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Abstract

In this thesis, various sound analysis/re-synthesis schemes are investigated in a

source/filter model framework, with emphasis on the source component. This

research provides improved methods and tools for sound designers, composers

and musicians to flexibly analyze and synthesize sounds used for gaming, film

or computer music, ranging from abstract, complex sounds to those of real

musical instruments.

First, an analysis-synthesis scheme for the reproduction of a rolling ball

sound is presented. The proposed scheme is based on the assumption that the

rolling sound is generated by a concatenation of micro-contacts between a ball

and a surface, each having associated resonances. Contact timing information

is extracted from the rolling sound using an onset detection process, allowing

for segmentation of a rolling sound. Segmented sound snippets are presumed

to correspond to micro-contacts between a ball and a surface; thus, subband-

based linear predictions (LP) are performed to model time-varying resonances

and anti-resonances. The segments are then resynthesized and overlap-added

to form a complete rolling sound. A “granular” analysis/synthesis approach is

also applied to various kinds of environmental sounds (rain, fireworks, walking,

clapping) as an additional investigation into how the source type influences the

strategic choices for the analysis/synthesis of sounds. The proposed granular

analysis/synthesis system allows for flexible analysis of complex sounds and

re-synthesis with temporal modification. Lastly, a novel approach to extract

a pluck excitation from a recorded plucked string sound is proposed within

a source / filter context using physical models. A time domain windowing

method and an inverse filtering-based method are devised based on the behav-

ior of wave propagation on the string. In addition, a parametric model of the
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pluck excitation as well as a method to estimate its parameters are addressed.
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Sommaire

Dans cette thèse, nous avons étudié plusieurs schémas d’analyse/synthèse dans

le cadre des modèles source/filtre, avec un attention particulière portée sur la

composante de source. Cette recherche améliore les méthodes ainsi que les

outils fournis créateurs de sons, compositeurs et musiciens désirant analyser et

synthétiser avec flexibilité des sons destinés aux jeux vidéos, au cinéma ou à la

musique par ordinateur. Ces sons peuvent aller de sons abstraits et complexes

à ceux provenant d’instruments de musique existants.

En premier lieu, un schéma d’analyse-synthèse est introduit permettant

la reproduction du son d’une balle en train de rouler. Ce schéma est fondé

sur l’hypothèse que le son de ce roulement est généré par la concaténation

de micro-contacts entre balle et surface, chacune d’elles possédant sa propre

série de résonances. L’information relative aux temps de contact est extraite

du son du roulement que l’on cherche à reproduire au moyen d’une procédure

détectant le début du son afin de le segmenter. Les segments de son ainsi

isolés sont supposés correspondre aux micro-contacts entre la balle et la sur-

face. Ainsi un algorithme de prédiction linéaire est effectué par sous-bande,

préalablement extraites afin de modéliser des résonances et des anti-résonances

variants dans le temps. Les segments sont ensuite re-synthétisés, superposés

et additionnés pour reproduire le son du roulement dans son entier. Cette

approche d’analyse/synthèse “granulaire” est également appliquée à plusieurs

sons de types environnementaux (pluie, feux d’artifice, marche, claquement)

afin d’explorer plus avant l’influence du type de la source sur l’analyse/synthèse

des sons. Le système proposé permet une analyse flexible de sons complexes

et leur synthèse, avec la possibilité d’ajouter des modifications temporelles.

Enfin, une approche novatrice pour extraire le signal d’excitation d’un son de
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corde pincée est présentée dans le contexte de schémas source/filtre sur une

modèlisation physique. A cet effet, nous introduisons une méthode de type

fenêtrage, et une méthode de filtrage inverse fondée sur le type de propaga-

tion selon laquelle l’onde se déplace le long de la corde. De plus, un modèle

paramétrique de l’excitation par pincement ainsi qu’une méthode d’estimation

de ces paramètres sont détaillés.
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Chapter 1

Introduction

The development of computer and electronic technologies has led to consider-

able changes in every aspect of our lives. Musical art is no exception, and these

developments are enabling new creative possibilities in the fields of sound pro-

duction and music composition. New technologies are not only broadening the

horizon of conventional music based on acoustic instruments but also allowing

for a new genre of music based completely on sounds created by electronic

means.

In this respect, sound analysis/synthesis can be regarded as one of the

main aspects of music technology. Sound analysis/synthesis technologies al-

low for transformation of sounds of existing musical instruments, as well as

non-musical sounds, such as found in nature, and also enables the creation

of sounds that are unlike any previously known. Therefore, many analy-

sis/synthesis methods have been studied and developed for music composition

and applications in multimedia by composers and sound designers. One of the

most widely used and actively studied approaches is the analysis/synthesis

method referred to as the “source/filter model.” The “sound source” can re-

fer to the energy initiating a vibration of a resonant object or a microscopic
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sound element that, when combined with many other such microscopic ele-

ments, constitutes a perceptually meaningful macroscopic sound. In this con-

text, analysis of the sound source involves a process that removes the resonant

aspect from the overall sound to reveal only the initial input or driving energy,

or a process that segments the sound into microscopic pieces so as to identify

sound sources as basic elements that collectively constitute an overall sound.

Sometimes, these processes are applied together.

In the source-filter model, the input energy, or excitation, is referred to as

the “source” and provides energy to the resonant system, which is referred to

as the “filter.” Sources can be generally categorized into two types according

to their characteristics: short, percussive-like excitations (such as the strik-

ing of a drumstick) or those that are more steady and sustained (such as a

glottal pulse train for speech synthesis). There has been a large body of re-

search conducted on analysis/re-synthesis of sounds within the context of the

source/filter model, especially with respect to speech and contact-based envi-

ronmental sounds. For example, in [4][5], analysis/re-synthesis schemes for the

sound of human footsteps and applause are investigated. As those sounds ob-

viously consist of isolated contact events, the sounds are first decomposed into

segments representing single events, and each single event is further analyzed

using a source-filter approach. Sounds generated by rolling objects involve

more complex structural interactions, though various source-filter approaches

have been investigated [6][7][8][9].

The granular analysis/synthesis approach involves the segmentation of an

existing sound and the recombination of the resulting segments to produce

a new or modified sound, which allows for analyzing the sound source as the

microscopic sound element. We consider extensions to the grain remixing stage
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that are derived in part from source/filter techniques. In [10], the authors

propose a method to synthesize a wide variety of sounds by concatenating

“sound units” chosen from a large database of sound “atoms” in such a way

that the “unit descriptor” is best matched with the given target. In [11],

Picard et al. proposed a granular analysis/synthesis technique that operates

in conjunction with a physics engine governing the behavior of objects that

are involved in sound generation.

Source-filter based analysis/re-synthesis techniques have also been widely

used for the analysis/re-synthesis of musical instruments sounds, since most

musical instruments have a design that fits this excitor/resonator paradigm.

Laroche and Meillier [12] proposed a physically-inspired method of analyzing

and synthesizing sources as excitation for musical instruments, particularly

the piano as an exemplary instrument. In [13][14][15], a pluck excitation is ex-

tracted by inverse-filtering a given plucked string sound with the string model.

Lee et al. [16] present a way to extract an excitation for the acoustic guitar in

a non-parametric way where harmonic peaks in the short time spectrum are

smoothed.

The goal of this thesis is to investigate the role of the sound source as a key

element in analysis and synthesis of various kinds of sounds. To that end, we

investigate three different sound analysis/re-synthesis contexts that properly

take into account the type of the source involved in the sound:

1. complex interactions involving a sustained source exemplified by rolling

objects,

2. extensions to granular analysis/synthesis,

3. the source extraction from a plucked string instrument, involving a short,

percussive source.
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A common element in this analysis of sustained sources involves segmenta-

tion. That is, the sounds must first be analyzed and separated into individual

sound-producing “events” or collisions. This task becomes more complicated

when the sounds produced by each event overlap, examples of which include

individual water drop sounds in rain or micro-collisions between a rolling ob-

ject and a surface. We introduce several novel methods to address this issue

applied to contexts 1 and 2. After the sounds have been properly segmented,

their resonant properties must be characterized and subsequently inverse fil-

tered from the audio segments. This process can be pursued in different ways,

depending on whether the resonances are expected to vary in time. Contexts

1 and 2 make use of variations on linear prediction to extract resonant proper-

ties of the systems, while context 3 makes use of a physical model of a plucked

string. The overall goal is to extract source/filter features of the sounds to

enable flexible re-synthesis.

In Chapter 2, an analysis-synthesis scheme targeting rolling sounds based

on the source-filter model is proposed. For analysis, it is assumed that sounds

generated by rolling objects involve a slow time-variation of the resonant prop-

erties of the surface because the micro-collisions happen at different locations

as the ball moves. Thus, a given rolling sound is segmented into micro sound

events, and both the resonance and anti-resonance aspects of each micro sound

event are analyzed. For resynthesis, each micro sound event is synthesized

by implementing filters representing the resonances and anti-resonances, and

synthesized sound events are concatenated in accordance with the timing in-

formation obtained from segmentation task. Further flexibility is provided by

allowing both temporal and spectral aspects of rolling segments to be varied.

Thus, with the proposed system [17], sounds from various rolling situations
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can be synthesized in a physically meaningful way.

