs*k0_acpr)', ...

  'lent2','lvor2/Pr', ...

  'Yent','0.5*k0_acpr*(1+i)*(gamma-1)*sqrt(lent2)/(rho*cs)',...

  'Yvor','0.5*(-1+i)*sqrt(lvor2)*divvt/p',...

  'Y', '(Yvor+Yent)',...

  'ka','k0_acpr*a',...

  'Zrad','rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};



fem.bnd = bnd;



% Multiphysics

fem=multiphysics(fem);



fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);

pin = 2*postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;

ZcUin = -2*postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;

Zin = pin./ZcUin;

flsave('cylinder_zrad.mph', fem);

save('cylinder_zrad.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');
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%
% COMSOL / Matlab script
% FEM Simulation of a cylinder with boundary layer losses radiating into a 
% sphere
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%

flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

d = 0.015;
L = 0.3;

S = pi*(d/2)^2;

mesh_edge_size = pi*d/300

R = 0.5;

block = block3(2*R,R,2*R,'base','corner','pos',[-R+L/2,0,-R]);

body = cylinder3(d/2,L,'pos',[-L/2,0,0],'axis',[1,0,0])

ballend = sphere3(d/2,'pos',[L/2,0,0]);

I = geomdel(body+ballend)*block

E = sphere3(R,'pos',[L/2,0,0])*block - I;

clear s
s.objs={I,E};
s.name={'Instrument','Exterior'};
s.tags={'I','E'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]'};

% Initialize mesh
fem.mesh=meshinit(fem, 'hauto',5, ...
                  'hmaxedg',[26,mesh_edge_size,28,mesh_edge_size], ...
                  'hmaxsub',[2,0.005], ...
                  'point',[], ...
                  'edge',[], ...
                  'face',[], ...
                  'subdomain',[2]);
		  
% Copy boundary mesh
fem.mesh=meshcopy(fem, ...
                  'source',16, ...
                  'target',9, ...
                  'mcase',0);

% Copy boundary mesh
fem.mesh=meshcopy(fem, ...
                  'source',15, ...
                  'target',8, ...
                  'mcase',0);
		  
% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'point','auto', ...
                  'edge','auto', ...
                  'face','auto', ...
                  'subdomain','auto', ...
                  'meshstart',fem.mesh);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,0,0,1,0};
bnd.type = {'SH','NA','RAD','RAD','IMP'};
bnd.Z = {'1.25*343','1.25*343','1.25*343','1.25*343','1/Y'};
bnd.wavetype = {'PL','PL','SPH','PL','PL'};
bnd.ind = [2,3,3,1,1,1,3,1,1,3,4,2,5,5,1,1];
clear pair
pair.type = 'cont';
pair.pair = {{'open end 1';'open end 2'}};
bnd.pair = pair;
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd

bnd.expr = {
  'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,1.)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))'};

fem.bnd = bnd;


% Boundary pairs
clear pair

pair{1}.type= 'identity';
pair{1}.name= 'open end 1';
pair{1}.src.dl = [15];
pair{1}.src.operator = 'src2dst_ip1';
pair{1}.dst.dl = [8];
pair{1}.dst.operator = 'dst2src_ip1';
pair{2}.type= 'identity';
pair{2}.name= 'open end 2';
pair{2}.src.dl = [16];
pair{2}.src.operator = 'src2dst_ip2';
pair{2}.dst.dl = [9];
pair{2}.dst.operator = 'dst2src_ip2';
bnd.pair = pair;
bnd.pair = pair;
fem.bnd = bnd;


% Multiphysics
fem=multiphysics(fem);


fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f, 'linsolver','gmres','prefun','gmg');
pin = 2*postint(fem,'p','Dl',[11],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[11],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cylinder_unflanged.mph', fem);
save('cylinder_unflanged.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');
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layer losses were neglected outside the pipe). We found that the refinement of the mesh along

the edge at the opening of the pipe significantly influences the radiation length correction of the

pipe. We simulated the same open pipe with an increasing number of elements on this edge

and found that the circumference must be approximated with about 100 elements to attain

numerical convergence. Once again, discrepancies were below 0.2 cent.

The same procedure was performed for a conical pipe of length 300mm, with an in-

put diameter of 15.0mm and an output diameter of 30.7mm (the half angle is 1.5 degrees):

cone_closed.m, cone_zrad.m and cone_unflanged.m. The discrepancies between the res-

onance frequencies computed using the FEM and TMM were below 0.5 cent for the closed

cone and the cone terminated by the radiation impedance. This error is sufficiently small to be

neglected. For the cone radiating into a sphere, the first resonance was approximately 1 cent

lower in the FEM simulation, indicating that the error introduced by using the radiation model

of an unflanged pipe at the end of a conical waveguide in the TMM only causes a negligible

difference.

From these validation tests, we conclude that the boundary condition for the thermovis-

cous losses and the non-reflecting spherical wave boundary condition can be used successfully

for the simulation of woodwind instruments and that the maximum error in the calculated

resonance frequencies up to 1500 Hz using the TMM is on the order of 1 cent.

3.2 Waveguides with a Single Tonehole

The input impedance of a cylindrical and a conical waveguide with a single tonehole was

calculated with the FEM and TMM. These geometries allow us to verify the accuracy of the

tonehole models while avoiding possible interactions between adjacent holes. In the FEM, the

boundary condition approximating the boundary layer losses is defined on all interior surfaces,

including the tonehole walls. Boundary layer losses are not normally accounted for along

tonehole walls using the TMM. Thus, discrepancies between the FEM and TMM results in this


%
% COMSOL / Matlab script
% FEM Simulation of a closed cone with boundary layer losses
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

alpha = 1.5*pi/180;

d = 0.015;
L = 0.3;

S = pi*(d/2)^2;

eps=0.01;
body = cone3(d/2,L+eps,-alpha, 'pos',[-L/2,0,0],'axis',[1,0,0]);
sph = sphere3(L+d/(2*tan(alpha)), 'pos',[-L/2-d/(2*tan(alpha)),0,0]);
block = block3(1.,1.,1.,'base','corner','pos',[-L/2,0,-0.5]);
I = body*sph*block;

clear s
s.objs={I};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]'};

fem.mesh=meshinit(fem,'hauto',5,'hmaxfac',[1,0.003]);
%,5,0.003,6,0.003], ...
%                  'hmaxsub',[1,0.005]);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.sshape = 3;
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,1,0,0};
bnd.type = {'SH','RAD','IMP','NA'};
bnd.Z = {'1.25*343','1.25*343','1/Y','1.25*343'};
bnd.ind = [2,4,3,3,1,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd
bnd.expr = {
  'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,0)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))'};
fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = 2*postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cone_closed.mph', fem);
save('cone_closed.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');
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%
% COMSOL / Matlab script
% FEM Simulation of a cone with radiation impedance and boundary layer losses
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

alpha = 1.5*pi/180;

d = 0.015;
L = 0.3;

ae = d/2 + L*tan(alpha)

S = pi*(d/2)^2;

eps=0.01;
body = cone3(d/2,L+eps,-alpha, 'pos',[-L/2,0,0],'axis',[1,0,0])
sph = sphere3(L+d/(2*tan(alpha)), 'pos',[-L/2-d/(2*tan(alpha)),0,0]);
block = block3(1.,1.,1.,'base','corner','pos',[-L/2,0,0]);

I = body*sph*block;

clear s
s.objs={I};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'ae', ae, 'v0', '1[m/s]'};

fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'hmaxfac',[1,0.003,5,0.003], ...
                  'hmaxsub',[1,0.005]);


% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.sshape = 3;
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,1,0,0};
bnd.type = {'IMP','RAD','NA','IMP'};
bnd.Z = {'Zrad','1.25*343','1.25*343','1/Y'};
bnd.ind = [2,3,3,4,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

clear equ
equ.expr = {
  'vxx','-pxx/(iomega_acpr*rho_acpr)', ...
  'vyy','-pyy/(iomega_acpr*rho_acpr)', ...
  'vzz','-pzz/(iomega_acpr*rho_acpr)'};
fem.equ = equ;

% Boundary settings
clear bnd


bnd.expr = {
  'divvt', '(t1x+t2x)*vxx+(t1y+t2y)*vyy+(t1z+t2z)*vzz',...
  'lvor2','2*mu/(rho*cs*k0_acpr)', ...
  'lent2','lvor2/Pr', ...
  'Yent','0.5*k0_acpr*(1+i)*(gamma-1)*sqrt(lent2)/(rho*cs)',...
  'Yvor','0.5*(-1+i)*sqrt(lvor2)*divvt/p',...
  'Y', '(Yvor+Yent)',...
  'ka','k0_acpr*ae',...
  'Zrad', 'rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cone_zrad.mph', fem);
save('cone_zrad.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');




Antoine Lefebvre
FEM Simulation of a Cone with Radiation Impedance


%
% COMSOL / Matlab script
% FEM Simulation of a cone with boundary layer losses, radiating into a sphere
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

alpha = 1.5*pi/180

d = 0.015;
L = 0.3;

S = pi*(d/2)^2

R = 0.5;

block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);

body = cone3(d/2,L,-alpha,'pos',[-L/2,0,0],'axis',[1,0,0]);

ae = d/2 + L*tan(alpha);
ballend = sphere3(ae,'pos',[L/2,0,0])*block3(ae,2*ae,2*ae,'base','corner','pos',[L/2,-ae,-ae]);

I = geomdel(body+ballend)*block

E = sphere3(R,'pos',[0,0,0])*block - I;

clear s
s.objs={I,E};
s.name={'Instrument','Exterior'};
s.tags={'I','E'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]'};


% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'hmaxedg',[26,0.001,28,0.001], ...
                  'hmaxfac',[11,0.003,15,0.001,16,0.001], ...
                  'hgradsub',[2,1.25], ...
                  'hmaxsub',[2,0.005], ...
                  'point',[], ...
                  'edge',[], ...
                  'face',[], ...
                  'subdomain',[2]);

% Copy boundary mesh
fem.mesh=meshcopy(fem, ...
                  'source',15, ...
                  'target',9, ...
                  'mcase',0);

% Copy boundary mesh
fem.mesh=meshcopy(fem, ...
                  'source',16, ...
                  'target',10, ...
                  'mcase',0);

% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'hmaxedg',[26,0.001,28,0.001], ...
                  'hmaxfac',[11,0.003,15,0.001,16,0.001], ...
                  'hmaxsub',[2,0.005], ...
                  'point','auto', ...
                  'edge','auto', ...
                  'face','auto', ...
                  'subdomain','auto', ...
                  'meshstart',fem.mesh);


% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,1,0,0,0,1,1,0,0};
bnd.type = {'SH','NA','RAD','SH','RAD','SH','RAD','IMP','NA'};
bnd.Z = {'1.25*343','1.25*343','1/Y','1/Y','1.25*343','1.25*343','1.25*343', ...
  '1/Y','1/Y'};
bnd.wavetype = {'PL','PL','SPH','PL','SPH','PL','PL','PL','PL'};
bnd.ind = [2,3,3,4,4,1,5,5,1,6,7,9,8,8,1,1];
clear pair
pair.type = 'cont';
pair.pair = {{'open end 1';'open end 2'}};
bnd.pair = pair;
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

clear equ
equ.expr = {
  'vxx','-pxx/(iomega_acpr*rho_acpr)', ...
  'vyy','-pyy/(iomega_acpr*rho_acpr)', ...
  'vzz','-pzz/(iomega_acpr*rho_acpr)'};
fem.equ = equ;

% Boundary settings
clear bnd


bnd.expr = {
  'divvt', '(t1x+t2x)*vxx+(t1y+t2y)*vyy+(t1z+t2z)*vzz',...
  'lvor2','2*mu/(rho*cs*k0_acpr)', ...
  'lent2','lvor2/Pr', ...
  'Yent','0.5*k0_acpr*(1+i)*(gamma-1)*sqrt(lent2)/(rho*cs)',...
  'Yvor','0.5*(-1+i)*sqrt(lvor2)*divvt/p',...
  'Y', '(Yvor+Yent)'};

fem.bnd = bnd;

% Boundary pairs
clear pair
pair{1}.type= 'identity';
pair{1}.name= 'open end 1';
pair{1}.src.dl = [15];
pair{1}.src.operator = 'src2dst_ip1';
pair{1}.dst.dl = [9];
pair{1}.dst.operator = 'dst2src_ip1';
pair{2}.type= 'identity';
pair{2}.name= 'open end 2';
pair{2}.src.dl = [16];
pair{2}.src.operator = 'src2dst_ip2';
pair{2}.dst.dl = [10];
pair{2}.dst.operator = 'dst2src_ip2';
bnd.pair = pair;

fem.bnd = bnd;


% Multiphysics
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = 2*postint(fem,'p','Dl',[11],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[11],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cone_unflanged.mph', fem);
save('cone_unflanged.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');



Antoine Lefebvre
FEM Simulation of a Cone Radiating in a sphere



3.2 Waveguides with a Single Tonehole 84

section are primarily attributable to these losses and, for the conical waveguide, the influence

of a main bore taper.

The cylindrical and conical pipes described in the validation section were modified to

include a tonehole of height t = 2mm and δ = b/a = 0.7. For the cylindrical pipe, the

tonehole is located at 87.7mm from the open end, while it is located at 141.4mm from the

open end of the conical waveguide. The COMSOL/Matlab scripts for the cylindrical pipe are

cylinder_zrad_onehole_open.m and cylinder_zrad_onehole_closed.m; for the coni-

cal pipe case, they are cone_zrad_onehole_open.m and cone_zrad_onehole_closed.m.

The first and second resonance frequencies for the single open or closed tonehole on a

cylinder and a cone are listed in Table. 3.1. The FEM simulations are in good agreement with

TMM calculations in every cases, the discrepancies being much smaller than 5 cents. The

revised TMM model proposed in this thesis and the inclusion of boundary layer losses in the

tonehole model slightly improves the results in all cases.


%
% COMSOL / Matlab script
% FEM Simulation of a cylinder with one open tonehole
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;
f = [380. 385. 1130. 1136.];

d = 0.015;
L = 0.3;

S = pi*(d/2)^2;

body = cylinder3(d/2,L,'pos',[-L/2,0,0],'axis',[1,0,0]);

delta = 0.7;
t = 0.001;
p = 0.0877;
tonehole = cylinder3(delta*d/2, t+d/2, 'pos', [L/2-p,0,0],'axis',[0,0,1]);

b = delta*d/2

mesh_edge_size = 2*pi*b/250

R = 0.4
block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);

I = geomdel(body+tonehole) * block;

E = sphere3(R,'pos',[0,0,0])*block - I;

clear s
s.objs={I,E};
s.name={'Instrument','Exterior'};
s.tags={'I','E'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]','a','0.0075 [m]'};



% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'hmaxedg',[35,mesh_edge_size,39,mesh_edge_size], ...
                  'hmaxfac',[13,0.005,18,0.005,20,0.005], ...
                  'hmaxsub',[2,0.005], ...
                  'point',[], ...
                  'edge',[], ...
                  'face',[], ...
                  'subdomain',[2]);

% Copy boundary mesh
fem.mesh=meshcopy(fem, ...
                  'source',18, ...
                  'target',10, ...
                  'mcase',0);

% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'point','auto', ...
                  'edge','auto', ...
                  'face','auto', ...
                  'subdomain','auto', ...
                  'meshstart',fem.mesh);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,0,0,1,0,0};
bnd.type = {'SH','NA','RAD','RAD','IMP','IMP'};
bnd.Z = {'1.25*343','1.25*343','1.25*343','1.25*343','1/Y','Zrad'};
bnd.wavetype = {'PL','PL','SPH','PL','PL','PL'};
bnd.ind = [2,3,3,1,1,1,3,3,1,1,1,1,4,2,5,5,5,1,5,6];
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
clear pair
pair.type = 'cont';
pair.pair = {{'th1'}};
bnd.pair = pair;
appl.bnd = bnd;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd
bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];
bnd.dim = {'p'};

% Boundary settings
clear bnd

bnd.expr = {
  'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,0)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))',...
  'ka','k0_acpr*a',...
  'Zrad','rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};

% Boundary pairs
clear pair
pair{1}.type= 'identity';
pair{1}.name= 'th1';
pair{1}.src.dl = [18];
pair{1}.src.operator = 'src2dst_ip1';
pair{1}.dst.dl = [10];
pair{1}.dst.operator = 'dst2src_ip1';
bnd.pair = pair;

fem.bnd = bnd;


% Multiphysics
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = 2*postint(fem,'p','Dl',[13],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[13],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cylinder_zrad_onehole_open.mph', fem);
save('cylinder_zrad_onehole_open.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');


Antoine Lefebvre
FEM Simulation of a Cylinder with one open tonehole


%
% COMSOL / Matlab script
% FEM Simulation of a cylinder with one closed tonehole
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

d = 0.015;
L = 0.3;

S = pi*(d/2)^2;

body = cylinder3(d/2,L,'pos',[-L/2,0,0],'axis',[1,0,0]);

delta = 0.7;
t = 0.001;
p = 0.0877;
tonehole = cylinder3(delta*d/2, t+d/2, 'pos', [L/2-p,0,0],'axis',[0,0,1]);

block = block3(L,L,L,'base','corner','pos',[-L/2,0,-L/2]);

instrument=geomdel(body+tonehole)*block;
clear s
s.objs={instrument};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]','a','0.0075 [m]'};

mesh_edge_size = pi*delta*d/300.;

fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'hmaxedg',[8,mesh_edge_size,12,mesh_edge_size], ...
                  'hmaxfac',[1,0.002,6,0.002,8,0.002], ...
                  'hmaxsub',[1,0.005]);




% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.sshape = 3;
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,1,0,0};
bnd.type = {'IMP','RAD','NA','IMP'};
bnd.Z = {'Zrad','1.25*343','1.25*343','1/Y'};
bnd.ind = [2,3,4,4,4,4,4,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

clear equ
equ.expr = {
  'vxx','-pxx/(iomega_acpr*rho_acpr)', ...
  'vyy','-pyy/(iomega_acpr*rho_acpr)', ...
  'vzz','-pzz/(iomega_acpr*rho_acpr)'};
fem.equ = equ;

% Boundary settings
clear bnd

bnd.expr = {
  'divvt', '(t1x+t2x)*vxx+(t1y+t2y)*vyy+(t1z+t2z)*vzz',...
  'lvor2','2*mu/(rho*cs*k0_acpr)', ...
  'lent2','lvor2/Pr', ...
  'Yent','0.5*k0_acpr*(1+i)*(gamma-1)*sqrt(lent2)/(rho*cs)',...
  'Yvor','0.5*(-1+i)*sqrt(lvor2)*divvt/p',...
  'Y', '(Yvor+Yent)',...
  'ka','k0_acpr*a',...
  'Zrad','rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = 2*postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cylinder_zrad_onehole_closed.mph', fem);
save('cylinder_zrad_onehole_closed.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');




Antoine Lefebvre
FEM Simulation of a Cylinder with one closed tonehole


%
% COMSOL / Matlab script
% FEM Simulation of a cone with one open tonehole
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

alpha = 1.5*pi/180;

d = 0.015;
L = 0.3;

ae = d/2 + L*tan(alpha)

S = pi*(d/2)^2;

eps=0.01;
body = cone3(d/2,L+eps,-alpha, 'pos',[-L/2,0,0],'axis',[1,0,0])
sph = sphere3(L+d/(2*tan(alpha)), 'pos',[-L/2-d/(2*tan(alpha)),0,0]);
block = block3(1.,1.,1.,'base','corner','pos',[-0.5,0,-0.5]);


delta = 0.7;
t = 0.001;
p = 0.1414
ahole = ae - p*tan(alpha);
b = delta*ahole;
tonehole = cylinder3(b, t+ahole, 'pos', [L/2-p+ahole*sin(alpha),0,ahole*(1-cos(alpha))],'axis',[-sin(alpha),0,cos(alpha)]);

instrument = geomdel(body*sph+tonehole)*block;

R = 0.4;

E = sphere3(R,'pos',[0,0,0])*block - instrument;

clear s
s.objs={instrument, E};
s.name={'Instrument', 'Exterior'};
s.tags={'I','E'};
fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'ae', ae, 'v0', '1[m/s]'};

ms = 2*pi*b/200.;
fem.mesh=meshinit(fem,'hauto',5,'hmaxsub',[2,0.005],'hmaxedg',[36,ms,40,ms],'point',[],'edge',[],'face',[],'subdomain',[2]);

% Copy boundary mesh
fem.mesh=meshcopy(fem, ...
                  'source',19, ...
                  'target',10, ...
                  'mcase',0);

% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'point','auto', ...
                  'edge','auto', ...
                  'face','auto', ...
                  'subdomain','auto', ...
                  'meshstart',fem.mesh);

% mesh copy here...

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,1,0,0,0,0,0,1,0,0};
bnd.type = {'IMP','NA','RAD','RAD','SH','RAD','SH','RAD','NA','IMP'};
bnd.Z = {'Zrad','1.25*343','1.25*343','1/Y','1/Y','Zrad','Zrad','Zrad', ...
  'Zrad','1/Y'};
bnd.wavetype = {'PL','PL','SPH','SPH','PL','SPH','PL','PL','PL','PL'};
bnd.ind = [2,3,4,5,5,5,4,6,7,7,7,7,7,8,9,10,10,10,7,10,1,1];
clear pair
pair.type = 'cont';
pair.pair = 'th';
bnd.pair = pair;
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd

bnd.expr = {
  'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,0)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))',...
  'ka','k0_acpr*ae',...
  'Zrad', 'rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};

  % Boundary pairs
clear pair
pair{1}.type= 'identity';
pair{1}.name= 'th';
pair{1}.src.dl = [19];
pair{1}.src.operator = 'src2dst_ip1';
pair{1}.dst.dl = [10];
pair{1}.dst.operator = 'dst2src_ip1';
bnd.pair = pair;

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = 2*postint(fem,'p','Dl',[14],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[14],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cone_zrad_onehole_open.mph', fem);
save('cone_zrad_onehole_open.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');




Antoine Lefebvre
FEM Simulation of a Cone with one open tonehole


%
% COMSOL / Matlab script
% FEM Simulation of a cone with one closed tonehole
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%

flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

alpha = 1.5*pi/180;

d = 0.015;
L = 0.3;

ae = d/2 + L*tan(alpha)

S = pi*(d/2)^2;

eps=0.01;
body = cone3(d/2,L+eps,-alpha, 'pos',[-L/2,0,0],'axis',[1,0,0])
sph = sphere3(L+d/(2*tan(alpha)), 'pos',[-L/2-d/(2*tan(alpha)),0,0]);
block = block3(1.,1.,1.,'base','corner','pos',[-L/2,0,-0.5]);


delta = 0.7;
t = 0.001;
p = 0.1414
ahole = ae - p*tan(alpha);
tonehole = cylinder3(delta*ahole, t+ahole, 'pos', [L/2-p+ahole*sin(alpha),0,ahole*(1-cos(alpha))],'axis',[-sin(alpha),0,cos(alpha)]);

instrument = geomdel(body*sph+tonehole)*block;

clear s
s.objs={instrument};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'ae', ae, 'v0', '1[m/s]'};


fem.mesh=meshinit(fem,'hauto',5);
%, ...
%                  'hmaxedg',[10,0.001,13,0.001], ...
%                  'hmaxfac',[1,0.002,6,0.002,8,0.002], ...
%                  'hmaxsub',[1,0.005]);


% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.sshape = 3;
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,1,0,0};
bnd.type = {'IMP','RAD','NA','IMP'};
bnd.Z = {'Zrad','1.25*343','1.25*343','1/Y'};
bnd.ind = [2,3,4,4,4,4,4,1,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd

bnd.expr = {
  'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,0)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))',...
  'ka','k0_acpr*ae',...
  'Zrad', 'rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);
fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin = 2*postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cone_zrad_onehole_closed.mph', fem);
save('cone_zrad_onehole_closed.mat', 'f', 'Zin', 'd', 'S', 'rho', 'c');
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Method f1 [Hz] (cents) f2 [Hz] (cents)

Cylinder with one hole closed

FEM 280.68 842.84
Dalmont w/o losses 280.80 (0.7) 842.90 (0.1)
Dalmont with losses 280.80 (0.7) 842.86 (0.1)
Lefebvre w/o losses 280.72 (0.3) 842.90 (0.1)
Lefebvre with losses 280.71 (0.1) 842.86 (0.1)

Cylinder with one hole open

FEM 378.80 1123.83
Dalmont w/o losses 379.07 (1.2) 1125.18 (2.1)
Dalmont with losses 378.97 (0.8) 1124.93 (1.7)
Lefebvre w/o losses 379.01 (1.0) 1124.32 (0.7)
Lefebvre with losses 378.82 (0.1) 1123.85 (0.0)

Cone with one hole closed

FEM 362.32 872.46
Dalmont w/o losses 362.63 (1.5) 872.84 (0.8)
Dalmont with losses 362.62 (1.4) 872.83 (0.7)
Lefebvre w/o losses 362.42 (0.5) 872.49 (0.1)
Lefebvre with losses 362.41 (0.4) 872.47 (0.0)

Cone with one hole open

FEM 572.85 1019.35
Dalmont w/o losses 573.98 (3.4) 1020.70 (2.3)
Dalmont with losses 573.86 (3.1) 1020.55 (2.0)
Lefebvre w/o losses 573.57 (2.2) 1019.46 (0.2)
Lefebvre with losses 573.30 (1.4) 1019.11 (-0.4)

Table 3.1: Comparison of the resonance frequencies for the cylindrical and conical waveguides
with one open or one closed tonehole. The numbers in parentheses represent the intervals in
cents relative to the FEM result.
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3.3 A Cone with Three Toneholes

Method f1 [Hz] (cents) f2 [Hz] (cents) f3 [Hz] (cents) f4 [Hz] (cents)

Closed toneholes

FEM 143.23 297.43 460.45 630.03
Dalmont with losses 144.01 (9.3) 298.39 (5.6) 461.02 (2.1) 630.73 (1.9)
Lefebvre with losses 143.45 (2.5) 297.72 (1.7) 460.62 (0.6) 630.00 (-0.1)

Open toneholes

FEM 172.26 364.93 569.13 774.87
Dalmont with losses 172.62 (3.6) 365.77 (3.9) 570.81 (5.1) 778.62 (8.4)
Lefebvre with losses 172.63 (3.8) 365.73 (3.8) 570.48 (4.1) 777.26 (5.3)

Table 3.2: Comparison of the simulated and calculated resonance frequencies of a conical
waveguide with three open or closed toneholes.

A conical waveguide of 966.5mm length with an input diameter of 12.5mm and an output

diameter of 63.1mm was simulated. Three toneholes, each of 2mm height, were located at

distances of 760mm, 818mm and 879mm from the input plane with respective diameters of

37.1mm, 39.3mm and 41.6mm. These dimensions are close to those of the three toneholes

closest to the bell of an alto saxophone. The COMSOL/Matlab scripts for the simulation

of this instrument with all toneholes closed is cone_with_three_holes_allclosed.m and

with all toneholes open cone_with_three_holes_allopen.m. The input impedance of this

instrument for all toneholes closed and all toneholes open is shown in Fig. 3.2.

The frequencies of the first four resonances of this system for both closed and open tone-

holes are presented in Table 3.2. When all toneholes are closed, the resonance frequencies

calculated using the TMM with the Lefebvre tonehole model are significantly closer to those

found using the FEM. The discrepancies between these results decrease with increasing fre-

quency and are perhaps caused by internal tonehole interactions.

When all toneholes are open, both TMM tonehole models predict resonance frequency

values above those found using the FEM, with discrepancies increasing with frequency. There


%
% COMSOL / Matlab script
% FEM Simulation of a cone with three closed toneholes
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 608;
vrsn.rcs = '$Name: v35ap $';
vrsn.date = '$Date: 2009/05/11 07:38:49 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

d0=0.0474;
de=0.0631;
L=0.30;

S = pi*(d0/2)^2;

alpha = atan((de-d0)/(2*L));

t = 0.002;

th1_d = 0.0371;
th1_p = 1.0270 - 0.8205; % relative to the open end

th2_d = 0.0393;
th2_p = 1.0270 - 0.8785;

th3_d = 0.0416;
th3_p = 1.0270 - 0.9396;

ae = d0/2 + L*tan(alpha);
body=cone3(d0/2,L,-alpha,'pos',[-L/2,0,0],'axis',[1,0,0],'rot','0');

th1_a = de/2-th1_p*tan(alpha);
b1 = th1_d/2
tonehole1=cylinder3(b1, th1_a+t, 'pos', [L/2-th1_p+th1_a*sin(alpha),0,th1_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th2_a = de/2-th2_p*tan(alpha);
tonehole2=cylinder3(th2_d/2, th2_a+t, 'pos', [L/2-th2_p+th2_a*sin(alpha),0,th2_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th3_a = de/2-th3_p*tan(alpha);
tonehole3=cylinder3(th3_d/2, th3_a+t, 'pos', [L/2-th3_p+th3_a*sin(alpha),0,th3_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

instrument=geomdel(body+tonehole1+tonehole2+tonehole3);

R = 0.6;
block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);
I = instrument*block;

% Analyzed geometry
clear s
s.objs={I};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]'};

% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5,'hmax',0.01);


% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {0,1,0,0};
bnd.type = {'IMP','RAD','NA','IMP'};
bnd.Z = {'Zrad','1.25*343','1.25*343','1/Y'};
bnd.ind = [2,3,4,4,4,4,4,4,4,4,4,4,4,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Subdomain settings
clear equ
equ.ind = [1,1];
equ.dim = {'p'};


% Boundary expressions
bnd.expr = {'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,0)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))',...
  'ka','k0_acpr*a',...
  'Zrad','rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};


fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

% Extend mesh
fem.xmesh=meshextend(fem);

% Solve problem
fem.sol=femstatic(fem, ...
                  'solcomp',{'p'}, ...
                  'outcomp',{'p'}, ...
                  'blocksize','auto', ...
                  'pname','freq_acpr', ...
                  'plist',f, ...
                  'oldcomp',{}, ...
                  'linsolver','spooles');

% Save current fem structure for restart purposes
%fem0=fem;

pin = 2*postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('cone_with_three_holes_allclosed.mph', fem);
save('cone_with_three_holes_allclosed.mat', 'f', 'Zin', 'd0', 'S', 'rho', 'c');
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%
% COMSOL / Matlab script
% FEM Simulation of a cone with three open toneholes
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%

flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

d0=0.0474;
de=0.0631;
L=0.30;

R=0.3;

S = pi*(d0/2)^2;

alpha = atan((de-d0)/(2*L));

t = 0.002;

th1_d = 0.0371;
th1_p = 1.0270 - 0.8205; % relative to the ope8n end

th2_d = 0.0393;
th2_p = 1.0270 - 0.8785;

th3_d = 0.0416;
th3_p = 1.0270 - 0.9396;

body=cone3(d0/2,L,-alpha,'pos',[-L/2,0,0],'axis',[1,0,0],'rot','0');

th1_a = de/2-th1_p*tan(alpha);
tonehole1=cylinder3(th1_d/2, th1_a+t, 'pos', [L/2-th1_p+th1_a*sin(alpha),0,th1_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th2_a = de/2-th2_p*tan(alpha);
tonehole2=cylinder3(th2_d/2, th2_a+t, 'pos', [L/2-th2_p+th2_a*sin(alpha),0,th2_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th3_a = de/2-th3_p*tan(alpha);
tonehole3=cylinder3(th3_d/2, th3_a+t, 'pos', [L/2-th3_p+th3_a*sin(alpha),0,th3_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

instrument=geomdel(body+tonehole1+tonehole2+tonehole3);
block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);
I = instrument*block;
E = sphere3(R,'pos',[0,0,0])*block - I;

% Analyzed geometry
clear s
s.objs={I,E};
s.name={'Instrument','Exterior'};
s.tags={'I','E'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]'};

fem.mesh=meshinit(fem, 'hcurve', 0.3, 'hnarrow',1.0);


% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.type = {'SH','NA','RAD','NA','NA','IMP'};
bnd.Z = {'rho*cs','rho*cs','rho*cs','rho*cs','rho*cs','Y'};
bnd.wavetype = {'PL','PL','SPH','SPH','SPH','PL'};
bnd.nacc = {0,0,0,'iomega_acpr*v0',0,0};
bnd.ind = [2,3,3,1,1,1,1,1,1,1,1,3,3,1,1,1,1,1,4,5,6,6,6,1,6,6,1,6,6,1, ...
  6,1];
clear pair
pair.type = 'cont';
pair.pair = {{'open end';'th1';'th2';'th3'}};
bnd.pair = pair;
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
equ.ind = [1,1];
appl.equ = equ;
fem.appl{1} = appl;


clear equ
equ.expr = {
  'vxx','-pxx/(iomega_acpr*rho_acpr)', ...
  'vyy','-pyy/(iomega_acpr*rho_acpr)', ...
  'vzz','-pzz/(iomega_acpr*rho_acpr)'};
fem.equ = equ;