In Chapter 3, in order to investigate how the source type affects the

analysis/synthesis of sound from another perspective, a novel granular anal-

ysis/synthesis system specific to environmental sounds is proposed. In the

grain analysis stage, transient events are detected so as to segment a given

sound into grains and store them in a dictionary. In order to adapt to the

characteristics of given environmental sounds, a component that can distin-

guish stationary/non-stationary parts in the given sound is included in the

analysis stage, thus providing an opportunity to redefine the source type. Fur-

thermore, audio features are extracted from all grains for synthesis. With the

proposed granular synthesis scheme, grains are effectively modified and as-

sembled to create flexible environmental sounds. Flexible time modification,

not only at the grain level, but also at the level of a whole sound event is

possible. We can synthesize variants of a given target sound by time-scaling

(stretching/shrinking) and time shuffling of grains.

In Chapter 4, the last context investigated concerns a novel approach to

extract the excitation from a recording of a plucked guitar string. A phys-

ical model of a string is first derived and then converted to a source-filter

form. Both an inverse filtering-based source-filter decomposition and a time-

windowing approach [18], which is similar to segmenting a sound with the

granular approach, can be applied to obtain a pluck excitation. By taking the

plucking position and the signal pickup position into account, the extracted

excitation becomes compact in time, which preserves the temporal information

of the finger/plectrum and string interaction [18]. In order to parametrically

model extracted pluck excitations, the Liljencrants-Fant (LF) model is em-

ployed and the extended Kalman filter (EKF) is used to estimate LF model
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parameters. We also discuss how to integrate the proposed extraction tech-

niques with the physical model of the finger/plectrum introduced in [19].
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Chapter 2

Analysis/Synthesis of Rolling

Sounds Using a Source-Filter

Approach

2.1 Introduction

In this chapter, we propose an analysis-synthesis scheme for the reproduction

of a rolling ball sound. The approach is based on the assumption that the

rolling sound is generated by a concatenation of micro-impacts between a ball

and a surface, each having associated resonances. Contact timing information

is first extracted from the rolling sound using an onset detection process. The

resulting individual contact segments are subband filtered before being ana-

lyzed using linear prediction (LP) and notch filter parameter estimation. The

segments are then resynthesized and overlap-added to form a complete rolling

sound.

The proposed scheme can be viewed in the framework of a source/filter

model. Each segment assumed to represent a micro-impact is decomposed
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into source and filter components through LP analyses, allowing for modeling

anti-resonances as well as resonances occuring from the ball-surface interac-

tion. This consequently yields time-varying filters depending on the rolling

trajectory which accordingly excites the modes of the surface. As both res-

onances and anti-resonances associated with surface modes are essential per-

ceptual attributes of rolling sounds, the proposed scheme will contribute to

flexible synthesis of various rolling sounds.

2.2 Background

The synthesis of rolling sounds has applications in virtual reality and the game

industry, where high-quality parametric models of environmental sounds are

important in creating a realistic and natural result. Methods for the synthesis

of rolling sounds have been studied by several researchers. Van den Doel [20]

proposed a source-filter approach to produce various types of sounds based

on the contact-based interaction between objects. Conducting modal analyses

of the objects involved in the interaction leads to a bank of resonators, and

this bank is driven by a contact force empirically modeled by colored noise in

a way that the physical attributes specifically associated with rolling interac-

tion, such as the surface asperity, the ball-surface feedback and the ball size,

are taken into account. In [7] and [8], a real-time physically based parametric

‘cartoonification’ model of a rolling object was proposed, where the high-level

impact interaction model introduced by Hunt and Crossley [21] was combined

with a modal synthesis technique to describe the vibrations of objects. The

roughness of the surface is modeled in a simplified fashion using random val-

ues to account for the trajectory of the ball on the surface at the microscopic

level so as to inform the impact interaction model to properly excite modes of
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the surface. In addition, by considering the trajectory of the rolling sphere’s

center of mass, the proposed method could take the shape of the sphere into

account. Due to the nature of simplified components, the computational load

is moderate enough to enable real time synthesis. Lagrange et al. [9] assumed

a similar ball-surface interaction but took a different approach for the analysis

and resynthesis. They focused on the time domain property of the rolling ball

sound as generated by many discrete contacts between the ball and the plate,

rather than continuous contacts as modeled in [20]. The authors first ana-

lyzed the modes of the given rolling ball sound using the high resolution (HR)

method in order to estimate a fixed resonant filter characteristics and then es-

timated the source signal as a series of impulses convolved with parameterized

impact windows in an iterative way. However, though the method proposed

by Lagrange et al. is in the form of source filter modeling, this method does

not address the position-dependent modal property of the plate.

Another time-domain approach is proposed by Stoelinga and Chaigne [22]

in which, in contrast to the approaches in the research mentioned above, a

physical modeling technique is employed. The study extends the physical

model of the impact between a ball and a damped plate to model a rolling

ball. For the single impact, the vibration of a damped plate is modeled on the

Kirchhoff-Love approximation under the appropriate assumption. The vibra-

tion is described by the wave equation, which involves the model of rigidities

and the excitation force. The excitation force, caused by the interaction be-

tween the ball and the plate, is modeled by the Hertz’s law of contact [23].

This single impact model is applied to account for the rolling interaction. The

surface profile, which represents the roughness of the surface, is generated from

random numbers and then assigned to spatial grids on which the numerical
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calculation of the plate displacements is conducted. The proposed physical

model is validated first by carrying out the simulation. The restitution coeffi-

cient obtained from the simulation agrees well with the measured values given

a specific condition. Moreover, the model could handle the rebounds which

occur when a ball rolls faster than the critical speed on a wavy plate. The

Doppler effect is also revealed as expected. The result of simulation also shows

that simulated rolling sounds can handle various rolling scenarios referred to

as amplitude-modulation, periodic bouncing, chaotic bouncing and continuous

contact. Both temporal and spectral characteristics of the simulated sounds

appear to reproduce those of measured sounds to good quality, resulting in

auditory resemblance. However, with this model, a high sampling rate is re-

quired to solve the wave equation using high-order finite different schemes and

minimize inaccuracy of resulting mode frequencies. Also, the given physical

model, which is based on the thin plate theory, is not appropriate for a thick

plate.

2.3 Proposed Approach

In this chapter, it is assumed that the rolling sound is composed of a collection

of micro-collisions between a rolling object and an uneven surface. The goal

is to investigate the extent to which an efficient source-filter approach could

be used to achieve a good synthesis quality for rolling sounds, on the basis

of analysis of recorded sounds. First, a contact event estimation is performed

and the sound is segmented accordingly. Then, a separate filter characteristic

for each segment is estimated. In this way, it is possible to account for the

varying modal property with respect to the locations of the contacts along

the trajectory of the object on the surface, which in turn allows a physically
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intuitive analysis. A description is first given on how to decompose the rolling

sound signal into individual contact segments. Secondly, the analysis and

synthesis of each segment are discussed. A filter bank splits each segment

into subbands with different frequency bandwidths, which enables a better

linear prediction (LP) estimation, especially for strong low-frequency resonant

modes. A notch filter estimation to account for effects related to position-

dependent excitation of the modes of the plate is also performed.

2.4 Detection of Contact Timings and the Definition of

One Contact Sound

The present approach is based on the underlying assumption that the rolling

sound results from numerous micro-collisions of a rolling object over an uneven

surface. Thus, we must find the contact timings so that analyses of individual

contact events can be accomplished. To this end, high-pass filtering is first

performed on the signal to help distinguish contacts by their high-frequency

transients. Fig. 2.1 shows a rolling sound signal, denoted as y(n), its high-pass

filtered version (cutoff frequency is 10kHz with sampling frequency 44.1kHz),

yhp(n), and the spectrogram of y(n). y(n) was recorded using an accelerometer

attached on one end of the plate.

A linear-phase high-pass filter is used to obtain yhp(n) so that group delays

can be easily aligned. In order to detect contact timings more accurately, an

onset detection process is performed on yhp(n).

E(n) =
1

N

N
2
−1∑

m=−N
2

[yhp(n+m)]2 (2.1)

An envelope function E(n) is defined as in Eq. 2.1 [24] and the box function
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Fig. 2.1 Top: Original rolling sound y(n). Middle: High-pass
filtered rolling sound yhp(n). Bottom: Spectrogram of y(n).

b(n) is defined, as in Eq. 2.2, by replacing all values of E(n) greater than any

given threshold with a positive value α.

b(n) =

⎧⎪⎨
⎪⎩

α if E(n) > threshold

0 otherwise.
(2.2)

Fig. 2.2(a) shows the E(n) of y(n) and Fig. 2.2(b) shows an enlarged portion

of E(n) and its associated b(n). In order to detect the onset times from b(n), a

time derivative of b(n) is computed, d(n), using a simple differencing operation

(high-pass filtering) as given by d(n) = b(n)−b(n−1). As shown in Fig. 2.2(c),
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Fig. 2.2 (a) Envelope function E(n) of given rolling sound y(n).
(b) Enlarged portion of E(n) in (a) and its associated box function
b(n) (Eq. 2.2). (c) Box function b(n) from (b) and d(n), a time
derivative of b(n) (vertical lines) (Eq. 2.2), here α = 1. (d) Box
function b(n) from (b) and o(n) (vertical lines).

d(n) contains values of either α or -α. Finally, by rejecting the negative values

in d(n), we obtain Eq. 2.3.

o(n) =

⎧⎪⎨
⎪⎩

d(n) if d(n) > 0

0 otherwise.
(2.3)
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The function o(n) is shown in Fig. 2.2(d), from which the contact timing index

information function i(k) is finally defined as

i(k) : sample indices where o(n) = α (2.4)

k = 1, 2, 3, 4, · · · , Nα

where Nα is the total number of α in o(n). From our basic assumption of

the rolling dynamics, we wish to feed one contact sound at a time into the

analysis/synthesis system. Thus, ‘one contact sound’ is defined as a segment

of the original signal y(n) whose length is the interval between two identified

adjacent contact indices i(k+1)−i(k). The kth contact sound xk(n) is defined

as follows:

xk(n) = y(n+ i(k)− 1), n = 1, 2, ..., i(k + 1)− i(k). (2.5)

k = 1, 2, · · · , Nα.