% Boundary settings
clear bnd


bnd.expr = {
  'divvt', '(t1x+t2x)*vxx+(t1y+t2y)*vyy+(t1z+t2z)*vzz',...
  'lvor2','2*mu/(rho*cs*k0_acpr)', ...
  'lent2','lvor2/Pr', ...
  'Yent','0.5*k0_acpr*(1+i)*(gamma-1)*sqrt(lent2)/(rho*cs)',...
  'Yvor','0.5*(-1+i)*sqrt(lvor2)*divvt/p',...
  'Y', '(Yvor+Yent)'};


bnd.ind = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...
  1,1];
bnd.dim = {'p'};

fem.bnd = bnd;


% Boundary pairs
clear pair
pair{1}.type= 'identity';
pair{1}.name= 'open end';
pair{1}.src.dl = [32];
pair{1}.src.operator = 'src2dst_ip1';
pair{1}.dst.dl = [18];
pair{1}.dst.operator = 'dst2src_ip1';
pair{2}.type= 'identity';
pair{2}.name= 'th1';
pair{2}.src.dl = [24];
pair{2}.src.operator = 'src2dst_ip2';
pair{2}.dst.dl = [8];
pair{2}.dst.operator = 'dst2src_ip2';
pair{3}.type= 'identity';
pair{3}.name= 'th2';
pair{3}.src.dl = [27];
pair{3}.src.operator = 'src2dst_ip3';
pair{3}.dst.dl = [11];
pair{3}.dst.operator = 'dst2src_ip3';
pair{4}.type= 'identity';
pair{4}.name= 'th3';
pair{4}.src.dl = [30];
pair{4}.src.operator = 'src2dst_ip4';
pair{4}.dst.dl = [16];
pair{4}.dst.operator = 'dst2src_ip4';
bnd.pair = pair;

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, 'init', femsol(ones(flngdof(fem),1)), 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f)
pin = 2*postint(fem,'p','Dl',[19],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[19],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
%
flsave('cone_with_three_holes_allopen.mph', fem);
%
save('cone_with_three_holes_allopen.mat', 'f', 'Zin', 'a', 'S', 'rho', 'c');
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is no improvement in using the new formula from the previous chapter. Observation of the

calculated input impedances in Fig. 3.2, as well as the reflection coefficient magnitudes and

equivalent lengths in Fig. 3.3, indicate significant discrepancies between the FEM and TMM

results near the tonehole cutoff frequency. The equivalent length is calculated as Lo = (π−
φR)/2k (Ayers, 1995), where φR is the unwrapped phase of the reflection coefficient. The

differences are likely more attributable to internal or external tonehole interactions than to the

main bore taper. In general, the FEM simulations predict lower resonance frequencies, as well

as lower reflection coefficient magnitudes; this result suggests that the tonehole interactions

increase the amount of radiated energy. Research on how the TMM may be extended to include

this effect would be necessary to further improve the TMM results.
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Figure 3.2: Input impedance of a conical waveguide with three toneholes: all closed (top
graph) and all open (bottom graph). Comparison between the FEM (filled circles) and the
TMM (solid). The dashed line is an interpolation between the FEM data points.
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Figure 3.3: Magnitude of the reflection coefficient (top graph) and open cylinder equivalent
length (bottom graph) for a conical waveguide with three open toneholes. Comparison be-
tween the FEM (filled circles) and the TMM (solid).
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3.4 A Cylinder with Twelve Toneholes

Method f1 [Hz] (cents) f2 [Hz] (cents) f3 [Hz] (cents) f4 [Hz] (cents)

Closed toneholes

FEM 146.83 439.72 737.72 1032.82
Dalmont with losses 146.79 (-0.5) 439.74 (0.1) 737.70 (-0.1) 1032.80 (-0.1)
Lefebvre with losses 146.80 (-0.4) 439.78 (0.2) 737.77 (0.1) 1032.92 (0.2)

Open toneholes

FEM 294.55 879.06 1448.49
Dalmont with losses 293.44 (-6.6) 879.82 (1.5) 1452.50 (4.8)
Lefebvre with losses 293.44 (-6.6) 879.75 (1.3) 1450.66 (2.6)

Table 3.3: Comparison of the simulated and calculated resonance frequencies of a simple
clarinet-like system with twelve open or closed toneholes.

A clarinet-like system was simulated consisting of a cylindrical pipe of 15mm diameter

and 572.2mm length with 12 toneholes of 6mm diameter (δ = 0.4) and 6mm height (t/b =

2.0) located at the following distances from the instrument’s excitation point (in mm): 265.8,

282.6, 300.3, 319.1, 338.9, 359.9, 382.1, 405.6, 430.4, 456.7, 484.5, 514.0. These toneholes

produce a one-octave chromatic scale starting at 146.8Hz (D3).

This instrument was simulated with all toneholes closed and all toneholes open. The COM-

SOL/Matlab scripts for the simulation of this instrument are simpleclarinet_allopen.m

and simpleclarinet_allclosed.m. For the open case, the mesh consisted of 24863 cubic

elements (125593 DOFs). The impedances calculated with the FEM and TMM are shown in

Fig. 3.4. The frequencies of the resonances are compared in Table 3.3.

When all the toneholes are closed, the TMM calculations with both tonehole models pro-

duce resonance frequencies that match with great accuracy those found using the FEM. When

all the toneholes are open, discrepancies are more significant and are likely due to tonehole

interactions. The frequency of the first resonance is 6.6 cents lower in the TMM with both

tonehole models; this is a non-negligible and surprising difference because, in every other


%
% COMSOL / Matlab script
% FEM Simulation of a cylinder with twelve open toneholes
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

a = 0.015/2; % radius of the body
S = pi*a^2;
Zc=rho*c/S;

Lext = 0.2;
Lc = 0.5722; % half length of the body
L = Lc-Lext;

R = 0.6; % radius of the radiation sphere

    % Geometry

body = cylinder3(a,L,'pos',[-L/2,0,0],'axis',[1,0,0]);

b = 0.003;
t = 0.006;
d = 0.07*L;

tonehole01=cylinder3(b,a+t,'pos',[L/2-0.5140+Lext,0,0], 'axis', [0, 0, 1]);
tonehole02=cylinder3(b,a+t,'pos',[L/2-0.4845+Lext,0,0], 'axis', [0, 0, 1]);
tonehole03=cylinder3(b,a+t,'pos',[L/2-0.4567+Lext,0,0], 'axis', [0, 0, 1]);
tonehole04=cylinder3(b,a+t,'pos',[L/2-0.4304+Lext,0,0], 'axis', [0, 0, 1]);
tonehole05=cylinder3(b,a+t,'pos',[L/2-0.4056+Lext,0,0], 'axis', [0, 0, 1]);
tonehole06=cylinder3(b,a+t,'pos',[L/2-0.3821+Lext,0,0], 'axis', [0, 0, 1]);
tonehole07=cylinder3(b,a+t,'pos',[L/2-0.3599+Lext,0,0], 'axis', [0, 0, 1]);
tonehole08=cylinder3(b,a+t,'pos',[L/2-0.3389+Lext,0,0], 'axis', [0, 0, 1]);
tonehole09=cylinder3(b,a+t,'pos',[L/2-0.3191+Lext,0,0], 'axis', [0, 0, 1]);
tonehole10=cylinder3(b,a+t,'pos',[L/2-0.3003+Lext,0,0], 'axis', [0, 0, 1]);
tonehole11=cylinder3(b,a+t,'pos',[L/2-0.2826+Lext,0,0], 'axis', [0, 0, 1]);
tonehole12=cylinder3(b,a+t,'pos',[L/2-0.2658+Lext,0,0], 'axis', [0, 0, 1]);

instrument=geomdel(body+tonehole01+tonehole02+tonehole03+tonehole04+...
                        tonehole05+tonehole06+tonehole07+tonehole08+...
			tonehole09+tonehole10+tonehole11+tonehole12);
block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);
I = instrument*block;
E = sphere3(R,'pos',[0,0,0])*block - I;

% Analyzed geometry
clear s
s.objs={I,E};
s.name={'Instrument','Exterior'};
s.tags={'I','E'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', ...
             'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', ...
	     'gamma','1.40175[1]', 'v0', '1[m/s]'};


ms = 0.003;
fem.mesh=meshinit(fem,'hauto',5,'hmax',0.01,'hmaxedg',[233,0.001,237,0.001],...
                      'hmaxfac',[46,ms,51,ms,54,ms,57,ms,60,ms,63,ms,66,ms,...
                                 69,ms,72,ms,75,ms,78,ms,81,ms,84,ms],...
                      'point',[],'edge',[],'face',[],'subdomain',[2])

fem.mesh=meshcopy(fem,'source',46,'target',4,'mcase',0);
fem.mesh=meshcopy(fem,'source',84,'target',43,'mcase',0);
fem.mesh=meshcopy(fem,'source',81,'target',40,'mcase',0);
fem.mesh=meshcopy(fem,'source',78,'target',37,'mcase',0);
fem.mesh=meshcopy(fem,'source',75,'target',34,'mcase',0);
fem.mesh=meshcopy(fem,'source',72,'target',31,'mcase',0);
fem.mesh=meshcopy(fem,'source',69,'target',28,'mcase',0);
fem.mesh=meshcopy(fem,'source',66,'target',25,'mcase',0);
fem.mesh=meshcopy(fem,'source',63,'target',20,'mcase',0);
fem.mesh=meshcopy(fem,'source',60,'target',17,'mcase',0);
fem.mesh=meshcopy(fem,'source',57,'target',14,'mcase',0);
fem.mesh=meshcopy(fem,'source',54,'target',11,'mcase',0);
fem.mesh=meshcopy(fem,'source',51,'target',8,'mcase',0);

fem.mesh=meshinit(fem,'hauto',5,'meshstart',fem.mesh);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;

clear bnd
bnd.type = {'SH','NA','RAD','NA','IMP'};
bnd.wavetype = {'PL','PL','SPH','PL','PL'};
bnd.Z =  {'rho*cs','rho*cs','rho*cs','rho*cs','1/Y'};
bnd.nacc = {0,0,0,'iomega_acpr*v0',0};
bnd.ind = [2,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1, ...
           1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,5,5,5,1,5,5,1,5,5,1,5,5,1, ...
	   5,5,1,5,5,1,5,5,1,5,5,1,5,5,1,5,5,1,5,5,1,5,5,1,5,4];
clear pair
pair.type = 'cont';
pair.pair = {{'Open end';'th1';'th2';'th3';'th4';'th5';'th6';'th7';'th8';...
                         'th9'; 'th10';'th11';'th12'}};
bnd.pair = pair;
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd

bnd.expr = ...
 { 'cos_theta', 
   'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,1.)',...
   'sin2_theta', '1-cos_theta^2',...
   'lv','mu/(rho*cs)',...
   'lt','lv/Pr',...
   'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))'};
  

% Boundary pairs
clear pair
pair{1}.type= 'identity';
pair{1}.name= 'Open end';
pair{1}.src.dl = [46];
pair{1}.src.operator = 'src2dst_ip1';
pair{1}.dst.dl = [4];
pair{1}.dst.operator = 'dst2src_ip1';
pair{2}.type= 'identity';
pair{2}.name= 'th1';
pair{2}.src.dl = [51];
pair{2}.src.operator = 'src2dst_ip2';
pair{2}.dst.dl = [8];
pair{2}.dst.operator = 'dst2src_ip2';
pair{3}.type= 'identity';
pair{3}.name= 'th2';
pair{3}.src.dl = [54];
pair{3}.src.operator = 'src2dst_ip3';
pair{3}.dst.dl = [11];
pair{3}.dst.operator = 'dst2src_ip3';
pair{4}.type= 'identity';
pair{4}.name= 'th3';
pair{4}.src.dl = [57];
pair{4}.src.operator = 'src2dst_ip4';
pair{4}.dst.dl = [14];
pair{4}.dst.operator = 'dst2src_ip4';
pair{5}.type= 'identity';
pair{5}.name= 'th4';
pair{5}.src.dl = [60];
pair{5}.src.operator = 'src2dst_ip5';
pair{5}.dst.dl = [17];
pair{5}.dst.operator = 'dst2src_ip5';
pair{6}.type= 'identity';
pair{6}.name= 'th5';
pair{6}.src.dl = [63];
pair{6}.src.operator = 'src2dst_ip6';
pair{6}.dst.dl = [20];
pair{6}.dst.operator = 'dst2src_ip6';
pair{7}.type= 'identity';
pair{7}.name= 'th6';
pair{7}.src.dl = [66];
pair{7}.src.operator = 'src2dst_ip7';
pair{7}.dst.dl = [25];
pair{7}.dst.operator = 'dst2src_ip7';
pair{8}.type= 'identity';
pair{8}.name= 'th7';
pair{8}.src.dl = [69];
pair{8}.src.operator = 'src2dst_ip8';
pair{8}.dst.dl = [28];
pair{8}.dst.operator = 'dst2src_ip8';
pair{9}.type= 'identity';
pair{9}.name= 'th8';
pair{9}.src.dl = [72];
pair{9}.src.operator = 'src2dst_ip9';
pair{9}.dst.dl = [31];
pair{9}.dst.operator = 'dst2src_ip9';
pair{10}.type= 'identity';
pair{10}.name= 'th9';
pair{10}.src.dl = [75];
pair{10}.src.operator = 'src2dst_ip10';
pair{10}.dst.dl = [34];
pair{10}.dst.operator = 'dst2src_ip10';
pair{11}.type= 'identity';
pair{11}.name= 'th10';
pair{11}.src.dl = [78];
pair{11}.src.operator = 'src2dst_ip11';
pair{11}.dst.dl = [37];
pair{11}.dst.operator = 'dst2src_ip11';
pair{12}.type= 'identity';
pair{12}.name= 'th11';
pair{12}.src.dl = [81];
pair{12}.src.operator = 'src2dst_ip12';
pair{12}.dst.dl = [40];
pair{12}.dst.operator = 'dst2src_ip12';
pair{13}.type= 'identity';
pair{13}.name= 'th12';
pair{13}.src.dl = [84];
pair{13}.src.operator = 'src2dst_ip13';
pair{13}.dst.dl = [43];
pair{13}.dst.operator = 'dst2src_ip13';
bnd.pair = pair;

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem,'solcomp',{'p'},'outcomp',{'p'},'pname','freq_acpr',...
                      'plist', f)   
pin   =  2*postint(fem,'p',      'Dl',[86],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[86],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
save('simpleclarinet_allopen.mat', 'f', 'Zin', 'a', 'S', 'rho', 'c');
flsave('simpleclarinet_allopen.mph',fem);
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%
% COMSOL / Matlab script
% FEM Simulation of a cylinder with twelve closed toneholes
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

a = 0.015/2; % radius of the body
S = pi*a^2;
Zc=rho*c/S;
L = 0.5722; % half length of the body
R = 0.8; % radius of the radiation sphere

body = cylinder3(a,L,'pos',[-L/2,0,0],'axis',[1,0,0]);

b = 0.003;
t = 0.006;
d = 0.07*L;

tonehole01=cylinder3(b,a+t,'pos',[L/2-0.5140,0,0], 'axis', [0, 0, 1]);
tonehole02=cylinder3(b,a+t,'pos',[L/2-0.4845,0,0], 'axis', [0, 0, 1]);
tonehole03=cylinder3(b,a+t,'pos',[L/2-0.4567,0,0], 'axis', [0, 0, 1]);
tonehole04=cylinder3(b,a+t,'pos',[L/2-0.4304,0,0], 'axis', [0, 0, 1]);
tonehole05=cylinder3(b,a+t,'pos',[L/2-0.4056,0,0], 'axis', [0, 0, 1]);
tonehole06=cylinder3(b,a+t,'pos',[L/2-0.3821,0,0], 'axis', [0, 0, 1]);
tonehole07=cylinder3(b,a+t,'pos',[L/2-0.3599,0,0], 'axis', [0, 0, 1]);
tonehole08=cylinder3(b,a+t,'pos',[L/2-0.3389,0,0], 'axis', [0, 0, 1]);
tonehole09=cylinder3(b,a+t,'pos',[L/2-0.3191,0,0], 'axis', [0, 0, 1]);
tonehole10=cylinder3(b,a+t,'pos',[L/2-0.3003,0,0], 'axis', [0, 0, 1]);
tonehole11=cylinder3(b,a+t,'pos',[L/2-0.2826,0,0], 'axis', [0, 0, 1]);
tonehole12=cylinder3(b,a+t,'pos',[L/2-0.2658,0,0], 'axis', [0, 0, 1]);

instrument=geomdel(body+tonehole01+tonehole02+tonehole03+tonehole04+...
                        tonehole05+tonehole06+tonehole07+tonehole08+...
			tonehole09+tonehole10+tonehole11+tonehole12);
block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);
I = instrument*block;

% Analyzed geometry
clear s
s.objs={I};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', ...
             'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', ...
	     'gamma','1.40175[1]', 'v0', '1[m/s]','a',a};


face = 0.002;
% Initialize mesh
fem.mesh=meshinit(fem, ...
                  'hauto',5, ...
                  'hmaxfac',[1,face,5,face,6,face,7,face,8,face,9,face,...
		             10,face,11,face,12,face,13,face,14,face,...
			     15,face,16,face,17,face,18,face,19,face,20,face,...
			     21,face,22,face,23,face,24,face,25,face,26,face,...
			     27,face,28,face,29,face,30,face,31,face,32,face,...
			     33,face,34,face,35,face,36,face,37,face,38,face,...
			     39,face,40,face], ...
                  'hmaxsub',[1,0.0045]);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.p0 = {1,0,0,0,0};
bnd.type = {'NA','IMP','IMP','NA','IMP'};
bnd.Z = {'rho*cs','Zrad','1/Y','rho*cs','1/Y'};
bnd.wavetype = {'PL','PL','SPH','SPH','PL'};
bnd.nacc = {'iomega_acpr*v0',0,0,0,0};
bnd.ind = [2,4,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5, ...
           5,5,5,5,5,5,3,3,5,5,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd

bnd.expr = 
 {'cos_theta', ...
  'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,1.)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))'...
  'ka','k0_acpr*a',...
  'Zrad','rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};


fem.bnd = bnd;
fem=multiphysics(fem);
fem.xmesh=meshextend(fem);


fem.sol=femstatic(fem,'init',femsol(ones(flngdof(fem),1)),'solcomp',{'p'},...
                      'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f);
pin   =  2*postint(fem,'p',      'Dl',[41],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[41],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
save('simpleclarinet_allclosed.mat', 'f', 'Zin', 'a', 'S', 'rho', 'c');
flsave('simpleclarinet_allclosed.mph',fem)
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cases studied, the FEM predict a lower resonance rather than a higher one. Figures 3.4 and

3.5 indicate a variation between the FEM and TMM results near the tonehole lattice cutoff

frequency, which occurs at the minimum of the reflection coefficient magnitude. This again

suggests that the interaction between the sound fields of adjacent toneholes can shift the reso-

nance frequencies.
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Figure 3.4: Input impedance of a cylindrical waveguide with 12 toneholes: all closed (top
graph) and all open (bottom graph). Comparison between FEM simulation of the complete
instrument (filled circles) and TMM calculations (solid).
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Figure 3.5: Magnitude of the reflection coefficient for a cylindrical waveguide with twelve
open toneholes. Comparison between FEM simulation of the complete instrument (filled cir-
cles) and TMM calculations (solid).
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3.5 A Cone with Twelve Toneholes

Method f1 [Hz] (cents) f2 [Hz] (cents) f3 [Hz] (cents) f4 [Hz] (cents)

Closed toneholes

FEM 147.19 302.58 461.63 628.60
Dalmont with losses 149.06 (21.9) 304.10 (8.7) 463.98 (8.8) 631.94 (9.2)
Lefebvre with losses 147.85 (7.8) 302.63 (0.3) 461.97 (1.3) 628.76 (0.2)

Open toneholes

FEM 334.14 733.03 1154.32
Dalmont with losses 334.31 (0.8) 734.35 (3.1) 1158.30 (6.0)
Lefebvre with losses 334.28 (0.7) 734.06 (2.4) 1156.56 (3.4)

Table 3.4: Comparison of the simulated and calculated resonance frequencies of a conical
waveguide with twelve open or closed toneholes.

A saxophone-like system was simulated consisting of a conical waveguide of 9mm input

diameter, 61.2mm output diameter, and 978.9mm length with 12 toneholes of 2mm height

located respectively at 363.6, 401.9, 441.9, 483.7, 527.4, 573.1, 620.9, 671.0, 723.7, 779.1,

837.5 and 899.1 millimetres from the input end. These toneholes, defined by δ = b/a = 0.7,

produce a one-octave chromatic scale starting at 146.8Hz (D3).

The COMSOL/Matlab script for the simulation of this instrument with all toneholes open is

simplesaxophone_allopen.m and with all toneholes closed simplesaxophone_allclosed.m.

The FEM simulation of this instrument was solved for all toneholes closed and all tone-

holes open. The mesh consisted of 32655 cubic elements (165626 DOFs). The input impedances

calculated with the TMM and FEM are plotted in Fig. 3.6 and the resonance frequency values

compared in Table 3.4.

For the closed side holes, the TMM results using the Dalmont tonehole model differ signif-

icantly from the FEM predictions (22 cents for the first resonance and close to 10 cents for the

others). Although the TMM results are closer using the Lefebvre tonehole model, discrepan-

cies remain for the first resonance (8 cents), and support the hypothesis that internal tonehole


%
% COMSOL / Matlab script
% FEM Simulation of a cone with twelve open toneholes
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;



di=0.009;
de=0.0612;
Lc=0.9789;

% we removed the first 30 cm
d0 = 0.025;
L = Lc-0.3;

R = 0.8;

S = pi*(d0/2)^2;

alpha = atan((de-d0)/(2*L));

t = 0.002;

th1_d = 0.0199;
th1_p = 0.4607-0.0971-0.3;

th2_d = 0.0213;
th2_p = 0.4990-0.0971-0.3;

th3_d = 0.0228;
th3_p = 0.5390-0.0971-0.3;

th4_d = 0.0244;
th4_p = 0.5808-0.0971-0.3;

th5_d = 0.0260;
th5_p = 0.6245-0.0971-0.3;

th6_d = 0.0277;
th6_p = 0.6702-0.0971-0.3;

th7_d = 0.0295;
th7_p = 0.7180-0.0971-0.3;

th8_d = 0.0314;
th8_p = 0.7681-0.0971-0.3;

th9_d = 0.0333;
th9_p = 0.8208-0.0971-0.3;

th10_d = 0.0354;
th10_p = 0.8762-0.0971-0.3;

th11_d = 0.0376;
th11_p = 0.9346-0.0971-0.3;

th12_d = 0.0399;
th12_p = 0.9962-0.0971-0.3;

body=cone3(d0/2,L,-alpha,'pos',[-L/2,0,0],'axis',[1,0,0],'rot','0');

th1_a = d0/2+th1_p*tan(alpha);
tonehole1=cylinder3(th1_d/2, th1_a+t, 'pos', [-L/2+th1_p+th1_a*sin(alpha),0,th1_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th2_a = d0/2+th2_p*tan(alpha);
tonehole2=cylinder3(th2_d/2, th2_a+t, 'pos', [-L/2+th2_p+th2_a*sin(alpha),0,th2_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th3_a = d0/2+th3_p*tan(alpha);
tonehole3=cylinder3(th3_d/2, th3_a+t, 'pos', [-L/2+th3_p+th3_a*sin(alpha),0,th3_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th4_a = d0/2+th4_p*tan(alpha);
tonehole4=cylinder3(th4_d/2, th4_a+t, 'pos', [-L/2+th4_p+th4_a*sin(alpha),0,th4_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th5_a = d0/2+th5_p*tan(alpha);
tonehole5=cylinder3(th5_d/2, th5_a+t, 'pos', [-L/2+th5_p+th5_a*sin(alpha),0,th5_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th6_a = d0/2+th6_p*tan(alpha);
tonehole6=cylinder3(th6_d/2, th6_a+t, 'pos', [-L/2+th6_p+th6_a*sin(alpha),0,th6_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th7_a = d0/2+th7_p*tan(alpha);
tonehole7=cylinder3(th7_d/2, th7_a+t, 'pos', [-L/2+th7_p+th7_a*sin(alpha),0,th7_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th8_a = d0/2+th8_p*tan(alpha);
tonehole8=cylinder3(th8_d/2, th8_a+t, 'pos', [-L/2+th8_p+th8_a*sin(alpha),0,th8_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th9_a = d0/2+th9_p*tan(alpha);
tonehole9=cylinder3(th9_d/2, th9_a+t, 'pos', [-L/2+th9_p+th9_a*sin(alpha),0,th9_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th10_a = d0/2+th10_p*tan(alpha);
tonehole10=cylinder3(th10_d/2, th10_a+t, 'pos', [-L/2+th10_p+th10_a*sin(alpha),0,th10_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th11_a = d0/2+th11_p*tan(alpha);
tonehole11=cylinder3(th11_d/2, th11_a+t, 'pos', [-L/2+th11_p+th11_a*sin(alpha),0,th11_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th12_a = d0/2+th12_p*tan(alpha);
tonehole12=cylinder3(th12_d/2, th12_a+t, 'pos', [-L/2+th12_p+th12_a*sin(alpha),0,th12_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);


instrument=geomdel(body+tonehole1+tonehole2+tonehole3+tonehole4+tonehole5+tonehole6+tonehole7+tonehole8+tonehole9+tonehole10+tonehole11+tonehole12);
block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);
I = instrument*block;
E = sphere3(R,'pos',[0,0,0])*block - I;

% Analyzed geometry
clear s
s.objs={I,E};
s.name={'Instrument','Exterior'};
s.tags={'I','E'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]'};

ms=0.001;
fem.mesh=meshinit(fem, 'hauto', 5, 'hmaxsub',[2,0.012], 'hmaxedg',[133,ms,137,ms],'point',[],'edge',[],'face',[],'subdomain',2);
fem.mesh=meshcopy(fem, 'source',51, 'target',8);
fem.mesh=meshcopy(fem, 'source',54, 'target',11);
fem.mesh=meshcopy(fem, 'source',57, 'target',14);
fem.mesh=meshcopy(fem, 'source',60, 'target',17);
fem.mesh=meshcopy(fem, 'source',63, 'target',20);
fem.mesh=meshcopy(fem, 'source',66, 'target',23);
fem.mesh=meshcopy(fem, 'source',69, 'target',26);
fem.mesh=meshcopy(fem, 'source',72, 'target',31);
fem.mesh=meshcopy(fem, 'source',75, 'target',34);
fem.mesh=meshcopy(fem, 'source',78, 'target',37);
fem.mesh=meshcopy(fem, 'source',81, 'target',40);
fem.mesh=meshcopy(fem, 'source',84, 'target',43);
fem.mesh=meshcopy(fem, 'source',86, 'target',45);
fem.mesh=meshinit(fem, 'hauto', 5, 'meshstart',fem.mesh);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.type = {'SH','NA','RAD','NA','IMP'};
bnd.Z =  {'rho*cs','rho*cs','rho*cs','rho*cs','1/Y'};
bnd.wavetype = {'PL','PL','SPH','PL','PL'};
bnd.nacc = {0,0,0,'iomega_acpr*v0',0};
bnd.ind = [2,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1, ...
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,2,5,5,5,1,5,5,1,5,5,1,5,5,1,5,5,1,5,5, ...
  1,5,5,1,5,5,1,5,5,1,5,5,1,5,5,1,5,5,1,5,1];
clear pair
pair.type = 'cont';
pair.pair = {{'Open end';'TH1';'TH2';'TH3';'TH4';'TH6';'TH7';'TH8';'TH9';'TH10'; ...
  'TH11';'TH12';'TH5'}};
bnd.pair = pair;
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd

bnd.expr = {'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,1.)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))'};

% Boundary pairs
clear pair
pair{1}.type= 'identity';
pair{1}.name= 'Open end';
pair{1}.src.dl = [86];
pair{1}.src.operator = 'src2dst_ip1';
pair{1}.dst.dl = [45];
pair{1}.dst.operator = 'dst2src_ip1';
pair{2}.type= 'identity';
pair{2}.name= 'TH1';
pair{2}.src.dl = [51];
pair{2}.src.operator = 'src2dst_ip2';
pair{2}.dst.dl = [8];
pair{2}.dst.operator = 'dst2src_ip2';
pair{3}.type= 'identity';
pair{3}.name= 'TH2';
pair{3}.src.dl = [54];
pair{3}.src.operator = 'src2dst_ip3';
pair{3}.dst.dl = [11];
pair{3}.dst.operator = 'dst2src_ip3';
pair{4}.type= 'identity';
pair{4}.name= 'TH3';
pair{4}.src.dl = [57];
pair{4}.src.operator = 'src2dst_ip4';
pair{4}.dst.dl = [14];
pair{4}.dst.operator = 'dst2src_ip4';
pair{5}.type= 'identity';
pair{5}.name= 'TH4';
pair{5}.src.dl = [60];
pair{5}.src.operator = 'src2dst_ip5';
pair{5}.dst.dl = [17];
pair{5}.dst.operator = 'dst2src_ip5';
pair{6}.type= 'identity';
pair{6}.name= 'TH6';
pair{6}.src.dl = [66];
pair{6}.src.operator = 'src2dst_ip7';
pair{6}.dst.dl = [23];
pair{6}.dst.operator = 'dst2src_ip7';
pair{7}.type= 'identity';
pair{7}.name= 'TH7';
pair{7}.src.dl = [69];
pair{7}.src.operator = 'src2dst_ip8';
pair{7}.dst.dl = [26];
pair{7}.dst.operator = 'dst2src_ip8';
pair{8}.type= 'identity';
pair{8}.name= 'TH8';
pair{8}.src.dl = [72];
pair{8}.src.operator = 'src2dst_ip9';
pair{8}.dst.dl = [31];
pair{8}.dst.operator = 'dst2src_ip9';
pair{9}.type= 'identity';
pair{9}.name= 'TH9';
pair{9}.src.dl = [75];
pair{9}.src.operator = 'src2dst_ip10';
pair{9}.dst.dl = [34];
pair{9}.dst.operator = 'dst2src_ip10';
pair{10}.type= 'identity';
pair{10}.name= 'TH10';
pair{10}.src.dl = [78];
pair{10}.src.operator = 'src2dst_ip11';
pair{10}.dst.dl = [37];
pair{10}.dst.operator = 'dst2src_ip11';
pair{11}.type= 'identity';
pair{11}.name= 'TH11';
pair{11}.src.dl = [81];
pair{11}.src.operator = 'src2dst_ip12';
pair{11}.dst.dl = [40];
pair{11}.dst.operator = 'dst2src_ip12';
pair{12}.type= 'identity';
pair{12}.name= 'TH12';
pair{12}.src.dl = [84];
pair{12}.src.operator = 'src2dst_ip13';
pair{12}.dst.dl = [43];
pair{12}.dst.operator = 'dst2src_ip13';
pair{13}.type= 'identity';
pair{13}.name= 'TH5';
pair{13}.src.dl = [63];
pair{13}.src.operator = 'src2dst_ip14';
pair{13}.dst.dl = [20];
pair{13}.dst.operator = 'dst2src_ip14';
bnd.pair = pair;

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f); 
pin = 2*postint(fem,'p','Dl',[46],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[46],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
flsave('simplesaxophone_allopen.mph', fem);
save('simplesaxophone_allopen.mat', 'f', 'Zin', 'd0', 'S', 'rho', 'c');
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%
% COMSOL / Matlab script
% FEM Simulation of a cone with twelve closed toneholes
%
% Antoine Lefebvre, McGill University
%
% Copyright (c) 2010 Antoine Lefebvre
%
flclear fem

% COMSOL version
clear vrsn
vrsn.name = 'COMSOL 3.5';
vrsn.ext = 'a';
vrsn.major = 0;
vrsn.build = 603;
vrsn.rcs = '$Name:  $';
vrsn.date = '$Date: 2008/12/03 17:02:19 $';
fem.version = vrsn;

rho = 1.184;
c = 346.16;
mu = 1.8375e-5;
gamma = 1.40175;
Pr = 0.7078;

f = 100:10:1500;

di=0.009;
de=0.0612;
Lc=0.9789;

% we removed the first 30 cm
d0 = 0.025;
L = Lc-0.3;