2.5 Analysis and Synthesis System

The analysis and synthesis scheme proposed here is devised to identify the

excited modes of a single contact sound xk(n). An input segment xk(n) is

first decomposed into subband signals by a tree structure filter bank. This

not only improves the LP analysis by limiting the frequency range over which

resonances are estimated, but it also allows for different LP parameters in

each subband, which may be informed by perceptual characteristics. A notch

detection operation for each segment is also performed to account for the time-

varying, position-dependent suppression/attenuation of resonant modes as an

object rolls over a surface.
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2.5.1 Tree structure filter bank

A tree structure filter bank [25] is used to separate each contact segment into

different frequency bands having unequal bandwidths for both the analysis

and synthesis operations. The tree structure filter bank is constructed with

two basic filters - one low-pass filter and another high-pass filter - and two-

channel quadrature mirror filters (QMF) (Fig. 2.3, Fig. 2.4) are used to achieve

a perfect reconstruction (PR) condition for the filter bank. Four filters of the

QMF bank (two at the analysis bank (AB), H0(z), H1(z), and another two

at the synthesis bank (SB), G0(z), G1(z)) are related as below, whereby the

alias-free property and the power symmetric condition are met [25]:

H1(z) = H0(−z), G0(z) = H0(z), G1(z) = −H1(z). (2.6)

A 4-band structure was empirically chosen, with cut-off frequencies of 1
8
π,
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Fig. 2.3 Magnitude responses of a two channel QMF.

1
4
π, 1

2
π on a normalized frequency axis (Fig. 2.5). This filter bank can also be

represented as a typical 4-band filter bank (Fig. 2.6) using the Noble identity

[25]. Using the filters in Eq. 2.6, all the filters that constitute the analysis
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Fig. 2.4 Two channel QMF bank.

bank and the synthesis bank can be derived as given in Table 2.1

Analysis Bank Synthesis Bank

V1(z) = H0(z)H0(z
2)H0(z

4)

V2(z) = H0(z)H0(z
2)H1(z

4)

V3(z) = H0(z)H1(z
2)

V4(z) = H1(z)

W1(z) = G0(z)G0(z
2)G0(z

4)

W2(z) = G0(z)G0(z
2)G1(z

4)

W3(z) = G0(z)G1(z
2)

W4(z) = G1(z)

Table 2.1 Transfer functions in the 4-band tree structure filter-
bank
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Fig. 2.5 Magnitude response of the filter bank.

In addition, the filter H0(z) is designed with a linear phase characteris-

tic [26] so that the whole tree structure filter bank is piecewise linear phase.

Therefore we are able to easily compensate for group delays introduced by the
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Fig. 2.6 Non-uniform 4-band filter.

filter bank through simple time-domain shifting.

2.5.2 Analysis/synthesis of one contact sound

When an object collides with a surface, the surface is set into motion by the

excitation force exerted by the object. The vibrational motion of the surface

is characterized by its modal properties, which in turn are determined by its

geometry and physical characteristics. Because of the finite dimension of the

surface, modes are selectively excited and attenuated or suppressed, depending

on the location of the excitation. In a frequency magnitude response, excited

modes appear as peaks, and suppressed modes appear as time-varying notch

patterns that move in a self-consistent way over regions of the spectrum where

energy was previously found. For example, Fig. 2.7 illustrates a simulated

modal pattern for contacts along the length of a simply supported rectangular

plate and a similar upwardly varying notch pattern in the spectrogram of y(n).

For each contact segment, we thus model both the time-varying spectral peaks

(using LP) and the notches. In general, it is known that excited modes, which
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Fig. 2.7 (a) Simulated modal pattern of simply supported rect-
angular medium-density fiber (MDF) plate (Width: 0.95m, height:
0.25m, thickness: 0.02m) excited by a rolling object traveling from
one end to the other end of the longer side, while centered on the
other axis. (b) Spectrogram of y(n). Upwardly varying notches can
be seen.

represent resonances, are essential for the perception of sounds. However, in

the case of rolling sounds on a finite-length rigid surface, existing notches in

the spectrum are also important as their notch frequencies vary with time. In

addition, by estimating notches, we can reduce the LP order (which would

otherwise be unnecessarily high for describing zeros [27]).
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Estimation of zeros using notch filtering

The kth input signal xk(n) is split into 4 subbands and downsampled at AB.

Subband signals x
(l)
k (n) are defined as follows:

x
(l)
k (n) = Downsample([vl ∗ xk](n)) (2.7)

where l is the order of the subband and vl(n) is the impulse response of the

lth subband filter at AB of the filter bank. ‘Downsample’ and ‘∗’ denote
downsampling and convolution operations, respectively.

Because the attenuated modes, as well as the excited modes, are perceptu-

ally important in characterizing the location of a rolling object, we are focusing

on the estimation of the suppressed modes, represented as notches in the spec-

trum, as well as the excited modes.

In order to estimate the notches of x
(l)
k (n), we considered building a notch

filter where frequencies and bandwidths of notches would be modeled according

to the valleys in the frequency response of xk(n). To this end, |X(l)
k (ejω)| (Fig.

2.8(a)), the magnitude of the Fourier Transform of x
(l)
k (n), was flipped to

1/|X(l)
k (ejω)| (Fig. 2.8(b)) and its peak frequencies,

ω
(l)
k,m for m = 1, 2, . . . ,M (2.8)

M : number of detected peaks

were detected using the MATLAB function findpeaks. Then, by using quadratic

polynomial curve fitting, lobes representing peaks were modeled to estimate

3dB-bandwidths BW
(l)
k,m [2]. Once ω

(l)
k,m and BW

(l)
k,m were estimated (in nor-
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malized radian frequencies), we could form a zero as

z
(l)
k,m = e(−BW

(l)
k,m/2)e−jω

(l)
k,m (2.9)

representing a valley in |X(l)
k (ejω)| [2]. Then biquad sections representing a

suppressed mode were derived as

B
(l)
k,m(z) = (1− z

(l)
k,mz

−1)(1− z
(l)
k,mz

−1) (2.10)

A
(l)
k,m(z) = (1− ρz

(l)
k,mz

−1)(1− ρz
(l)
k,mz

−1), (2.11)

where B
(l)
k,m(z) and A

(l)
k,m(z) are the numerator and the denominator of the

biquad section, respectively, ρ = 0.95, and z
(l)
k,m denotes the complex conjugate

of z
(l)
k,m. A

(l)
k,m plays the role of isolating each notch properly [28]. The notch

filter N
(l)
k (z) is given as follows:

N
(l)
k (z) =

M∏
m=1

B
(l)
k,m(z)

A
(l)
k,m(z)

. (2.12)

As shown in Fig. 2.8(c), the constructed notch filter has notches whose

frequencies and bandwidths are the same as those of peaks in 1/|X(l)
k (ejω)|

(Fig. 2.8(b)). X
(l)
k (z) was then filtered with 1/N

(l)
k (z) as below to obtain

Q
(l)
k (z):

Q
(l)
k (z) =

X
(l)
k (z)

N
(l)
k (z)

. (2.13)

In Q
(l)
k (ejω), notches are removed since 1/N

(l)
k (z) is an inverse filter of the

notch filter, thus enabling LP estimation with lower orders (Fig. 2.8(d)).
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Fig. 2.8 (a) Magnitude of X
(l)
k (ejω). (b) Magnitude of

1/X
(l)
k (ejω). Circle marks denote detected peaks. (c) Magnitude

response of the notch filter N
(l)
k (ejω). (d) Magnitudes of Q

(l)
k (ejω)

(solid) and its LP estimate L
(l)
k (ejω) (dashed). (e) Magnitude of

X̂
(l)
k (ejω). In all figures, x-axes denote normalized radian frequen-

cies.

Estimation of poles using linear prediction

In order to estimate poles from Q
(l)
k (z), a plth-order LP estimate L

(l)
k (z) was

derived as follows:

L
(l)
k (z) =

G
(l)
k

1−∑pl
m=1 a

(l,k)
m z−m

, (2.14)
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where L
(l)
k (z) is the transfer function, a

(l,k)
m are LP coefficients and G

(l)
k is a

gain of the LP estimate. a
(l,k)
m were estimated in such a way that the LP error

e
(l)
k (n) as defined below was minimized [29]:

e
(l)
k (n) = q

(l)
k (n)−

pl∑
m=1

a(l,k)m q
(l)
k (n−m), (2.15)

where q
(l)
k (n) is the impulse response of the Q

(l)
k (z). X̂

(l)
k (z), the synthesis

result of X l
k(z), was finally derived as (Fig. 2.8):

X̂
(l)
k (z) = W1(z)(Upsample(L

(l)
k (z)N

(l)
k (z))). (2.16)

where Upsample denotes an upsampling operation. LP order pl varies along

subbands.

In Fig. 2.9, the LP estimates of the subband signals and the fullband signal

used for the example in Fig. 2.8 are shown. All magnitude responses shown

in Fig. 2.9 are without zero estimates applied. In the example of Fig. 2.8 and

Fig. 2.9, the length of the contact sound xk(n) is 490 samples and the sampling

rate is 44.1kHz. LP orders are set to p1 = 25, p2 = 10 and p3 = p4 = 5 for

the subband signals and 45 for the fullband signal (no filter bank applied) so

that the total orders of both cases are the same. It is clear that as a higher

order is used for the low frequency region, significant spectral peaks are more

effectively handled for a given total number of poles.

Since all the subband filters employed in the Synthesis bank are linear

phase, their group delays τ
(k)
l are frequency independent, and only simple

time-domain shifts arise as phase distortion. This well-behaved group delay

property of the analysis/synthesis system is clearly evident in Fig. 2.10. There-

fore, the phase distortion of x̂
(l)
k (n), the impulse response of X̂

(l)
k (z), can be
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the magnitude plot of Xk(e

jω) and black dotted line is the full
band LPC estimate with order 45. Black dash-dotted lines are the
magnitude responses of the LPC estimates of the subbands’ signal
from the lowest subband to the highest subband, respectively (zero
estimates are not considered). LPC orders are 25, 10, 5, 5, from
the lowest to the highest, respectively.

easily adjusted by shifting x̂
(l)
k (n) by τ

(k)
l which is estimated from the filter

orders of Wl(z). To complete the synthesis of xk(n), x̂
(l)
k (n) are shifted back
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Fig. 2.10 Synthesized subband outputs (x̂lk(n)): (a) x̂
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(3)
k (n), (d) x̂

(4)
k (n).
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by τl and added together as illustrated below to form sk, the final synthesis

output corresponding to xk(n).

x̂
(l)
k (n) = x̂

(l)
k (n+ τ

(k)
l − 1) (2.17)

n = 0, 1, · · · , nk, · · · , nk + nextra

sk(n) =
num∑
l=1

x̂
(l)
k (n) (2.18)

num : total number of subbands.

where nk is the length of x̂
(l)
k (n). As the transfer function of the synthesis

result X̂
(l)
k (z) includes infinite impulse response (IIR) components, the impulse

response x̂
(l)
k (n) must be truncated in order to make the length of sk(n) finite.

x̂
(l)
k (n) is taken only up to nextra, the number of samples determined empirically,

and the samples proceeding from nextra+1 are discarded. The sk(n) segments

are thus cascaded by using the overlap and add method in such a way that

the location of sk(1) is matched to i(k). Thus, the tail of sk(n) overlaps with

a part of sk+1(n) and then they are added together.

2.6 Results

The proposed approach in this chapter demonstrates how to synthesize high-

quality rolling sounds. However, the limits of this approach should be dis-

cussed. In general, rolling sounds vary greatly with respect to their associated

physical aspects, such as surface roughness, ball speed, ball weight, size, etc.

Our approach works well for rolling sounds where micro-contact events, which

are presumed to correspond to microscopic collisions between the ball and the

surface, are distinguishable when using onset detection-based techniques. On
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the other hand, rolling sounds where the boundaries of micro contacts are

ambiguous or rolling sounds that are too continuous for any micro contact

event to be perceived would not be appropriate for the application of our ap-

proach. For such types of rolling sounds, segmentation based on micro contacts

would result in randomly chopped sound fragments that would be physically

and perceptually meaningless. Furthermore, the result of segmentation would

dramatically vary even with a small adjustment of the configuration of the

segmentation process. If these sound segments were used for synthesis, the

resulting synthesized sounds would likely contain audible artifacts.

The rolling sound investigated in the previous sections is one example that

can be re-synthesized well by using our method. As seen in the spectrogram in

Fig. 2.1, micro contacts are well-separated and identifiable, facilitating the use

of a high-pass filter that clearly reveals the boundaries of micro contacts. The

rolling sound illustrated in Fig. 2.11 could be a counter example for which our

approach is not as suitable as the example used thus far. This rolling sound

is generated by rolling a steel ball on a steel plate. The high-pass filtered

signal does not obviously reveal the impulsive components that represent the

transients on which our analysis is based. This can also be observed in the

spectrogram, which does not show ‘vertical stripes’ representing broadband

transients in the high frequency region that are observable in the spectrogram

of Fig. 2.1.

For the sake of comparison, we applied our method to this example. The

high-pass filter used is the same type as the one used for the previous example

but with a different cut-off frequency that was empirically set. Since no promi-

nent transients were observed in the high-pass filtered signal, it was difficult

to choose a proper N , the number of samples to be averaged, which is empir-
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Fig. 2.11 Top : Original rolling sound. A steel ball rolling on
a steel plate. Middle : High-pass filtered rolling sound. Bottom :
Spectrogram of the original sound.

ically determined, for deriving the envelope function E(n) and the threshold

for deriving a box function b(n). Thus E(n) would be subject to yielding a

box function b(n) that would in turn result in segmentation in undesirable way.

Fig. 2.12 shows an example in which there are too many peaks in E(n), which

results in many detected peaks o(n) that do not seem to have correlations with

micro-contacts, but rather look random.

On the other hand, Fig. 2.13 shows an analysis result where the peaks are

sparse in E(n) as more samples are averaged while deriving E(n). Sparsely

detected peaks, which are also not very likely to represent micro-contacts,
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Fig. 2.12 (a) Envelope function E(n) of a rolling sound generated
by rolling a steel ball on a steel plate. (b) Enlarged portion of E(n)
in (a) and its associated box function b(n). (c) Box function b(n)
from (b) and o(n).

lead to a box function that is too sparse. The segmentation results from

these two different analyses would not lead to successful re-synthesis of the

original rolling sound as almost no correlation between micro-contacts and the

segments is observed.1

1The re-synthesized sound examples based on the results of analyses on the counter sound
example can be found on-line. http : //www.music.mcgill.ca/ ∼ lee/thesis/rolling
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Fig. 2.13 (a) Envelope function E(n) of a rolling sound generated
by rolling a steel ball on a steel plate. (b) E(n) in (a) and its
associated box function b(n). (c) Box function b(n) from (b) and
o(n).

2.6.1 Synthesis Using Noise Signal Input

The counter example introduced above can be classified in a general group

of sounds that lack strong impact-like events, such as scraping, rolling on a

smooth surface, or gentle rain. As discussed above, the proposed approach is

not likely to successfully resynthesize these kinds of sounds. Particularly, the

sensation of smoothness, which is a common characteristic of these sounds,

is hard to reproduce. Thus, as in an attempt to resynthesize this group of

sounds, resynthesis using a noise signal as an input is investigated. First, a
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sound is segmented in a way that the envelope function E(n) has sparse peaks,

as shown in Fig. 2.13, and then transfer functions representing resonances and

anti-resonances in each subband estimated at the detected peaks are convolved

with white noise signals to yield noise-driven resynthesis of the segments as

follows:

sk,noise(n) =
num∑
l=1

([x̂l
k ∗ u](n)) (2.19)

n = 0, 1, · · · , nk, · · · , nk + nextra

num : total number of subbands.

where u(n) is the noise signal and sk,noise(n) is the synthesized segment. The

synthesized segments sk,noise(n) are then cascaded in the same way as in the

previous approach. Since the length of the noise signals for each segment

is the same as the intervals between segments, the synthesized sound does

not give the sensation of undesired discontinuity. However, neither does it

necessarily convey a sense of rolling, since it not only fails to distinguish itself

from sounds such as those of scraping and “whooshing”, but it also fails to

update the transfer function often enough to reflect the location-dependent

comb-filter effect, all of which is due to the sparseness of detected peaks in

the analysis. As an attempt to overcome these artifacts, instead of using

the detected peaks as the triggers to update the transfer function, we let the

transfer function be updated periodically. The resynthesized sounds obtained

by periodically updating the transfer function are found to maintain the comb-

filter effect more effectively and sometimes better avoid confusion with the

other kinds of smooth sounds, depending on the nature of the target sound

and the periodicity set by the user, in comparison to the resynthesized sounds
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based on the sparse peaks. However, the resulting sounds are quite sensitive to

the periodicity set by the user. Sound examples of what we have discussed are

available online at http://www.music.mcgill.ca/~lee/thesis/rolling/

Through investigating a counter example, we are able to get an idea of

which types of rolling sounds our approach is suitable for, and an alternative

approach is experimented with to devise an approach that would synthesize

sounds of the same type as the counter example.