R = 0.8;

S = pi*(d0/2)^2;

alpha = atan((de-d0)/(2*L));

t = 0.002;

th1_d = 0.0199;
th1_p = 0.4607-0.0971-0.3;

th2_d = 0.0213;
th2_p = 0.4990-0.0971-0.3;

th3_d = 0.0228;
th3_p = 0.5390-0.0971-0.3;

th4_d = 0.0244;
th4_p = 0.5808-0.0971-0.3;

th5_d = 0.0260;
th5_p = 0.6245-0.0971-0.3;

th6_d = 0.0277;
th6_p = 0.6702-0.0971-0.3;

th7_d = 0.0295;
th7_p = 0.7180-0.0971-0.3;

th8_d = 0.0314;
th8_p = 0.7681-0.0971-0.3;

th9_d = 0.0333;
th9_p = 0.8208-0.0971-0.3;

th10_d = 0.0354;
th10_p = 0.8762-0.0971-0.3;

th11_d = 0.0376;
th11_p = 0.9346-0.0971-0.3;

th12_d = 0.0399;
th12_p = 0.9962-0.0971-0.3;

body=cone3(d0/2,L,-alpha,'pos',[-L/2,0,0],'axis',[1,0,0],'rot','0');

th1_a = d0/2+th1_p*tan(alpha);
tonehole1=cylinder3(th1_d/2, th1_a+t, 'pos', [-L/2+th1_p+th1_a*sin(alpha),0,th1_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th2_a = d0/2+th2_p*tan(alpha);
tonehole2=cylinder3(th2_d/2, th2_a+t, 'pos', [-L/2+th2_p+th2_a*sin(alpha),0,th2_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th3_a = d0/2+th3_p*tan(alpha);
tonehole3=cylinder3(th3_d/2, th3_a+t, 'pos', [-L/2+th3_p+th3_a*sin(alpha),0,th3_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th4_a = d0/2+th4_p*tan(alpha);
tonehole4=cylinder3(th4_d/2, th4_a+t, 'pos', [-L/2+th4_p+th4_a*sin(alpha),0,th4_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th5_a = d0/2+th5_p*tan(alpha);
tonehole5=cylinder3(th5_d/2, th5_a+t, 'pos', [-L/2+th5_p+th5_a*sin(alpha),0,th5_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th6_a = d0/2+th6_p*tan(alpha);
tonehole6=cylinder3(th6_d/2, th6_a+t, 'pos', [-L/2+th6_p+th6_a*sin(alpha),0,th6_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th7_a = d0/2+th7_p*tan(alpha);
tonehole7=cylinder3(th7_d/2, th7_a+t, 'pos', [-L/2+th7_p+th7_a*sin(alpha),0,th7_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th8_a = d0/2+th8_p*tan(alpha);
tonehole8=cylinder3(th8_d/2, th8_a+t, 'pos', [-L/2+th8_p+th8_a*sin(alpha),0,th8_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th9_a = d0/2+th9_p*tan(alpha);
tonehole9=cylinder3(th9_d/2, th9_a+t, 'pos', [-L/2+th9_p+th9_a*sin(alpha),0,th9_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th10_a = d0/2+th10_p*tan(alpha);
tonehole10=cylinder3(th10_d/2, th10_a+t, 'pos', [-L/2+th10_p+th10_a*sin(alpha),0,th10_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th11_a = d0/2+th11_p*tan(alpha);
tonehole11=cylinder3(th11_d/2, th11_a+t, 'pos', [-L/2+th11_p+th11_a*sin(alpha),0,th11_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);

th12_a = d0/2+th12_p*tan(alpha);
tonehole12=cylinder3(th12_d/2, th12_a+t, 'pos', [-L/2+th12_p+th12_a*sin(alpha),0,th12_a*(1-cos(alpha))], 'axis', [-sin(alpha), 0, cos(alpha)]);


instrument=geomdel(body+tonehole1+tonehole2+tonehole3+tonehole4+tonehole5+tonehole6+tonehole7+tonehole8+tonehole9+tonehole10+tonehole11+tonehole12);
block = block3(2*R,R,2*R,'base','corner','pos',[-R,0,-R]);
I = instrument*block;

% Analyzed geometry
clear s
s.objs={I};
s.name={'Instrument'};
s.tags={'I'};

fem.draw=struct('s',s);
fem.geom=geomgroup(fem,'imprint','off','paircand','none');

fem.const = {'rho','1.184[kg/m^3]', 'cs','346.16[m/s]', 'mu','1.8375e-5[kg/(m*s)]', 'Pr','0.7078[1]', 'gamma','1.40175[1]', 'v0', '1[m/s]', 'a',de/2};

fem.mesh=meshinit(fem, 'hauto', 5, 'hmax',0.012);

% Application mode 1
clear appl
appl.mode.class = 'AcoPressure';
appl.module = 'ACO';
appl.assignsuffix = '_acpr';
clear prop
prop.elemdefault='Lag3';
appl.prop = prop;
clear bnd
bnd.type = {'IMP','NA','NA','IMP'};
bnd.Z = {'Zrad','1.25*343','1.25*343','1/Y'};
bnd.nacc = {0,'iomage_acpr*v0',0,0};
bnd.ind = [2,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4, ...
  4,4,4,4,4,4,4,4,4,4,1];
appl.bnd = bnd;
clear equ
equ.rho = 'rho';
equ.cs = 'cs';
appl.equ = equ;
fem.appl{1} = appl;
fem.border = 1;

% Boundary settings
clear bnd

bnd.expr = {'cos_theta', 'if(normv_acpr!=0.,(nx*vx_acpr+ny*vy_acpr+nz*vz_acpr)/normv_acpr,1.)',...
  'sin2_theta', '1-cos_theta^2',...
  'lv','mu/(rho*cs)',...
  'lt','lv/Pr',...
  'Y','(1/(rho*cs))*sqrt(i*k0_acpr)*(sin2_theta*sqrt(lv)+(gamma-1)*sqrt(lt))'...
  'ka','k0_acpr*a',...
  'Zrad','rho*cs*(j*0.6113*ka-j*ka^3*(0.036-0.034*log(ka)+0.0187*ka^2)+ka^2/4+ka^4*(0.0127+0.082*log(ka)-0.023*ka^2))'};

fem.bnd = bnd;

% Multiphysics
fem=multiphysics(fem);

fem.xmesh=meshextend(fem);

fem.sol=femstatic(fem, 'solcomp',{'p'}, 'outcomp',{'p'}, 'pname', 'freq_acpr', 'plist', f); 
pin = 2*postint(fem,'p','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])/S;
ZcUin = -2*postint(fem,'nv_acpr','Dl',[1],'Edim',[2],'Solnum',[1:length(f)])*rho*c/S;
Zin = pin./ZcUin;
save('simplesaxophone_allclosed.mat', 'f', 'Zin', 'd0', 'S', 'rho', 'c');
flsave('simplesaxophone_allclosed.mph', fem);
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interactions lower the low-frequency resonances when the toneholes are closed.

When the toneholes are open, the FEM predicts lower resonances than either of the TMM

tonehole models. Again, this seems to be related to tonehole interactions. In this case, the

tonehole cutoff frequency is above 1.5kHz and the first resonance is affected by about only 1

cent, whereas the third resonance is shifted by 4 cents. Contrary to the case for the cylindrical

instrument, the first resonance is not significantly affected.
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Figure 3.6: Input impedance of a conical waveguide with twelve toneholes: all closed (top
graph) and all open (bottom graph). Comparison between FEM simulation (filled circles) and
TMM calculations (solid).
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Figure 3.7: Magnitude of the reflection coefficient for a conical waveguide with twelve open
toneholes. Comparison between FEM simulation (filled circles) and TMM calculations (solid).
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3.6 Curvature of the Bore

Method f1 [Hz] (cents) f2 [Hz] (cents) f3 [Hz] (cents) f4 [Hz] (cents) f5 [Hz] (cents)

FEM (1) 145.03 304.92 473.41 640.97 804.22
FEM (2) 145.04 (0.1) 304.97 (0.2) 473.58 (0.6) 641.30 (0.9) 804.57 (0.8)
FEM (3) 145.05 (0.2) 305.09 (0.9) 473.98 (2.1) 642.07 (3.0) 805.39 (2.5)

TMM (1) 144.90 (-1.6) 305.24 (1.8) 473.68 (1.0) 640.95 (0.0) 804.19 (-0.1)

Table 3.5: Comparison of the simulated and calculated resonance frequencies for a straight
and two curved alto saxophone necks.

Using the FEM and the thermoviscous boundary condition presented in this chapter, the

simulation of a curved bore with a varying cross-section and with boundary layer losses is

possible. As a case study, we present the results of simulations of a conical waveguide with

different geometrical settings: (1) straight, (2) slight curvature and (3) large curvature, as

illustrated in Fig. 3.8. There is a cylindrical section at the beginning and at the end of this

structure. Each of these three geometries has the same cross-sectional diameter as a function

of the distance along the centre line. Therefore, they also have the same volume. Concatenated

to these structures was a straight conical waveguide of 760mm length, input diameter of 23mm

(corresponding to the output diameter of the first segment) and output diameter of 63mm. An

unflanged pipe radiation impedance was applied at the output of the conical section. From

the results of the simulations, we compared the first five resonance frequencies of the curved

bores to those of the straight bore. We also compared the FEM results of the straight bore with

TMM calculations. These results are presented in Table 3.5.

The shift of resonance frequencies with bending is very small for the lowest resonances

and gradually increases up to 3 cents for the fourth resonance of the third geometry. The

magnitude of the effect in this particular case is negligible. As expected, the object with the

most significant curvature has a more pronounced frequency shift. On wind instruments, the

curvature of the bore normally comes with an “ovalisation” of the section and possibly a small
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reduction of the volume due to the mechanical consequence of bending the pipe. This effect is

not discussed here and may have more pronounced consequences on the tuning.

We compared the resonance frequencies for the straight geometry with predictions of the

TMM and found surprising differences (see Table 3.5, last line). One hypothesis is that the

evanescent modes occurring when the angle of conicity changes (there are three such changes

in the current geometry) are the cause of such differences. These differences are negligible.
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Figure 3.8: Diagram of the three instrument bores simulated for the study of curvature. The
dimensions, in mm, are the same for all three instruments.
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3.7 Radiation from the Bell

The radiation impedance of an alto saxophone bell was obtained using the FEM and compared

to predictions of the TMM based on the discretization of the bell into conical segments. Other

bell geometries may be obtained with the same method.

The bell of an alto saxophone is formed from a segment of cone followed by a circular

arc. The length of the conical segment is 32.25 mm with an input diameter of 73.35 mm and

an output diameter of 80.98 mm. The circular arc is tangent to the conical segment. It has a

radius of 17.77 mm and its centre is located at 58 mm from the axis of the bell.

In the FEM model, the bell is surrounded by a radiation domain and no boundary layer

losses are taken into account. In the TMM, the open end of the bell is modelled as an unflanged

open end with a correction factor of 2 to take into account the spherical wave shape (half the

area of a sphere is equal to 2 times the area of a circle of the same radius).

The real and imaginary parts of the impedance of this bell are shown in Fig. 3.9 and the

open cylinder equivalent length in Fig. 3.10. The results with the TMM approximation are

rather different than those of the FEM, confirming that this is not a valid method to model the

impedance of the bell. The TMM approximation predicts that the equivalent length is shorter

by approximately 10 mm compared to the FEM results.

For purposes of designing a woodwind instrument, the radiation impedance of the bell of

the instrument may be pre-calculated using the FEM and used as a radiation condition for the

TMM. Alternately, a correction to the plane-wave approximation may be applied following

the work of Nederveen and Dalmont (2008).
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Figure 3.9: Impedance of an alto saxophone bell: real part over (ka)2 (top) and imaginary
part over ka (bottom). Results of the FEM simulations (filled circles) and results of the TMM
approximation (solid line).
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Figure 3.10: Open cylinder equivalent length lo of an alto saxophone bell. Results of the FEM
simulations (overlapping filled circles) and results of the TMM approximation (solid line).
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3.8 Summary

The input impedance of simple woodwind-like instruments was evaluated using the Finite

Element Method (FEM) and compared to theoretical calculations based on the Transmission-

Matrix Method (TMM). This enables a validation of the TMM and an evaluation of the effect

of internal and external tonehole interaction, which is neglected in the TMM. Thermoviscous

losses were accounted for with an impedance boundary condition based on acoustic boundary

layer theory. The systems were surrounded by a spherical radiation domain with a second-

order, non-reflecting spherical-wave boundary condition on its outer surface. This method

opens the possibility to accurately estimate the resonance frequencies of wind instruments

using the FEM, which has never before been possible.

For simple geometries such as closed or open cylindrical and conical waveguides, the FEM

results are shown to match theory with great accuracy. When considering waveguides with a

single open or closed toneholes, the results of the FEM also match TMM calculations. The

inclusion of boundary layer losses in the transmission-matrix model of the tonehole slightly

improves the agreement with the FEM calculations but the difference is likely negligible. For

geometries with multiple closed or open toneholes, discrepancies between the FEM and the

TMM results become more significant and appear to be related to internal or external interac-

tions. For closed side holes, this effect is more important for large diameter toneholes at low

frequencies, thus affecting the first few resonances. For the conical waveguide with twelve

closed toneholes studied in Sec. 3.5, the resonance frequencies calculated with the TMM bet-

ter match the FEM when using the new formula for the series length correction presented

in the previous chapter but the first resonance remains lower by approximately 8 cents in the

FEM simulation. For open side holes, this effect is particularly important near the tonehole

cutoff frequency but extends to lower frequencies as well. In the case of a cylinder with twelve

open toneholes presented in Sec. 3.4, the first resonance shows an unexplained difference of

+6.6 cents in the FEM. In every case, the discrepancies are below 10 cents, and generally less
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than 5 cents, indicating that the TMM remains a good method for the design of woodwind

instruments.

The impact of the curvature of an alto saxophone neck pipe was investigated and the fre-

quencies of the resonances were shifted by a maximum of 3 cents.

The radiation of an alto saxophone bell was obtained from the FEM and compared to

TMM calculations. As expected, the differences are important, the equivalent length being

approximately 10 mm larger in the FEM compared to the TMM. We conclude that for purposes

of designing woodwind instruments, the discretization of a flaring bell in conical segments

is not an appropriate method. We recommend pre-calculating the input impedance of the

bell using the FEM or another numerical method and using this impedance as the radiation

impedance of the instrument being designed.



Chapter 4

An Approach to the Computer-Aided

Design of Woodwind Instruments

Initial geometry

Calculation of the acoustic response

Converged? Geometry updateNo

Optimal geometry
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In this chapter, we present our work on solving the problem of calculating the position of

the toneholes on woodwind instruments to achieve optimal tuning with various constraints.

This method is applied to simple flute-, clarinet- and saxophone-like instruments with six or

seven toneholes each. Physical prototypes of these instruments were constructed based on the

results of the optimization routine and their playing behaviours are discussed.
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The design of a woodwind instrument involves the determination of the positions and di-

mensions of its toneholes to produce the desired playing frequencies for each requested fin-

gering, given a particular excitation mechanism and bore shape. The toneholes are responsible

for the tuning of each individual note, whereas the shape of the bore plays an important role in

the harmonicity of the resonances and thus, on the tuning of notes in the upper registers based

on higher resonances of a fingering used in the first register. The excitation mechanism must

be properly characterized before an attempt is made to design the instrument body.

A method for the design of woodwind instruments was previously presented by Keefe

(1989). This author also reports unpublished material attributed to Benade who worked on the

iterative calculation of tonehole locations. Benade’s method involved calculating the location

of each tonehole one by one, starting from the last and using an idealized theory based on

an infinite tonehole lattice. When each tonehole had been located once, the procedure was

started again, incorporating the effect of the presence of the other toneholes. This was repeated

until convergence. This method did not make use of transmission matrix calculations. Keefe

(1989) proposed an alternative design algorithm that made use of transmission matrices. The

main advantage was an increased accuracy of the results, because they were not based on the

idealized theory of an infinite tonehole lattice. This was the basis for the current research. The

main problem with Keefe’s approach is that he used a simple iterative method, similar to that

used by Benade, where the tonehole locations are calculated one by one. This does not always

result in convergence, particularly when the number of constraints is important. Also, Keefe

reported that only one register can be used at a time and that only the positions of the toneholes

are modified by the algorithm and not the diameters. This could result in situations where the

toneholes are too close to or too far from one another and where the second register is not well

tuned.