2.7 Conclusion

An analysis and synthesis approach for rolling sounds is proposed in this chap-

ter. The process is based on the assumption that an overall sound can be lin-

early decomposed into many micro-contacts between an object and the surface

on which it rolls. Therefore, a process similar to onset detection is carried out

to extract the contact timing information and to segment the sound into indi-

vidual contact events. Each segment is fed into an analysis/synthesis system

to estimate time-varying filters. The analysis/synthesis process consists of a

tree structure filter bank, LP processors and notch filters. Thanks to the tree

structure filter bank, LP orders can be flexibly assigned to subbands, allowing

us to focus more on significant spectral features while analyzing and synthesiz-

ing with LP processors and notch filters. The resynthesized contact events are

appropriately cascaded by using the overlap and add method to produce the

final rolling sound. We find that the performance of the proposed approach

depends on the characteristics of rolling sounds. The proposed approach works

better for rolling sounds in which each micro contact is relatively well sepa-

rated and so identifiable, rather than for those that are sonically smooth and

continuous. Also, an alternative method that can effectively synthesize the
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sounds for which the proposed approach is not suitable is discussed.
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Chapter 3

Granular Analysis/Synthesis for

Simple and Robust

Transformations of Complex

Sounds

3.1 Introduction

In this chapter, a novel granular analysis/synthesis system particularly geared

towards environmental sounds is presented. A granular analysis component

and a grain synthesis component were intended to be implemented separately

so as to achieve more flexibility. The grain analysis component would segment

a given sound into many ‘grains’ that are believed to be microscopic units that

define an overall sound. A grain is likely to account for a local sound event

generated from a microscopic interaction between objects, for example, a sound

of a single water drop hitting the ground in the sound of rain. Segmentation

should be able to successfully isolate these local sound events in a physically or
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perceptually meaningful way, with only a few easy-to-understand parameters

for user convenience. The second part of the research was focused on the

granular synthesis that can easily modify and re-create a given sound. The

granular synthesis system would feature flexible time modification with which

the user could re-assign the timing of grains and adjust the time-scale. Also,

the system would be capable of cross-synthesis given the target sound and

the collection of grains obtained through an analysis of sounds that might not

include grains from the target one.

3.2 Background

Nowadays, audio rendering in virtual reality applications, especially games,

requires higher standards to meet the users’ demands. Conventional ways of

sound generation in games, mostly playing pre-recorded samples, are often

limited in their lack of ability to deal with variations in sounds, for interac-

tions between objects in games occur in various ways. This problem demands

model-based sound synthesis techniques capable of generating many sound

instance variations without having to use additional sound samples. Sounds

that appear in games are in general non-musical/verbal, often referred to as

‘environmental’ or ‘everyday’ sounds. Such sounds are generated mostly either

from interactions between objects or environmental background that is given in

the virtual space, including bouncing, breaking, scratching, rolling, streaming,

etc. It is very important to maintain the quality of such sounds for a feeling of

reality. In general, every synthesis technique has its own strength and it differs

according to the types of sounds. Therefore it is crucial to choose a synthe-

sis technique appropriately, given the sounds to be dealt with. The granular

analysis/synthesis technique is regarded as one of the promising methods to
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deal with sounds in games since the technique can easily preserve complex

sound textures and create variations of the given sound by mosaicking grains.

Thus, it would be helpful to develop a novel granular analysis-based synthesis

framework that could be used easily by non-signal processing experts to allow

parametric synthesis controls to generate many variations of complex sounds.

This framework could use the benefits of granular synthesis to fill the gap

between information contained locally in the waveform (specific to a grain)

and global information about the sound production process, such as resonance

frequencies. It could also use information derived from an understanding of

physical processes to control the density and time-distribution of sound grains.

The concept of granular analysis/synthesis dates back to Dennis Gabor who

proposed the idea of granular synthesis to represent sound by using sound snip-

pets generally shorter than a typical musical note [30]. The Greek composer

Iannis Xenakis was attracted to this theory and investigated compositional

theory based on sound grains [31]. Curtis Roads is regarded as the first person

to implement granular synthesis using digital computers [32]. Barry Truax

first implemented real time granular synthesis using digital signal processors

[33].

The idea of granular analysis/synthesis has been extended to explore anal-

ysis/synthesis of general complex sounds, such as environmental sounds. In-

spired by the unit-selection based text-to-speech synthesis research in [34],

Schwarz and his collaborators have conducted research on concatenative-based

synthesis to generate not only musical but also abstract complex sounds, aim-

ing at synthesizing sound textures in particular [35] [10], referred to as ‘Corpus-

based concatenative synthesis’. A database of short sound snippets, the ‘cor-

pus’, is first constructed by segmenting recorded audio sounds. The database
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also contains data of particular features associated with each sound snippet.

Features extracted range from the low-level properties of an audio phenomenon

to the high-level descriptors. Additional variants of existing sound snippets

created by transformations of original sound snippets, are also available in the

database. Thanks to a wide variety of features, a sound can be synthesized in

various feature-matching ways.

Lu et al. [36] attempted to generate ‘audio texture’ by concatenating

pre-segmented short sound snippets from recorded sounds. The transition

probability between sound snippets was first derived from the Mel Frequency

Cepstral Coefficients (MFCC) of snippets and the sequence of snippets was de-

termined according to the similarity score based on the transition probability

of certain conditions that prevent the synthesis from being audibly uncomfort-

able. Picard et al. [11] used a dictionary of short sound segments analyzed

from recorded sounds, and synthesized a sound with respect to a given target

sound by selecting best matched sound segments in a dictionary with time

modification. They also proposed a way to concatenatively synthesize a sound

with the segment selection informed by a physics engine. A work by Dobashi et

al. [37] aimed at synthesizing aerodynamic sounds in a concatenative manner.

Sound segments constituting a database were not extracted from recorded

sounds but were created using physical model-based simulation. Hoskinson

and Pai [38] used an algorithm that involves wavelets to segment an input au-

dio signal into ‘syllable-like pieces’, and synthesis was conducted by selecting

segments according to a similarity measure and concatenating them.

Granular analysis/synthesis environments, with GUIs, have also been de-

veloped by several researchers, as found in [39], [40], [41] [42]. They serve as

tools that enable users to intuitively and interactively synthesize sounds for
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various applications using the granular analysis/synthesis framework.

The goal of this research is to flexibly synthesize complex sounds within the

framework of granular analysis/synthesis. To this end, not only existing granu-

lar analysis/synthesis techniques are enhanced and customized, but also novel

features are introduced, culminating in a novel granular analysis/synthesis

scheme. In the analysis stage, a measure referred to as the ‘stationarity’ is

proposed to categorize a complex sound into the region where distinctive mi-

cro sound events can be identified (non-stationary region) and the region where

the boundaries of the micro sound events are too ambiguous to be distinguished

from each other (stationary region). This is done to adjust parameters associ-

ated with granular analysis so as to achieve more promising granular synthesis.

In the synthesis stage, to enable flexible synthesis of complex sounds aiming

at various kinds of interaction scenarios, time modification allows for seamless

time stretching and shrinking with the aid of proposed gap-filling algorithms

and also for grain time remapping by re-ordering the locations of grains, which

leads to modifying given complex sounds in a physically meaningful way.

3.3 Granular Analysis System

The granular analysis system involves the decomposition of a sound into short

snippets, termed as the ‘grains’, on the assumption that a sound is generated

from numerous micro-interactions between physical objects. For example, the

sound of rain consists of sounds of collisions of innumerable rain drops on

other objects. The grain analysis aims at segmenting a sound into grains,

using a proper segmentation technique, in a way that the segmented grains

are associated as much as possible with microscopic events such as physical

collisions. In the granular analysis system proposed here, analysis begins by
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carrying out a process similar to onset/transient detection for segmenting a

sound composed of grains that have percussive/impulsive characteristics. The

grain analysis system is implemented in MATLAB with a GUI where one can

set all the parameters (Fig. 3.1). The parameters used for analysis are listed

in Table 3.1.

Fig. 3.1 GUI for granular analysis.

3.3.1 Grain Analysis

In order to perform the task of granular analysis, it is essential to transform an

audio signal into a form that reveals and emphasizes the transients in the audio

signal, referred to as the detection function [24]. Many detection functions have

been devised and used to effectively analyze audio signals, using either time-

domain or frequency-domain techniques. No dominant detection function that

outperforms other detection functions exists, so a detection function is chosen

and used depending on the nature of the given audio signal and the purpose
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Granular analysis parameters

Spectral Flux analysis

Density window
Hop length

STFT window
RMS window

Segmentation

HPF frequency
Silence threshold
Offset threshold

Stationary Analysis
Hop length
Window length
Threshold

Stationary regions
Threshold
Min peak height

Non-stationary regions
Threshold
Min peak height

Table 3.1 Granular analysis parameters.

of the analysis. In this research, we have chosen to use a detection function

that measures differences in the spectral content of transient and non-transient

parts of the signal.

The well-known short-time Fourier transform (STFT) [43] for frame-by-

frame analysis enables comparison of spectral content between sequential,

neighboring short portions of the signal. The STFT of x(n) is given as

Xk(n) =
N−1∑
m=0

x(hn+m)w(m)e−2jπmk/N , n = 0, 1, 2, · · · (3.1)

where h (‘Hop Length’ in Fig. 3.1 and Table. 3.1) is the hop length and w is a

window of length N(‘STFT Window’ in Fig. 3.1 and Table 3.1). Xk(n) is the

kth discrete Fourier transform (DFT) coefficient of the nth frame. There are

many ways of detecting transients based on comparing the spectral content of

successive frames. The Spectral Flux (SF) was chosen in this research because

internal experiments showed it to be suitable for present purposes. The SF is
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Fig. 3.2 Overview of granular analysis system. S(n), sm(n) and
RMS(n) are defined in Eqs. 3.2, 3.7 and 3.5, respectively.

defined as below [24],

S(n) =
N−1∑
k=0

{H(|Xk(n)| − |Xk(n− 1)|)}2 (3.2)

where S(n) is the value of the SF at the nth frame. H(x) = (x+|x|)
2

is a

half-wave rectifier employed to put an emphasis on only the positive changes.