We propose to make use of a global optimization approach, a modified L-BFGS-B (Zhu,

Byrd, Lu, & Nocedal, 1994; Lu, Nocedal, Zhu, Byrd, & Byrd, 1995), which generally con-

verges to a solution even for complex sets of constraints. For the research presented in this
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chapter, we developed an optimization routine which allows the optimization of the positions,

diameters and heights of each tonehole with constraints that include the resonance frequencies

of as many fingerings as possible (including cross-fingerings) and for any number of modes.

Further, bounds on each of the optimization variables allow control of the ergonomy of the

instrument. A future research direction consists in including upper bore perturbations as an

optimization variable and, possibly, the harmonicity of the first few resonances and the cutoff

frequency of the tonehole lattice as criteria.

In practice, the number of degrees of freedom can be larger than the number of constraints.

As an example, for the design of an instrument with 6 toneholes playing 7 notes, optimizing

the positions of the toneholes and the length of the instrument is sufficient. Because bounds on

the distances between adjacent holes may be used, the inclusion of the diameters may become

necessary to obtain a valid solution. The solution to the problem is generally not unique and

the instrument designer shall decide which parameters are fixed, which are to be optimized and

what are the proper bounds. The method that we propose is an aid to the instrument designer,

who must understand the functioning of woodwind instrument to use it properly.

It needs to be taken into account that the requested set of constraints and bounds is often

contradictory. As an example, one may limit the diameters of the toneholes and the distances

between adjacent toneholes to ensure that the instrument is playable with a normal human

hand. In certain circumstances these limits will prevent the algorithm from attaining a small

tuning error, which indicates that the requested instrument is not possible. The algorithm

converges to the layout with minimal errors within the bounds provided to the algorithm. In

complex cases, the resulting instrument still contains tuning errors and it is the responsibility

of the instrument maker to decide if these are acceptable and, if not, to change the definition

of the problem.

The source code of the L-BFGS-B optimization method is available at http://www.eecs

.northwestern.edu/~nocedal/lbfgsb.html and is also interfaced to the Python program-

ming language through the package SciPy (Scientific Python). The calculation of tonehole

http://www.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://www.eecs.northwestern.edu/~nocedal/lbfgsb.html
http://www.python.org
http://www.scipy.org
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locations of woodwind instruments using this algorithm requires defining an optimization

function that will be provided to the algorithm. The initial values of the parameters, the defi-

nition of those parameters and the calculation method for the error norm will all influence the

outcome of the algorithm.

Starting with an initial geometry designed using approximate calculations, the toneholes

of the instrument are iteratively displaced until the mean square error on the tuning of each

fingering has attained a minimum. At each iteration, the playing frequencies for each of the

fingerings of the instrument are estimated using the TMM, including a correction for the exci-

tation mechanism as explained in Sec. 1.2.

The resulting instrument will be well tuned if the underlying calculation method gives

accurate playing frequencies, if the excitation mechanism was accurately characterized and if

the instrument is built according to the calculated dimensions. Very small deviations in the

geometry of the bore may cause important tuning deviations, particularly when they occur

in the upper part of the instrument. The research presented in the previous chapters of this

thesis was intended to verify and update the TMM parameters to ensure the accuracy of the

results and the quality of the instruments generated with this optimization method. Based on

the results of Chapter 3, we expect the accuracy of the calculation method to be on the order of

±5 cents or±10 cents in the worst case. The main source of error seems to come from internal

or external tonehole interactions, which are not taken into account in the TMM. Currently, the

geometry of the instrument’s bore is selected before the optimization is performed and only

the length of the instrument, the position of the toneholes and/or their diameters are allowed

to change during the optimization process. This geometry may consist of an arbitrary number

of cylindrical or conical sections, one of which has to be selected as a variable length section

— the lowest note of the instrument depends on the overall length, which will be optimized

by changing the length of the selected section. For a conical instrument, the angle of the

conical waveguide remains fixed; and if the length is changed by the optimization algorithm,

the diameter of the end will scale accordingly. If a bell exists on the instrument, it will also be
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scaled proportionally to the diameter at its beginning, which allows the use of a pre-calculated

impedance for the bell. If the instrument’s bore is curved, the transmission matrix of the

curved section may be calculated using the FEM to improve the accuracy of the results. The

only drawback of this method is that a tonehole may not be located on this curved section

because there is no way to split a pre-calculated transmission matrix to insert the tonehole. In

such a case, the curved section has to be considered straight. The resulting playing frequencies

may be later verified using the FEM.

The toneholes are inserted on the instrument by splitting the waveguide where they are lo-

cated. When the toneholes are displaced by the algorithm, the splitting points are changed. If

keypads are present on the instrument, their distances are not changed by the optimization al-

gorithm; the distance of the key above the tonehole or the ratio of the distance to the tonehole’s

diameter remains fixed.

Of course, if the definition of the instrument to be optimized is itself physically impossible

(such as a lower frequency for a fingering with more toneholes open), the optimization may fail

or the optimized instrument will be out of tune, and the outcome of the algorithm will report

a large mean square error. Only realistic configurations can converge to a good instrument,

which may require relaxing some of the constraints. A good method consists in starting with

simple fingerings and adding more constraints one by one, verifying if a solution exists.

Furthermore, the definition of the optimization variables is important. If they are not cho-

sen carefully, the problem may not converge or may lead to absurd results. As an example, if

the tonehole locations are optimized based on their distances from the tip of the mouthpiece, a

situation is created in which the optimization algorithm may inadvertently place toneholes out

of order or locate one beyond the end of the instrument. This is problematic and will confuse

the algorithm. It is more appropriate to define the first variable as the distance of the last hole

from the open end; the second variable is the distance from the last hole to the preceding hole,

continuing until the first hole. In this manner we can tell the algorithm that the lower bound

for these variables is zero and guarantee that the toneholes are always located in the proper
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order. This also provides a way to set an upper bound on the distances between two toneholes

for the case of instruments with no key systems. Similarly, instead of using the diameter of the

toneholes as an optimization variable, we use the ratio δ = b/a with both a lower and an upper

bound (0 to 1), which prevents a tonehole from becoming larger than the bore.

4.1 Selecting the Instrument’s Bore Shape

Woodwind instruments air columns are based on cylindrical or conical bores because they

produce harmonic partials (Fletcher & Rossing, 1998). A bell may be added to improve the

radiation and timbre of low frequency notes (Nederveen, 1969/1998a), and the top part of

the instrument’s bore may have a different taper angle to improve the pitch of high register

notes (Dalmont, Gazengel, Gilbert, & Kergomard, 1995, Sec. 5). The geometries of current

woodwind instruments often present other deviations, but no evidence of their usefulness exists

(Nederveen, 1969/1998a).

The top part of any woodwind instrument always plays an important role in the tuning

of the instrument. As an example, a purely cylindrical concert flute plays flat in the second

register because of the properties of the excitation mechanism. To overcome this problem, a

tapered head, which raises the pitch of the upper register, is used on modern concert flutes. On

the clarinet, the barrel also presents this kind of tapering; and the upper parts of saxophones,

oboes and bassoons have similar deviations.

As a verification of this phenomenon, the playing frequencies of two saxophone-like con-

ical instruments, differing in the geometry closer to the mouthpiece (approximately in the

region where the neck pipe is normally located), are calculated using the TMM for different

playing frequencies. The first instrument is made of a perfectly conical bore and the second

presents deviations. Their respective geometries are shown in Fig. 4.1. Both instruments use

the same mouthpiece geometry, which is displayed in Fig. A.5, as well as an equivalent vol-

ume of 5.5cm3 to approximate the excitation mechanism. In the first case, the instrument



4.1 Selecting the Instrument’s Bore Shape 112

0 200 400 600 800 1000
x [mm]

5

10

15

20

25

30

35

ra
di

us
[m

m
]

Figure 4.1: Radius as a function of x for the two saxophone-like conical instruments, differing
in the geometry closer to the mouthpiece.

consists of a conical waveguide of 12.2 mm input diameter and 3 different lengths – 965, 600

and 400 mm – and a half angle of 1.5 degrees. For the longest cone, the second register is flat

by 22 cents; and for the shortest, it is sharp by 63 cents. In the second case, the instrument

consists of 4 sections: a cylinder of 25 mm length and 12.2 mm diameter, a cone of 150 mm

length with an inner diameter of 12.2 mm and a outer diameter of 23.5 mm (2.16 degrees half

angle), another cylinder of 25 mm length and 23.5 mm diameter and, finally, a cone with dif-

ferent lengths – 765, 400 and 200 mm – and a half-angle of 1.5 degrees. With this instrument,

the frequencies of the second register do not deviate by more than 4 cents from the correct

frequencies in all three cases.

This example shows two things: (1) a “perfect” cone is not an ideal instrument because it

does not yield a correct tuning of the second register; and (2) deviations from a perfect cone

in the neck pipe are possible to fix this problem. This will not only improve the tuning of

the second register but also the ease of play of the first register, with a better alignment of the
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resonances. Similar results may be obtained for other instruments, such as clarinets and flutes,

and can support many observations made by musicians of the differences in the behaviour

of clarinet barrels, flute heads and saxophone necks. Therefore, it would also be possible to

add the geometric parameters of the deviations as an optimization variable. This is a future

research direction.

In the examples provided in this chapter, no attempt was made to find the correct upper bore

deviations. The objective was to verify the capacity of the algorithm to locate the toneholes

for the first register and to build the instrument for verification purposes. The difficulty of

building with accuracy an instrument bore with subtle deviations prevented us from going in

this direction, but we are confident that if our algorithm is able to calculate the correct location

of the toneholes on a cylindrical or conical bore, it will also work on a bore with deviations.

4.2 Calculating the Tonehole Positions and Dimensions

In this section, the details of the optimization algorithm are presented using an example of an

instrument with 7 finger holes. The vector of the desired playing frequencies

f̂d = { fC4, fD4, fE4, fF4, fG4, fA4, fB4, fC5}

contains the frequencies in Hertz for each of the fingerings of the instrument. They are the

targets for the optimization algorithm. The exact value of each frequency depends on the

tuning system. One may use equal tempering or any other playing frequency. The fingerings
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are represented by the matrix:



C4 D4 E4 F4 G4 A4 B4 C5

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1



, (4.2.1)

where each column represents the state of the finger holes, 0 is closed and 1 is open. The

left column is the fingering for the lowest note, with all the toneholes closed, for which the

desired playing frequency is the first entry in f̂d , that is fC4. The toneholes are opened one

by one to go up the scale. Only the last fingering differs; the second tonehole is closed be-

cause the cross-fingered C5 is more traditional than that with all toneholes open. The algo-

rithm needs to determine the position of each of the seven toneholes as well as the length

of the instrument (diameters are fixed in this example but are usually included, which adds

7 additional variables to optimize). In this case, the vector of optimization variables is x̂ =

{L,de7,d76,d65,d54,d43,d32,d21}, where L is the length of the variable-length section, de7 rep-

resents the distance from the open end to the last tonehole and dmn the distance between tone-

hole m and tonehole n. The initial geometry of the instrument consists in the vector x̂0 and

each iteration produces a new estimate x̂k. At each iteration the vector f̂k = f̂ (x̂k) contains the

playing frequency of each fingering for an instrument defined by the geometry vector x̂k. For a

specific geometry vector x̂, the error norm is calculated as the sum of the squares of the tuning
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error of each fingering in cents:

e(x̂) =
N

∑
i=0

[
1200log2

(
f̂ (x̂)[i]/ f̂d[i]

)]2
. (4.2.2)

Once the error norm is calculated, the algorithm must determine what changes are to be

applied to the geometry vector x̂ in order to reduce this error. This is done by calculating the

gradient of the error with respect to each of the optimization variables:

gk =
1
ε



e(x̂k +{ε,0,0,0,0,0,0,0})− e(x̂k)

e(x̂k +{0,ε,0,0,0,0,0,0})− e(x̂k)

e(x̂k +{0,0,ε,0,0,0,0,0})− e(x̂k)

e(x̂k +{0,0,0,ε,0,0,0,0})− e(x̂k)

e(x̂k +{0,0,0,0,ε,0,0,0})− e(x̂k)

e(x̂k +{0,0,0,0,0,ε,0,0})− e(x̂k)

e(x̂k +{0,0,0,0,0,0,ε,0})− e(x̂k)

e(x̂k +{0,0,0,0,0,0,0,ε})− e(x̂k)



, (4.2.3)

where ε is a small number.

This computation of the gradient requires recalculating the error norm for one small dis-

placement of each of the optimization variables. In this case, with 8 fingerings, this requires

obtaining 64 resonance frequencies, for each of which the impedance is calculated for many

frequencies around the target frequency. This leads to a large number of calculations and ex-

plains why it is not practical to use the FEM as the calculation method, whereas the TMM

provides sufficiently fast calculations.

For each of the fingerings, the input impedance is calculated for multiple frequencies in a

relatively tight range (± 1 tone) around the target playing frequency for this fingering. Then,

the resonance is determined by finding the zero of the phase of the reflection coefficient using

linear interpolation. For this method to work, a zero must exist in the range, which requires that
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the instrument must be sufficiently close to a solution, and that the bounds of the optimization

method are sufficiently tight. When the range is too wide around each frequency, the algorithm

encounters another zero of the phase, which corresponds either to another resonance or to an

anti-resonance. This confuses the method and it starts to diverge.

Using the current method with tight bounds and small frequency ranges to search for res-

onances, we need to provide a good initial instrument. This first instrument is obtained by

locating each tonehole individually, thus neglecting the effect of the presence of the other

holes. This kind of initial instrument geometry has sufficiently small tuning deviations (gen-

erally less than 50 cents) for the algorithm to work.

4.3 Examples

This method for the calculation of tonehole location is applied to a few simple cases. First,

as a validation, the solution for a six-tonehole flute is compared to the results obtained by

Keefe (1989). Then, three instruments are investigated, demonstrating various possibilities of

the algorithm, such as the optimization of the tonehole locations and diameters with cross-

fingerings, the calculation of the positions for an equally-tempered or a just tuning and the

imposition of bounds on the distances between the fingers.

4.3.1 Keefe’s Flute

This is the case of a simple six-tonehole cylindrical flute. The location of the toneholes is com-

pared to the values obtained by Keefe (1989) as a validation case study. The internal diameter

of the instrument is 2a = 18.9mm and the wall thickness, which is equivalent to the tonehole

heights, is 3.4mm. The diameters of each tonehole were fixed to 9.53, 9.53, 7.94, 7.94, 9.53

and 6.35mm, starting from the top of the instrument. Only the positions were calculated with

the optimization algorithm in Keefe’s publication. The diameter of the embouchure hole is

12.7mm and is located at 16mm from the top of the instrument. The excitation mechanism
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Tonehole Location [mm] (diameter [mm])

Keefe Lefebvre

1 286.5 (9.5) 286.9 (9.5)
2 323.7 (9.5) 324.1 (9.5)
3 359.5 (7.9) 359.5 (7.9)
4 412.5 (7.9) 412.3 (7.9)
5 437.0 (9.5) 437.4 (9.5)
6 476.3 (6.4) 475.8 (6.4)

end 575.6 574.7

Table 4.1: Comparison of the tonehole layout of an optimized flute with Keefe’s flute

is taken into account with the addition of a fixed-length cylindrical segment 42mm long (this

includes the effect of the volume at the left of the embouchure hole). The air temperature was

not specified, but properties of air at 25◦C will be used.

In Table 4.1, the positions of the toneholes of Keefe’s flute are compared to the results of

the proposed optimization algorithm. The distances are relative to the hypothetical beginning

of the instrument based on the excitation mechanism’s equivalent length; that is, to obtain the

distances from the centre of the embouchure hole, subtract 42mm. A diagram of the instrument

with the configuration of the toneholes for each fingering is shown in Fig. 4.2. There are only

small differences between the two flute geometries. They may be due to the tonehole models

(we were using the results for the tonehole on a thick pipe from Chapter 3), the radiation

models for the open end or the properties of air.

The maximal difference in the positions of the toneholes for the two flutes is 0.5 mm, which

represents a frequency shift of no more than 2 cents. This is a negligible difference, and we

conclude that the results of the current method are congruent with those of Keefe.