The SF first measures the Euclidian distance between magnitude spectra of

successive frames and takes into account only the energy increases in frequen-

cies. In this way, the comparison between the magnitude spectra that have
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a broadband energy and those that have a narrowband energy returns a high

score, effectively detecting transient events in x(n), as can be seen in Fig. 3.3.

Depending on the nature of the signal to be analyzed, high-pass filtering can

be conducted to reveal transients more vividly [17]. The parameter referred

to as the ‘HPF frequency’ (Fig. 3.1 and Table 3.1) actually defines the cut-off

frequency of the high-pass filter.

Fig. 3.3 Signal and spectral flux (SF).

3.3.2 Grain Segmentation

Peak Detection

Since a typical impact sound begins with a transient, broadband energy and

then continues with decaying resonances, peaks in the SF are likely to appear

around the beginning point of a local impulsive event. A peak in the SF,

S(npeak), is defined as

S(npeak − 1) ≤ S(npeak) ≥ S(npeak + 1) (3.3)
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where npeak is a sample index on which the peak is located. A valley in the

SF, S(nvalley), is defined as,

S(nvalley − 1) ≥ S(nvalley) ≤ S(nvalley + 1) (3.4)

where nvalley is a sample index on which the valley is located. Prior to con-

ducting peak selection, noise components in the SF that may be confused as

meaningful peaks are first discarded by partitioning the overall signal into

silent/non-silent regions. In order to do this, we propose a parameter referred

to as the ‘silent threshold’ (given in the ‘Segmentation’ category as in Fig. 3.1,

Table 3.1) and calculate the frame-based short time root mean square (RMS)

of the overall signal as

RMS(n) =

√√√√ 1

Nrms

Nrms−1∑
m=0

|x(hrms · n+m)|2 (3.5)

where Nrms, hrms is the length of the frame and the hop length used, re-

spectively (the ‘RMS window’ the ‘Hop Length’ in the ‘Analysis’ category as

in Fig. 3.1 and Table 3.1. As the RMS(n) can be regarded as the absolute

value of the roughly estimated amplitude envelope, regions where RMS(n)

are smaller than the silent threshold could be labeled silent regions. In this

way, we could consider peaks only in the non-silent regions and reduce the

chances of including unnecessary noise components. Also, a parameter called

the ‘Peak Threshold Height’ (given as the ‘Threshold’ in the categories of

‘Non-Stationary Regions’ and ‘Stationary Regions’ (Fig. 3.1 and Table 3.1)) is

defined to rule out peaks whose heights are lower than this parameter, making

it possible to ignore peaks whose heights appear to be too small, depending on

the nature of the given signal. By using the peak detection method proposed



3 Granular Analysis/Synthesis for Simple and Robust
Transformations of Complex Sounds 42

in [44], peaks that satisfy a certain condition are picked to determine the grain

segmentation. That condition is associated with a ratio γ in such a way that:

γ <
S(npeak)

(S(nl
valley) + S(nr

valley))/2
(3.6)

where S(npeak) is the SF value at the peak location and S(nl
valley) and S(nr

valley)

are the SF value at the neighboring valleys to the left and right sides of the

peak S(npeak). The ratio γ is referred to as the ‘Minimum Peak Height’ (given

as ‘Min Peak Height’ in the categories of ‘Non-Stationary Regions’ and the

‘Stationary Regions’ (Fig. 3.1 and Table 3.1)). The right hand side simply

represents the ratio of the peak SF value and the average SF value of the two

neighboring valleys. Only when the ratio of the peak and the valleys is larger

than the minimum peak height, is S(npeak) chosen as the grain segmentation

boundary. A grain segmentation boundary is set in such a way that the be-

ginning point of a grain is set at npeak − h
2
, a sample index ahead of the peak

location by half of the hop length, to consider rising time in the attack phase

of an impulsive event, as shown in Fig. 3.3.

Stationarity Analysis

Environmental sounds are often stationary in the sense that no distinctive

events occur, but relatively consistent ‘texture’ is present. For example, as

opposed to the sound of glass breaking which could be regarded as a ‘non-

stationary’ sound inasmuch as relatively distinctive sound events constitute

the overall sound, the sound of a gentle brook would convey more consistent

and regular impressions to listeners. The stationary sounds usually consist

of numerous sound events of very short durations heavily blended with each

other so that an individual sound event is scarcely identifiable in the overall
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sound. In this case, attempts to decompose a given sound into micro-sound

events would not be efficient since the resulting segmented grains would tend

not to correspond to meaningful sound events. For synthesis, grain segmen-

tation can be performed on the relaxed condition that leads to grains with

longer duration and preserves a sound texture rather than micro-events. The

resulting synthesis would not be very different from the one based on normal

grain segmentation in terms of how audibly natural it would seem. Thus it

is desirable to be able to adjust criteria for grain segmentation according to

the ‘stationarity’ of a given sound. To achieve this, we first propose a measure

to detect which part of the signal is stationary or non-stationary. Here we

assume that stationarity is closely related to how a signal looks in the time

domain, in such a way that a stationary part would look statistically flat while

a non-stationary signal would look rather ‘bumpy’. The measure proposed is

referred to as the ‘stationarity measure’ and is defined as,

sm(n) =

Nsm

√∏Nsm−1
m=0 |x(hsm · n+m)|

1
Nsm

∑Nsm−1
m=0 |x(hsm · n+m)| (3.7)

where hsm is the hop length and Nsm (given as the ‘Hop Length’ and the

‘Window Length’ in the ‘Stationary analysis’ category in Fig. 3.1 and Table

3.1) is the frame size. The numerator and the denominator are the geomet-

ric mean and the arithmetic mean, respectively, of the absolute values of the

samples contained in the nth frame. This can be viewed as the time domain

version of the ‘spectral flatness measure’ [45]. The spectral flatness measure

was originally devised to define the characteristics of an audio spectrum as ei-

ther tonal or non-tonal by measuring the number of spiky components present

in a power spectrum. The more peaks the spectrum contains, the more tonal
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it will be, while a statistically flat spectrum indicates that the signal is non-

tonal, or noise-like. The spectral flatness measure corresponds to the extent

that a signal is bumpy in the time domain, as indicated by sm(n). Once

stationary/non-stationary parts are partitioned, we can individually set the

parameters associated with peak detection, so that there are tighter condi-

tions for non-stationary parts and more relaxed ones for stationary parts, as

separated into the ‘Non-stationary’ and the ‘Stationary’ categories in Fig. 3.1

and Table 3.1.

The stationarity measure is sensitive to the window length as it determines

the density of micro events. If the window length is large enough for the density

of events to look as if they were ‘flat’ in the time domain, then the signal will

be observed as if it were more stationary. If the stationary measure sm(n) is

above the stationarity threshold, then it will simply be labeled stationary.

Figure 3.4 shows an example of partitioning a signal into stationary/non-

stationary regions on the basis of the stationarity measure. The signal in the

top pane consists of two types of applause sounds. The one on the left of

the blue dashed vertical line in the middle is applause by a large number of

people, while the one to the right of the blue dashed vertical line is by a small

number of people. The middle pane shows the sm(n), and it is obvious that

the applause by the large audience has a higher and consistent sm(n), whereas

the one by the small audience has a lower and varying sm(n). The bottom

pane shows that, on the basis of the stationarity measure, the parameters for

peak detection can be separately set and yield different grain segmentation

results accordingly.
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Fig. 3.4 Comparison of stationarity measure depending on the
nature of a signal. (a) Original signal. The signal consists of two
types of applause sounds. The one on the left of the blue dashed
vertical line in the middle is applause by a large audience, while
the one to the right of the blue dashed vertical line is by a small
audience. (b) Stationarity measure of the signal in (a). The blue
horizontal line is the silent threshold, set as 0.65. The hop length
and the window length used are 6144 and 1024, respectively. (c)
The result of grain segmentation with respect to two different sets
of parameters. For the stationary part, the left side, the peak height
threshold is -45dB and the minimum peak height is 11dB, and those
for the non-stationary part, the right side, are respectively -25dB,
3dB.

3.3.3 Meta Data

For further applications, such as feature matching-based synthesis [40], meta

data associated with a grain gk(n) (kth grain in the dictionary), features widely

used in music information retrieval (MIR) and psychoacoustics research, are

extracted as auxiliary information. Selected features that constitute meta data

are the following (they are all normalized between 0 to 1).
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• Energy

en(k) =

lk∑
m=0

|gk(m)|2 (3.8)

lk : kth grain’s length

• Spectral Centroid

sc(k) =

∑N−1
m=0 m|Gk(m)|∑N−1
m=0 |Gk(m)| (3.9)

Gk(m) : mth DFT coefficient of gk

N : DFT length

• Spectral Tilt

st(k) =
N

∑N−1
m=0 m|Gk(m)| −∑N−1

m=0 m ·∑N−1
m′=0 |Gk(m

′)|
N

∑N−1
m=0 m

2 − (
∑N−1

m=0 m)
2 (3.10)

• Spectral Flatness

sfl(k) =

N

√∏N−1
m=0 |Gk(m)|

1
N

∑N−1
m=0 |Gk(m)| (3.11)

3.3.4 Grain Dictionary

All segmented grains are separately stored in a grain dictionary together with

the meta data. In many cases, a grain has a long tail with small amplitude. We

can set the parameter referred to as the ‘Offset threshold’ (Fig. 3.1 and Table

3.1), which defines the amplitude threshold below which the tail is discarded,

to efficiently compress the size of the grain wave data. In the grain dictionary,

an element that represents a grain contains the following:
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• grain wave data

• the starting point and the end point in the original signal

• meta data

• sampling rate.

As will be explained later, the starting point and the end point data enable

time modification at the synthesis stage.

3.4 Granular Synthesis

With the granular synthesis system we have developed, the user can flexibly

manipulate the temporal aspects of a sound dictionary. With a sound dic-

tionary given, a user can perform time-scaling (stretching/shrinking) and can

shuffle grains at will. To this end, algorithms that can fill gaps which inevitably

arise when grain timings are modified have been devised. One such algorithm

is based on a signal extrapolation technique. This algorithm extends the grain

just before a gap by using linear prediction (LP), extrapolating the grain in

the manner of the source-filter synthesis approach, to fill the gap. Another

gap filling scheme is achieved by choosing and inserting additional grains in

the gap. To select additional grains that would result in perceptually natural

synthesis, Mel-frequency cepstrum coefficients (MFCC) and Itakura-Saito (IS)

distance were used to find additional grains that are perceptually similar to

the grain just before a gap. A grain that has the minimum Euclidean dis-

tance of MFCC or the minimum IS distance with respect to the given grain

just before a the gap is selected and put in the gap. A range from which an

additional grain is selected is usually set around the given grain. The grain

search continues until the gap is completely filled. As the algorithm based on
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inserting additional grains is subject to selecting the same grain repeatedly for

a single gap, which would result in an audible artifact, the system is designed

to allow the user to randomly select an additional grain among the best can-

didates, instead of selecting the very best grain. The two different ways of

gap filling, extrapolation and employing additional grains, result in different

effects in synthesis. The extrapolation-based algorithm changes the grain den-

sity as time is re-scaled, whereas the additional grain-based algorithm tends to

preserve the grain density. This property contributes to the flexibility of the

synthesis system. In all the gap filling algorithms, grains can be tapered with

symmetric/asymmetric windows and overlapped to avoid jitter-like artifacts.

As shown in Fig. 3.5, the grain synthesis system consists of three compo-

nents. In the grain dictionary component, the user can load target and corpus

grain dictionaries from which grains are selected for the synthesis. Once the

grain dictionary is loaded, the user can manipulate the temporal length of the

given sound by stretching or shrinking intervals between grains by adjusting

parameters that belong to the time stretching component. The component

of time scrub allows for more flexible time modification in conjunction with

time stretching, by enabling users to re-arrange the original order of the grain

sequence in the dictionary.

3.4.1 Grain Dictionaries: Target and Corpus

The granular synthesis system requires two types of dictionaries for synthe-

sis. One is the target dictionary and the other is the corpus dictionary. In our

granular analysis/synthesis system, the target dictionary provides the time po-

sition information of grains as a target reference. Let i(k) denote the starting

time sample index of the kth grain, gk, in the target dictionary. The initial op-



3 Granular Analysis/Synthesis for Simple and Robust
Transformations of Complex Sounds 49

Fig. 3.5 GUI for synthesis.

eration of the granular synthesis system is to shift the time positions of grains

in the corpus dictionary, making the starting time positions of the kth grain

in the corpus dictionary become i(k). With the time modification processes

that will be explained below, synthesis with respect to the target sound could

be achieved in flexible ways.

3.4.2 Time Stretching/Shrinking

One of the main time modification schemes used in the granular synthesis

system is time stretching and shrinking. Once grains in the given corpus

are rearranged with respect to i(k), the time modification, either stretching or

shrinking, is conducted by controlling intervals between i(k). The time stretch

factor α (α > 0) controls the time modification. The new sample index of the

starting time of grains in the corpus dictionary after time modification is given
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Time Stretching Parameters

Method
Grain Extrapolation
Itakura-Saito
MFCC

Time Stretch Factor α (> 0)

Window Type
Symmetric
One-sided

Grain Start Overlap Number of samples overlapped
Grain Stop Overlap Number of samples overlapped
Grain Selection range Number of grains
Cloud Size Number of grains

Table 3.2 Time stretching parameters.

as

i′(k) = round(α · i(k)) (3.12)

0 < α < 1 : shrinking

α > 1 : stretching

where ‘round’ denotes the rounding operation. Time modification gives rise

to unnecessary gaps between grains if

i′(k + 1)− i′(k) > lk (3.13)

where lk is the length of the kth grain in the corpus dictionary. Note that not

only time stretching but also time shrinking could possibly create gaps since

there is a chance that the length of the grain l(k) from the corpus dictionary

happens to be shorter than the interval i′(k + 1)− i′(k) after time shrinking.

Fig. 3.6 shows how time modification creates gaps. These gaps give rise to

audible artifacts associated with signal discontinuities. If the desired sound

should be perceptually continuous, it is essential to devise a way to fill gaps
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to remove the audible artifacts. In the present granular synthesis system, two

different approaches for gap filling are proposed.
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Fig. 3.6 Time stretching and gap filling. (a) original sequence of
grains gk, gk+1, gk+2 of length lk, lk+1, lk+2, respectively. (b) time
stretched with the time stretch factor α = 2. (c) Gap filling with
grain extension (d) Gap filling with additional grains.
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3.4.3 Gap Filling Strategies

Gap Filling with Grain Extension Method

One way to fill a gap is to extend the grain placed right before a gap. The

idea of grain extension is inspired by audio signal interpolation/extrapolation

techniques that have been studied and developed for application to signal

restoration for disturbed and missing data [46] [47] [48]. The grain extension

algorithm used here is based on LP, using samples at the end of the grain to

be extended as initial data for LP.

In LP a signal sample x(n) is assumed to be modeled as x̂(n), a linear

combination of preceding samples as follows,

x̂(n) =

p∑
k=1

akx(n− k) (3.14)

where p is the order of the LP and ak, (k = 1, · · · , p) are the LP coefficients.

The error between the modeled value x̂(n) and x(n), e(n) is

e(n) = x(n)− x̂(n) = x(n)−
p∑

k=1

akx(n− k) (3.15)

The LP coefficients ak are estimated by minimizing the error e(n), and many

ways of estimating the LP coefficients have been researched [27]. Generally,

iterative algorithms are favored for this task because of the fast computation.

One such algorithm is the Burg algorithm [27], which makes use of both for-

ward and backward prediction errors to increase the accuracy of estimation. In

[46], an audio extrapolation technique based on the Burg algorithm-based LP

is proposed, which has been adopted for this grain extension. Estimated LP

coefficients allow for extrapolation of a grain in such a way that past samples
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are filtered with the FIR filter whose coefficients are the LP coefficients ak.

In order first to estimate the LP coefficients to use for grain extension, we

begin with a linear prediction of the last sample of a grain g(n) of length L,

ĝ(L) =

p∑
m=1

amg(L−m) (3.16)

where am are the LP coefficients estimated using the last p samples of g,

and ĝ(L) is the estimate of the last sample of the grain g(L). p is the LP

order. Given g(L), am are estimated using Burg’s method. Once the LP

coefficients are estimated, they are used to extrapolate g(n) by predicting the

future samples. The first extrapolated sample, ĝ(L+ 1) is obtained as

ĝ(L+ 1) =

p∑
m=1

amg(L−m+ 1) = Ag1 (3.17)

where A and g1 are

A = [ a1 a2 · · · ap−1 ap ] (3.18)

g1 = [ g(L) g(L− 1) · · · g(L− p+ 2) g(L− p+ 1) ]T (3.19)

In the same way, we can proceed to produce further samples just by updating

g1 with newly extrapolated samples. For example, in order to produce ĝ(L+r),

which is calculated as ĝ(L+ r) = Agr, gr should be given as

gr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ ĝ(L+ r − 1) ĝ(L+ r − 2) · · ·

ĝ(L+ r − p+ 1) ĝ(L+ r − p) ]T if r > p

[ ĝ(L+ r − 1) · · · ĝ(L+ 1)︸ ︷︷ ︸
r−1

g(L) · · · g(L− p+ r)︸ ︷︷ ︸
p−(r−1)

]T otherwise.

(3.20)
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The number of samples to be extrapolated is determined by the sum of the

length of the gap and the parameter ‘Grain Stop Overlap’ (Table 3.2), which

specifies how many samples are overlapped between neighboring grains. The

LP order p can be arbitrarily chosen as long as L > p. In general, the more

samples used to estimate the LP coefficients, the more accurate the estimate

of the LP coefficients becomes [27]. Figure 3.7 gives an example of grain

extension.
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Fig. 3.7 Example of grain extension.

Gap Filling with Additional Grain-Based Method

Since the gap part would likely be similar to the parts where grains are present,

natural gap filling could be achieved by placing the most similar grains into

the gap. The optimal grains for the gap are determined on the basis of how

similar they are to the grain placed just before a gap. Rather than extrapolat-

ing existing grains to fill gaps, these optimal additional grains are chosen from

the grain dictionary and placed in the gap. This strategy would give a differ-
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ent kind of audible sensation to the listeners. In order to preserve the natural

perception when filling gaps in this way, it is essential to choose grains appro-

priately. To keep the feeling of continuity with neighboring grains, additional

grains that are to be filled into gaps are selected according to the similarity

to the existing grain. As the measures for representing the similarity, we use

two features that are based on the spectral distance.