4.3.2 PVC Flute

For simplicity of testing the results of the algorithm, another flute is calculated for the geo-

metric properties of a standard 3/4 inch PVC pipe. The internal diameter is 2a = 17.8mm and
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1 2 3 4 5 6

D4 [293.66 Hz]
E4 [329.63 Hz]
F]4 [369.99 Hz]
G4 [392.00 Hz]
A4 [440.00 Hz]
B4 [493.88 Hz]
C]5 [554.37 Hz]

Figure 4.2: Diagram of Keefe’s flute.

the wall thickness w = 2.25mm. The length of pipe between the cork and the embouchure

hole is approximately 17mm, as in a modern concert flute. The tuning will be the same as for

Keefe’s flute. For the embouchure hole, a wooden sleeve was fabricated to improve the playing

characteristics of the instrument, and the height of the embouchure hole becomes 5 mm.

The characterization of the excitation mechanism was done by the author, who is only an

amateur flute player. The equivalent length of the excitation mechanism was found to follow

le = 0.0215e0.00228 f for the first register. The equivalent length is different for the second

mode, but no attempt was made to optimize the instrument for both modes.

Two instruments were designed. The first uses large fixed-diameter toneholes and only

the position is optimized. For the second flute, cross-fingerings are added for the notes A[,

B[ and C. The configuration for these notes follows the fingerings of a Renaissance flute, as

recommended by the maker of historical flutes Boaz Berney (http://berneyflutes.com/

material/pdf+img/renaissance_fingerings.pdf). The diameter is free to change to al-

low for a solution. The distances are relative to the centre of the embouchure hole. The

instrument with cross-fingerings converges to a solution with small toneholes. The positions

and dimensions of the toneholes are listed in Table 4.2.

http://berneyflutes.com/material/pdf+img/renaissance_fingerings.pdf
http://berneyflutes.com/material/pdf+img/renaissance_fingerings.pdf
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1 2 3 4 5 6

D4 [293.66 Hz]
E4 [329.63 Hz]
F]4 [369.99 Hz]
G4 [392.00 Hz]
A4 [440.00 Hz]
B4 [493.88 Hz]
C]5 [554.37 Hz]

1 2 3 4 5 6

D4 [293.66 Hz]
E4 [329.63 Hz]
F]4 [369.99 Hz]
G4 [392.00 Hz]

A[4 [415.30 Hz]
A4 [440.00 Hz]

B[4 [466.16 Hz]
B4 [493.88 Hz]
C5 [523.25 Hz]
C]5 [554.37 Hz]

Figure 4.3: Diagram of a large-diameter and a small-diameter tonehole flute.



4.3 Examples 120

Tonehole Location [mm] (diameter [mm])

Flute 1 (large holes) Flute 2 (small holes)

1 223.5 (10.0) 205.6 (5.8)
2 268.3 (10.0) 241.3 (4.9)
3 313.3 ( 9.0) 256.4 (3.0)
4 371.0 (10.0) 332.5 (3.1)
5 395.6 (10.0) 372.4 (5.2)
6 448.2 ( 8.0) 390.3 (2.9)

end 534.2 535.9

Table 4.2: Comparison of the tonehole layout for a flute

The flute with large-diameter toneholes was fabricated and played. An obvious prob-

lem appears when one tries to play this instrument: the distances between toneholes 2 and

3 (45 mm), as well as between toneholes 5 and 6 (52.6 mm), are so large that the instrument

is unplayable. The distance between toneholes 1 and 2 (44.8 mm) is also very large but still

playable. The maximal distances between two fingers should probably be kept below 40 mm

or even less if possible. Otherwise, the tuning of the instrument corresponds to the target

frequencies provided by the algorithm.

While experimenting with this flute, a counterintuitive phenomenon became apparent. The

playing frequency of the flute with all toneholes but the first closed is approximately 15 Hz

sharper than the playing frequency with all toneholes open. Normally, when toneholes are

closed beyond the first open tonehole, the playing frequency becomes lower. The calculated

input admittance of the flute for both fingerings, displayed in Fig. 4.4, reveals that this is indeed

the behaviour of the flute.

4.3.3 Chalumeau

This section describes how a simple six-hole chalumeau was designed and built. The excitation

mechanism consisted of a clarinet mouthpiece and reed. Three cylindrical pipes of lengths 148,

296 and 446 mm were played, resulting in the playing frequencies 378, 225 and 160 Hertz,
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Figure 4.4: Input admittance of the large-toneholes flute for two fingerings: [1,1,1,1,1,1]
(dashed) and [1,0,0,0,0,0] (dotted).

respectively. From this data, it was found that the mouthpiece assembly could be replaced by a

cylindrical pipe of length 80.2 mm to approximate the excitation mechanism. The transmission

matrix model of a tonehole in a thick pipe, as presented in a previous chapter, was used for the

calculations.

The instrument is made of a thick wooden pipe of internal radius 2a = 15mm and wall

thickness t = 6.5mm. It can play the first 7 notes of a D-major scale by opening one hole

after the other. The diameter of the tonehole was selected to be 2b = 9mm, but two of the

toneholes were made smaller to diminish the distance and make the instrument easier to play

(ergonomy). The results of the optimization for an equal-tempered tuning and a just-tuning

are presented in Table 4.3.

The differences in the position of the toneholes for the two tuning systems are correlated
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Tonehole Location [mm] (diameter [mm])

Chalumeau Chalumeau (just)

1 286.6 (9.0) 288.5 (9.0)
2 323.7 (9.0) 327.3 (9.0)
3 349.8 (6.0) 349.2 (6.0)
4 415.4 (9.0) 415.2 (9.0)
5 436.6 (9.0) 440.7 (9.0)
6 474.4 (6.0) 473.1 (6.0)

end 571.6 571.7

Table 4.3: Comparison of the tonehole layout for two chalumeaux (equally tempered vs. just)

with the interval. As an example, for tonehole 5, which serves for degree 3 of the scale (major

third relative to the fundamental), the just note is 13.7 cents lower than the equally tempered

note and results in a tonehole located farther away from the top by 4.1 mm.

The distances between the toneholes are comfortable for playing the instrument. The tun-

ing corresponds to the desired frequencies, but two of the notes are difficult to play (E and

A). For these notes, the sound level is weaker and an attempt to play them louder with more

effort fails; the instrument feels “blocked”. This occurs when the first open tonehole is one of

the two small 6 mm toneholes. The problem is worse for the lower frequency note (E). When

playing the second register of the instrument, this effect does not occur.

This behaviour has been described previously by Keefe (1983) and is attributed to the pres-

ence of convective nonlinearities, an effect that is mostly important for low frequency tones

because it is proportional to the particle displacement dh, which is inversely proportional to

the frequency. The acoustic particle velocity vh in a tonehole could be obtained from the TMM

calculations with an inverse calculation, starting from the input impedance of the instrument

by fixing a value of the pressure or velocity at the input and propagating this value up to the

first open tonehole. This feature has to be implemented in our TMM software and would

enable us to estimate the likelihood of the occurrence of nonlinearities to determine whether

or not the tonehole is large enough to work properly in a given wind instrument. No precise



4.3 Examples 123

criteria were reported in the literature; more work is required to fully understand this aspect.

4.3.4 A Six-Tonehole Saxophone

The excitation mechanism for this instrument consists of a soprano saxophone mouthpiece

and reed. The characterization of an excitation mechanism for conical instruments would

require the construction of several cones of different lengths, which is more difficult than

for cylindrical pipes. Unfortunately, we only had one such conical waveguide built. We found

that a constant equivalent volume of 4.3cm3 coupled to the mouthpiece and conical waveguide

gave correct results for the fundamental and first resonance frequencies of the instrument.

This instrument was inspired by The Saxie, a “toy” saxophone (Rycroft, 1999). This in-

strument was designed to play a D minor scale and some altered notes with cross-fingerings. It

is unlikely that the cross-fingerings were made to be played in tune on the existing instruments

because this would require very small holes, similar to the case of the flute, which would result

in an instrument radiating less energy and being more difficult to play.

In the present optimization study, the instrument consists of a conical bore of 3 degrees

taper angle with an input diameter of 9.5 mm. With only six toneholes of 1mm height, this

instrument should be able to play seven standard fingerings. Contrary to The Saxie, a C-Major

scale was chosen with the fingerings defined in the following matrix:



C4 D4 E4 F4 G4 A4 B4

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1


. (4.3.1)



4.3 Examples 124

Tonehole Location [mm] (diameter [mm])

fixed ratio bounds on distances

1 139.6 ( 7.0) 137.6 ( 6.6)
2 177.0 ( 7.8) 175.0 ( 7.5)
3 222.5 ( 8.9) 211.8 ( 6.3)
4 281.3 (10.2) 275.8 ( 8.7)
5 306.0 (10.7) 307.3 (12.0)
6 370.4 (12.0) 345.3 ( 6.8)

end 471.9 468.5

Table 4.4: Comparison of the tonehole layout for two conical waveguides with six toneholes

One option is to optimize the instrument for the positioning of the toneholes only, with

the diameter of each tonehole defined by a fixed ratio δ = b/a. The results for this instrument

are displayed in Table 4.4. Unfortunately, this instrument is unplayable because some of the

toneholes are too large and some of the distances too wide for the instrumentalist’s fingers. To

overcome these problems, the diameters may be freely moved and bounds on the distances and

diameters added. The distances between two fingers are bounded to lie between 25 and 38 mm,

whereas the distances between the two hands does not need such a small bound. The values

of δ for each hole are bounded to the range 0.25−0.8. The resulting geometric parameters for

these instruments are also in Table 4.4.

The playing characteristics of this instrument are not very good because the toneholes are

too small. The instrument plays only very softly and it responds well only when all the tone-

holes are closed or when tonehole 5 is the first open tonehole. The thickness of the instrument’s

wall is about 2 mm and the toneholes are drilled directly into the wall; therefore, the radius of

curvature of the streamline is very small. Because the toneholes are small, the particle velocity

becomes large, which seems to cause destructive non-linearities. To work properly, such an

instrument would require a chimney with a larger geometric radius of curvature and possibly

larger toneholes. A picture of “The Saxie” (Rycroft, 1999) reveals that the toneholes have

chimneys instead of being only holes in the body.
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The tuning of the six-tonehole saxophone is correct when playing pianissimo. As soon as

more pressure is added, the pitch flattens in reaction to the increase of the nonlinear losses in

the toneholes.

4.4 Summary

The optimization algorithm presented in this section works well and allows for the calculation

of the positions and dimensions of the toneholes on a woodwind instrument under various con-

straints, such as multiple fingerings (including cross-fingerings) and bounds on the distances

between adjacent toneholes and on their diameters. The current implementation minimizes

tuning errors. It may optimize tonehole positions, diameters and heights with a pre-selected

bore shape. The algorithm was verified with the design and fabrication of simple instruments.

The applications of this method are numerous: the design of instruments playing in alternative

tuning systems, the addition of fingerings for quarter tones to existing instruments, the design

of instruments of various sizes, the improvement of the tuning of existing instruments and so

forth.

The outcome of this algorithm depends on the model of the excitation mechanism. More

work is required with professional musicians to adequately characterize the excitation mecha-

nisms with experimental measurements of the playing frequencies of simple instruments.

In the case of reed instruments, non-linear losses occur in toneholes when they are too

small in diameter, short in height, or when they present a small radius of curvature. The

instruments become difficult to play under these conditions. A criterion needs to be added

to the calculation software to determine the magnitude of these losses and the likelihood that

an instrument will become difficult to play. This would help in designing good woodwind

instruments with less trial and error.

Future work includes the design of more complex instruments and adding bore perturba-

tions to the optimization variables and more constraints such as the tonehole lattice cutoff
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frequency and/or the harmonicity of the resonances.



Conclusion

This thesis led to the development and application of a number of methods for the computa-

tional design of woodwind instruments. First, the Transmission-Matrix Method (TMM) for the

calculation of the input impedance of an instrument was implemented. An approach based on

the Finite Element Method (FEM) was developed to determine the transmission-matrix param-

eters of an arbitrary discontinuity inside a waveguide. This was applied to a single unflanged

tonehole and a single tonehole on a thick pipe which resulted in the development of revised

formula for the transmission-matrix parameters of open and closed toneholes that improve the

accuracy of the TMM calculations for toneholes of short height and large diameters. This

approach was also applied to investigate the possible variation of tonehole parameters when

located on a conical bore. It was found that the shunt impedance is unchanged and the series

impedance only slightly affected. Therefore, we concluded that the tonehole transmission-

matrix parameters developed on a cylindrical bore are equally valid for use on a conical bore.

Next, the development of a boundary condition for the approximation of the boundary layer

losses enabled the simulation of complete woodwind instruments with the FEM. The compar-

ison of the simulations of instruments with many open or closed toneholes with calculations

using the TMM reveals small discrepancies that are most likely attributable to internal or ex-

ternal tonehole interactions. This effect is most important in the low frequencies for closed

toneholes and near the tonehole lattice cutoff frequency for open toneholes. This interaction

increases the amount of radiated energy for open toneholes. This phenomenon is not taken
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into account in the TMM and poses a limit to its accuracy (±10 cent in the worse case). Us-

ing this boundary condition and the methodology previously developed for the determination

of transmission-matrix parameters, one may calculate the transmission-matrix parameters of

curved bores of varying cross-sections for use within the TMM. No theoretical solutions exist

to account for the effect of curvature and boundary losses in a duct; but by using pre-calculated

transmission-matrix parameters for the curved sections of an instrument, one can incorporate

the accuracy of the FEM within the TMM.

Finally, we propose an optimization method, which uses the TMM coupled with an excita-

tion mechanism model to estimate the playing frequencies of a hypothetical instrument. This

enables us to automate the calculation of the positions and dimensions of the toneholes on a

woodwind instrument to minimize tuning errors. The method may optimize an instrument for

any number of fingerings, including cross-fingerings and constraints with bounds on the dis-

tances between adjacent toneholes and on the toneholes’ diameters and heights. The playing

frequencies may or may not be chosen to be of equal temperament, allowing for the design of

instruments playing in alternative tuning systems. The results of the optimization algorithm

are satisfactory and ready to be applied to more complex instruments.

Future Work

The optimized geometry of woodwind instrument toneholes depends on the excitation mech-

anism model provided in the algorithm. In this thesis, these models were estimated from

simple playing experiments by the author. For the design of professional quality woodwind

instruments, the characterization of the excitation mechanism should be done with careful ex-

periments with many professional musicians. This is one of the important future aspects of

this research to pursue.

Also, incorporating the tonehole cutoff frequency and/or the harmonicity of the first few
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resonance as new criteria for the optimization algorithm would enable optimizing the instru-

ment for timbre evenness and “ease of play” as well as for tuning. This is to be investigated.

Moreover, the findings of Chapter 3 concerning the tonehole interaction should be verified

against impedance measurements of fabricated prototypes. In general, the results of FEM

simulations and TMM calculations should be compared with experimental measurements. The

analysis of this chapter need to be refined to determine in which proportion internal or external

interactions are responsible for the discrepancies between the FEM and the TMM.

For purposes of woodwind instrument design, it would be helpful to determine a criterion

to evaluate the importance of non-linear losses in toneholes and to help in detecting when

toneholes are too small in diameter or when the radius of curvature of the streamline is too

small. At this point, only by means of playing experiments can it be verified if the optimized

toneholes are going to work properly.

Finally, the methods developed in this thesis need to be applied to specific problems oc-

curring in existing woodwind instruments. This would be an experimental task to pursue in

collaboration with professional instrumentalists and instrument makers.



Appendix A

The Single-Reed Excitation Mechanism

û
ûin

p̂in

y

y0
ûr

p0 + p̂u

Figure A.1: Diagram of the excitation mechanism of a single reed instrument.

The excitation mechanism of single-reed instruments consists in a cane reed mounted on

a mouthpiece with a curved lay. Previous scientific studies of this system are based on the

simplification that the reed behaves as a one degree of freedom mass-spring-damper system

and the acoustic flow respects the Bernoulli equation (Backus, 1963; Worman, 1971; Ned-

erveen, 1969/1998a; Fletcher, 1979; McIntyre, Schumacher, & Woodhouse, 1983; Dalmont

et al., 1995). The parameters of this system must be properly estimated in order to represent

the physical reality of the instrument. Unfortunately, they are difficult to measure and are

only approximately known. Furthermore, the instrumentalist has the ability to change these
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parameters while playing through embouchure control. The resonance frequency of the alto

saxophone reed in playing conditions was estimated to be approximately 1 kHz (Boutillon &

Gibiat, 1996) but is likely to be higher because notes of higher frequencies are playable, and

it is known that the playing frequency may not be higher than the reed resonance frequency.

It is also known that the threshold blowing pressure for the saxophone is likely to be approxi-

mately 2-3 kPa for all notes (Fuks & Sundberg, 1999). The effect of the excitation mechanism

is always to lower the playing frequency of the instrument relative to the resonances of the

instrument’s air column. Previous investigations tried to add an “equivalent” cylinder at the tip

of the instrument to take into account this effect. This method is not adequate, and we propose

a more precise model which is frequency dependent.

A.1 Description

In this section, we present a description of the excitation mechanism with a mathematical

analysis from which we will propose a method to incorporate the excitation mechanism in the

design process of an instrument. This excitation mechanism is depicted in Fig. A.1, where the

variables used in the following analysis are represented. In this diagram, the reed tip is not

located at its rest position H (tip opening) but at the average position y0 resulting from the static

pressure p0 provided by the player. The tip opening H may be changed by the instrumentalist

by varying the embouchure. The average position y0 depends on both H and p0. The dynamic

position of the reed around y0 is ŷ. The acoustic flow û entering the reed channel is separated

into two parts, the acoustic flow ûin entering the instrument’s air column and the acoustic flow

ûr due to the reed’s motion:

û = ûin + ûr. (A.1.1)

Similarly, we can write:

− û = ûu− ûr, (A.1.2)
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where ûu is the acoustic flow leaving the instrumentalist’s mouth.

The forces acting on the reed are the pressure on its inner and outer surfaces, that is, the

pressure inside the mouthpiece p0+ p̂u, where p̂u is the dynamic (acoustic) portion, and inside

the mouth p̂in, as well as forces coming from the interaction with the instrumentalist’s lip,

which are not known and are not considered in our analysis. Consequently, the parameters of

the reed will include the effect of the interaction with the lip and are likely to be different for

players with contrasting playing styles (embouchures).

The acoustic flow û entering the reed channel is a non-linear function of the pressure differ-

ence ∆p = p0+ p̂u− p̂in, which can be linearized and represented by the generator admittance

Yg to yield:

û = u0 +Yg∆p. (A.1.3)

The acoustic flow induced by the reed motion can also be characterized by the reed admit-

tance Yr:

ûr = Yr∆p. (A.1.4)

Defining the input impedance of the air column as Zin and of the vocal track as Zu, we

obtain the system of Fig. A.2.

p0

−1

∆p̂

Yg

Yr

û

ûr

−1
−1

ûin

ûu

Zin

Zu

p̂in

p̂u

Figure A.2: Block diagram of the single reed excitation mechanism system.
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The transfer function between the pressure at the input of the air column and the static

pressure in the mouth is:
p̂in

p0
=

(Yg−Yr)Zin

1+(Yg−Yr)(Zin +Zu)
, (A.1.5)

for which the limit of stability occurs when:

Yg−Yr +
Yin

Yin/Yu +1
= 0. (A.1.6)

If we neglect the influence of the vocal track, which is a valid hypothesis when playing in

the normal register of the instrument, the expression can be simplified to:

Yg−Yr +Yin = 0. (A.1.7)

A.2 Reed Admittance

We modelled the reed as a linear mass-spring-damper system, using the same notation as in

Eq. (1) from Dalmont et al. (1995):

d2y
dt2 +gr

dy
dt

+ω2
r (y−H) =

−∆p
µr

, (A.2.1)

where y is the displacement of the reed relative to its equilibrium position y0 (positive when

going away from the mouthpiece’s lay), gr is the reed damping factor, ωr = 2π fr is the angular

eigenfrequency (resonance frequency in absence of damping), µr is an equivalent mass per

unit area and ∆p = p0 + p̂u − p̂in, where p0 is the static pressure in the mouth, p̂u is the

upstream dynamic pressure (in the instrumentalist’s mouth) and p̂in is the pressure inside the

mouthpiece, near the reed’s tip. In the frequency domain, replacing y = y0 + ŷe jωt and ∆p =

p0 +(p̂u− p̂in)e jωt = p0 + p̂∆e jωt in Eq. A.2.1, we obtain:

µr(ω2
r −ω2 + jωgr)ŷe jωt +µrω2

r (y0−H) =−p0− p̂∆e jωt . (A.2.2)
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The following equation is obtained by equating constant terms:

y0 = H− p0

µrω2
r
, (A.2.3)

and we obtain the transfer function of the reed displacement relative to p̂∆ by equating terms

in e jωt :
ŷ
p̂∆

=
−1

µr(ω2
r −ω2 + jωgr)

=−D(ω), (A.2.4)

where

D(ω) =
ω2

r −ω2− jωgr

µr

[
(ω2

r −ω2)2 +ω2g2
r

] . (A.2.5)

The acoustic flow induced by the reed is:

ûr = jωSrŷ, (A.2.6)

where Sr is the reed’s effective area. An estimation of its value will be discussed later.

Finally, using Eq. (A.2.6) and Eq. (A.2.4), we obtain the reed admittance:

Yr =
ûr

p̂∆
=− jωSrD(ω) =− jωC(ω). (A.2.7)

It is interesting to investigate the equivalent volume Ve due to reed-induced acoustic flow,

calculated as:

Ve(ω) = ρc2C(ω). (A.2.8)

The low frequency approximation C(ω→ 0) =C0 =
Sr

µrω2
r

is commonly used in the litera-

ture as a frequency independent length correction.

Consideration of Fig. A.3 suggests that the approximation of constant length correction

may not be correct, and that the value of the damping factor greatly influences the length
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Figure A.3: Equivalent volume Ve due to reed admittance Yr as a function of frequency for
three reeds. Common parameters are ur = 0.075kg/m2, fr = 1000Hz, Sr = 7.5×10−5 m2.
The damping factor gr is: (dashed) 4×ωr, (dotted) 2×ωr and (dash-dot) 0.7×ωr. The solid
line represents the low frequency approximation ρc2C0.

correction due to reed-induced acoustic flow. We must also consider that the simple spring-

mass-damper representation of the reed may be inadequate.

A.3 Generator Admittance

The acoustic flow entering the reed channel responds to a non-linear function of the pressure

difference between the player’s mouth and the mouthpiece. It also depends on the reed-valve

opening, controlled by the dynamics of the reed motion. Such a system has been studied by

Backus (1963), but we are presenting a slightly simplified equation here by neglecting the
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mass of air in the reed slit and assuming the Bernoulli equation to be valid (compare Eq. (25)

from Backus):

∆p =
ρu2

2w2y2 , (A.3.1)

where w is the width of the reed channel. Assuming sinusoidal excitation, we replace u =

u0 + ûe jωt , y = y0 + ŷe jωt and ∆p = p0 + p̂∆e jωt in Eq. (A.3.1), which yields:

p0 + p̂∆e jωt =
ρ

2w2
(u0 + ûe jωt)2

(y0 + ŷe jωt)2 . (A.3.2)

Collecting constant terms, we obtain:

p0y2
0 =

ρu2
0

2w2 , (A.3.3)

and terminate in e jωt :

2p0y0ŷ+ y2
0 p̂∆ =

ρu0

w2 û. (A.3.4)

Using Eq. (A.3.3) and Eq. (A.2.3) to eliminate u0 and y0 from Eq. (A.3.4) as well as the

reed transfer function from Eq.(A.2.4) to replace ŷ, we obtain the generator admittance:

Yg =
û
p̂∆

= w
H− p0[1/µrω2

r +2D(ω)]√
2p0ρ

. (A.3.5)

This equation is important because it shows the relation between the acoustic flow in the

reed channel and the dynamic reed. The consequence is that there is an imaginary part to

the generator admittance and, therefore, a length correction. The reed damping term gr in

Eq. (A.2.5) is responsible for this effect. The low frequency approximation of the generator

admittance is:

Yg(ω→ 0) = w
H− p0[1/µrω2

r −2 jωgr/µrω4
r ]√

2p0ρ
, (A.3.6)

where we can observe that the imaginary part of this admittance, like the reed admittance, is

proportional to ω in the low frequency limit; that is, there exists a length correction associated
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with the generator admittance in the low frequency limit.

The low frequency approximation of the generator equivalent volume is:

Ve =−ρc2 ℑ(Yg)

ω
= wc2

√
2p0ρ[gr/µrω4

r ]. (A.3.7)

This equivalent volume is proportional to the reed damping factor, an effect that can be

observed in Fig. A.4. This low frequency approximation also reveals that the equivalent vol-

ume is inversely proportional to the fourth power of the reed’s resonance frequency; therefore,

we expect that this is an important mechanism for controlling the playing frequency using lip

pressure variations.

Notice also that the equivalent volume is proportional to the square root of p0, the static

pressure in the player’s mouth. This implies that the playing frequency decreases when the

instrumentalist plays louder. It is likely that this effect is counterbalanced by a tighter em-

bouchure, which raises the reed’s resonance frequency and has the opposite effect.

A.4 The Reed’s Effective Area

The acoustic flow induced by the reed’s motion is:

ur = Srẏtip = w
∫ l

0

dy(x)
dt

dx, (A.4.1)

where w is the width of the reed and l is the length of reed that is free to move. If we suppose

that the reed moves rigidly as if it were rotating around its contact point with the lay (at x = 0),

then:
dy(x)

dt
= ẏtip

x
l
, (A.4.2)

which yields Sr = wl/2. This value is thus a maximal boundary on the effective area of the

reed. If we suppose instead that the reed’s motion is not rigid but follows the lay’s shape,
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Figure A.4: Equivalent volume Ve due to the generator admittance Yg as a function of frequency
for three reeds. Common parameters are ur = 0.075kg/m2, fr = 1000Hz, Sr = 7.5×10−5 m2.
The damping factor gr is: (dashed) 4×ωr, (dotted) 2×ωr and (dash-dot) 0.7×ωr. The solid
line represent the low frequency approximation given by Eq. (A.3.7) for the second reed.

we obtain a smaller value. We may suppose a parabolic shape such that y(x) = ax2, so that
dy(x)

dt = ax2 with ẏtip = al2, which finally yields:

dy(x)
dt

= ẏtip(x/l)2. (A.4.3)

Performing the integration in Eq. (A.4.1), we obtain the value Sr = wl/3, which is a more

realistic value.
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A.5 Estimation of the Playing Frequencies

For the design of a single-reed woodwind instrument, it is important to estimate the equiv-

alent volume of the excitation mechanism and its frequency dependence. Unfortunately, the

parameters of the reed model are not known with precision. In this section, we provide simple

experimental results along with calculations of the playing frequencies based on the simple

model we have presented in order to estimate the equivalent volume.

From Eq. (A.1.7), Eq. (A.2.7) and Eq. (A.3.5), we can calculate the theoretical playing

frequency and threshold blowing pressure for a given air column’s input impedance Zin = 1/Yin

and a reed model characterized by the parameters µr, gr, ωr as well as H, w and Sr. We need

only to solve simultaneously the real and imaginary parts:

ℜe(Yg−Yr +Yin) = 0,

ℑe(Yg−Yr +Yin) = 0.

We are going to compare theoretical calculations with experimental values of the playing

frequencies for a simple conical air column with input diameter di = 12.5mm, output diameter

do = 63.1mm and length L = 965.2mm coupled to a standard mouthpiece model Meyer #8.

The measured input impedance of such a cone corresponds with great precision to theoretical

calculations (Lefebvre & Scavone, 2008). The volume of the missing part of the cone is

Vmissing = 9.75cm3. The geometry of the mouthpiece is depicted in Fig. A.5, where the dashed

vertical line shows the location where the cone is joined to the mouthpiece. The total volume

of the mouthpiece is Vm = 8.1cm3.

With the air column defined by the mouthpiece coupled to the conical waveguide, we

were able to find, through a process of trial and error, a set of excitation mechanism param-

eters that predicts relatively accurately the measured playing frequencies. The results are
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Figure A.5: Diagram of the mouthpiece geometry.

shown in Table A.1 and the parameters are indicated in the caption. For the fundamental res-

onance, the sum of the mouthpiece volume (8.1cm3) and the equivalent volume due to the

excitation mechanism (3.9cm3) is larger than the volume of the missing part of the conical

bore (12cm3 > 9.75cm3). For higher frequencies, the equivalent volume due to the excitation

mechanism increases even more; it is more than double for the eighth resonance. The relatively

good (∼ 10 cents) correspondence between the measured and predicted playing frequencies

suggests that the excitation mechanism model is representative of the reality.

Even though the parameters of the excitation mechanism are not well known and difficult

to measure, the playing frequencies of an instrument can be predicted with relative accuracy

using the one degree of freedom mass-spring-damper model. The most important observation

from these results is that the equivalent volume due to the excitation mechanism is a growing

function of frequency for a fixed embouchure setting. This contrasts with the commonly used

approach, which consists of using a constant equivalent volume. Instead of painstakingly

estimating the values of the various parameters to obtain the correct equivalent volume as

a function of frequency, it is possible to experimentally determine the equivalent volume of

the excitation mechanism as a function of frequency, from which a data-fit formula may be

obtained. Since this characterization will produce different results for different mouthpiece

assemblies and instrumentalists, it is important that it be done with an instrumentalist and a

mouthpiece assembly representative of the targeted market (students, professionals, classical,

jazz etc.).

As an example, the data obtained from the cone, presented in Table A.1, is displayed in
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Theoretical Experimental Interval

fr [Hz] fp [Hz] Ve [cm3] pth [kPa] fm [Hz] 1200log2( fm/ fp)

139.8 138.6 3.86 2.6 138.6 -0.3
286.6 279.3 3.86 2.3 280.2 +5.7
439.6 424.4 4.04 2.2 424.6 +0.7
598.4 577.0 4.40 2.2 573.5 -10.6
761.8 735.1 4.99 2.3 730 -12.2
928.4 895.5 5.91 2.5 890 -10.7

1097.3 1054.7 7.36 3.1 1055 +0.5
1267.6 1208.4 9.88 4.8 1212 +5.1

Table A.1: Estimation of the playing frequencies for the successive harmonics of a conical bore
with mouthpiece and excitation mechanism (µr = 0.0475kg/m2, fr = 1500Hz, gr = 0.6ωr).
Resonance frequencies of the air column at the tip of the mouthpiece ( fr), playing frequencies
estimated from the mouthpiece model coupled to the air column ( fp), equivalent volume of the
excitation mechanism (Ve) at the playing frequency, threshold blowing pressure at the playing
frequency (pth), experimental measurement of the playing frequency of the instrument ( fm),
interval between the experimental and theoretical playing frequencies (last column).

Fig. A.6 along with the data fit formula Ve = 3.85+7.24×10−7 f 2 +2.33×10−12 f 4.

It is interesting to compare these predictions of playing frequencies with other methods

presented in the literature. It was customary to replace the real mouthpiece and excitation

mechanism effect with an equivalent cylindrical mouthpiece, or to add a cylindrical section at

the tip of the mouthpiece. This method would shift the impedance curves so that the playing

frequency could be estimated by the resonance frequencies of the equivalent system com-

posed of the instrument and the “equivalen” cylinder. We have tested these two techniques to

compare with our previous results. In the first case, we calculated that a cylinder of length

L = 93.7mm (and diameter D = 15.75mm) would produce the correct playing frequency for

the fundamental ( fp = 138.6Hz). In the second case, we used the same mouthpiece geometry

depicted in Fig. A.5 with an additional cylinder of length 55.5mm and diameter 8mm. The

predicted playing frequencies and calculated errors are presented in Table A.2. Even though

the second model provides better results than the first, they are not as good as those based on
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Figure A.6: Total equivalent volume Ve as a function of frequency. Data-fit formula (dashed),
data points (filled circles).

the excitation mechanism model.
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Cylindrical mouthpiece Mouthpiece + cylinder

fm fp 1200log2( fm/ fp) fp 1200log2( fm/ fp)

138.6 138.6 0.0 138.6 0.0
280.2 269.0 +70.5 280.8 -3.5
424.6 406.3 +76.2 427.9 -13.4
573.5 559.9 +41.6 582.1 -25.8
730 722.7 +17.4 741.8 -27.7
890 889.3 +1.4 904.1 -27.2

1055 1057.2 -3.5 1066.1 -18.1
1212 1224.8 -18.2 1223.4 -16.2

Table A.2: Estimation of the playing frequencies for the successive harmonics of a conical bore
with cylindrical mouthpiece models: (1) the mouthpiece is a cylinder and (2) the mouthpiece
geometry described in Fig. A.5 is elongated with a cylinder.
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