One is the Itakura-Saito (IS) divergence [49]. The IS divergence is a mea-

sure of the perceptual difference between two spectra, defined as follows,

DIS(k, k
′) =

1

2π

[∫ π

−π

Pk(ω)

Pk′(ω)
− log

Pk(ω)

Pk′(ω)
− 1

]
dω (3.21)

where Pk(ω), Pk′(ω) are the two spectra to be compared. The other is Mel Fre-

quency Cepstral Coefficients (MFCC). The MFCC are a perceptually based

spectral feature widely used in speech recognition and music information re-

trieval.

In order to obtain the MFCC, the magnitudes of DFT coefficients |Xk| of
signal x(n) are first scaled in frequency so that the frequency is transformed

to log scale using the Mel filter bank H(k,m) in such a way that

X ′(m) = ln(
N−1∑
k=0

|X(k)| ·H(k,m)), m = 1, 2, · · · , (M << N). (3.22)

where M and N are the number of filter banks and the DFT length, respec-

tively. H(k,m), the mth band filter, has a triangular shape, defined as,
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Fig. 3.8 Triangular mel-scale filter bank from Auditory toolbox
[1].

H(k,m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k − kc,m−1

kc,m − kc,m−1

if kc,m−1 ≤ k < kc,m

kc,m+1 − k

kc,m+1 − kc,m
if kc,m ≤ k < kc,m+1

0 otherwise,

(3.23)

where kc,m is the frequency bin number corresponding to the center frequency

of the mth band fc,m in Hz as kc,m = Nfc,m/fs, where fs is the sampling

frequency. The frequency in Hz is mapped onto the Mel scale according to the

formula [50]:

φ = 2565 log10

(
f

700
+ 1

)
(3.24)

The center frequency of the mth band on the Mel scale is given as

φc,m = m
φmax − φmin

M + 1
(3.25)

where φmax, φmin are the Mel frequency scales of the upper bound frequency

fmax and the lower bound frequency fmin, derived using Eq. 3.24. The MFCC,
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c(l), are obtained by conducting the discrete cosine transform (DCT) of X ′(m)

[50].

c(l) =
M∑

m=1

X ′(m) cos

(
l
π

M

(
m− 1

2

))
(3.26)

Let Ck = [ c(0) c(2) · · · c(M − 2) c(M − 1) ]T . Then the MFCC distance

between the two grains is given as

DMFCC(k, k
′) =

Ck ·Ck′

|Ck||Ck′ | (3.27)

Grain Selection Range and Cloud Size

The simplest way to select an additional grain would be to select the grain

that has the smallest measurable distance from the preceding grain just before

a gap. In principle, the methods based on additional grains are supposed to

compare the target grain, the existing one already given just before a gap,

with all the remaining grains in the corpus dictionary. This often requires

heavy computation when the size of the dictionary is large. In particular, if

the target sound is relatively homogeneous, then searching through the entire

grain dictionary would be excessive in the extreme as it would be highly likely

that all the grains in the dictionary are spectrally similar. In order to let users

adjust the tradeoff between the computation load and the extent to which the

target grain and the chosen grain are similar to each other, another parameter,

referred to as the ‘Grain Selection Range’ (Fig. 3.5, Table 3.2), is proposed.

The grain selection range determines a pool of grains in which a search for an

additional grain is conducted. If the grain selection range is given ngsr and the

kth grain is the target grain, the candidate grains are defined by their orders
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in the dictionary, k′, as

{k − ngsr ≤ k′ ≤ k + ngsr, k
′ �= k} (3.28)

The number of grains in the range are then 2ngsr − 1, excluding the target

grain itself.

Another issue that can arise in the additional grain scheme is the repetition

of the same grain, particularly when more grains than one are needed to fill

the gap. It is highly likely that the grain that has been chosen once will be

chosen again, especially when the grains in the grain selection range are alike

in terms of spectral content. Owing to this chance of multiple-selection of the

same grain, audible artifacts could often be found in the resulting synthesized

sound. To prevent this, instead of strictly selecting the very best matched

grain, that is, the one that has the smallest distance from the target grain, an

additional grain is randomly chosen from among a pool of best-matched grains.

The number of grains in this pool is referred to as the ‘Cloud Size’ (Fig. 3.5,

Table 3.2). The larger the cloud size, the more random the selection. If the

cloud size is set to 1, then the best-matched grain is selected. Note that if the

cloud size is given as ncs, then it should satisfy the condition ncs ≤ ngsr. Once

an additional grain is selected, the amplitude of that grain is normalized to the

average power of the target grain preceding the gap and the grain succeeding

the gap.

3.4.4 Windowing

As grains are overlapped and added, it is likely that audible artifacts occur

at the joints of grains as a result of abrupt change of amplitude. To remedy

this situation, a grain is first weighted with a window function to taper either
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the end side or the beginning side, or both sides. The shape of the window

is determined by the length of a grain and the values of the ‘Grain Start

Overlap’ (Fig. 3.5, Table 3.2) and the ‘Grain Stop Overlap’ parameters. The

Grain Start Overlap is the number of samples at the beginning of the grain to

be tapered, and the Grain Stop Overlap is the number of samples at the end

of the grain to be tapered, respectively. Let nstart, nstop be the values of the

Grain Start Overlap and the Grain Stop Overlap and L be the length of the

grain in concern, then using the Hann window, the window is defined as

w(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.5

(
1− cos

(
π

n

nstart

))
, for 0 ≤ n ≤ nstart

1 , for nstart < n < L− nstop

0.5

(
1 + cos

(
π
n− (L− nstop)

nstop

))
, for L− nstop ≤ n ≤ L

(3.29)

Depending on values of nstart and nstop, one can make a window either double-

sided or one-sided. In general, a one-sided window with no tapering at the

beginning is used to preserve the attack transient of a grain. This is often the

case when using the grain extension method. On the other hand, a double-

sided window could be used to smooth both sides of a grain used for bridging

two grains into the gap when using the additional grain method. Figure 3.9

shows an example of a window applied to a grain.

3.4.5 Grain Extension Method vs. Additional Grain-Based Method

One thing to take note of is the characteristics of synthesized sounds in accor-

dance with the proposed gap-filling methods. The principal difference of the

grain extension method and the additional grain-based method is the grain
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Fig. 3.9 Window used for gap filling. ‘Grain Start Overlap’ and
’Grain Stop Overlap’ and the length of the grain determine the
overall length of the window.

density after synthesis. The grain density of the sound synthesized with the

grain extension method varies proportionally with the time stretch factor,

whereas that of the sound synthesized with the additional grain-based method

is invariant with respect to the time stretch factor. Figure 3.10 shows an ex-

ample of synthesis with time stretching. Depending on the nature of the given

sound and the user’s purpose, either method could be preferred. For example,

one can create two different kinds of clap sounds based on time modification.

Figure 3.11 shows the difference of the time stretched synthesis due to the

choice of gap-filling methods1. The synthesis using the grain extension method

generally results in a decrease of the grain density inversely proportional to

the time stretch factor; on the other hand the synthesis based on the addi-

tional grain-based method keeps the grain density of the original clap sound.

However, keeping grain density does not necessarily mean keeping the rhyth-

mic nature of the original sound not only because perception of rhythm has

to do with the spectral nature of the grains but also because the lengths of

grains could be very different from one another. This aspect actually provides

1Sound examples are available at http : www.music.mcgill.ca/ ∼ lee/thesis/granular
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Fig. 3.10 (a) Original sound. (b) Original sound stretched with
the time stretch factor α = 2. (c) Gap filling with the grain exten-
sion method. (d) Gap filling with the additional grain method.
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users with another option in synthesis, allowing for synthesized sounds that are

sparse in terms of the gain density. In this case, the grain extension method

plays the role of polishing each grain to avoid incurring audible artifacts due

to the abrupt ends of grains.
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Fig. 3.11 Time stretched clap sounds. a) Original sound. Blue
vertical bars denote the grain boundaries. (b) Time stretched sound
by a factor α = 2, with the grain extension method. (c) Time
stretched sound by a factor α = 2, with the additional grain-based
method (Itakura-Saito).

3.4.6 Grain Time Remapping

The concept of grain time remapping allows for more variations. Since all the

grains have their own time positions representing locations of grains on the

time axis, grain time remapping often allows for creating different scenarios
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time (original)time (original)

time (synthesis) time (synthesis)

(a) (b) (c)

Fig. 3.12 grain time remapping examples. (a) no grain time
remapping. (b) grain time remapping in reverse order. (c) ran-
dom grain time remapping.

for sound generations in the same environment. This can result in many

interesting effects. For example, grain time remapping of the rolling ball sound

would provide listeners with a variety of acoustic sensations since the time

sequence of the grains has to do with the trajectory of the rolling ball, as

mentioned in the previous chapter. Thus adjusting the time sequence could

actually have the effect of changing the trajectory of the ball. For example,

if the time sequence of the grains is reversed (Fig. 3.12-(b)), the resulting

synthesis will sound as if the ball were rolling backward along the trajectory

of the original sound.

3.5 Discussion

The outcome of the current research consists of two components. One is gran-

ular analysis and the other is granular synthesis. Both components were im-

plemented in MATLAB and managed through GUIs. The granular analy-

sis system is designed to detect onset-like events so that it can segment a

given sound into grains. The granular analysis system is also able to discern

stationary/non-stationary regions in the given sound and apply different seg-

mentation parameters for each region, which enables users to apply different
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criteria for defining the grain in each region. In addition, useful audio features

such as Energy, Spectral Centroid, Spectral Tilt and Spectral Flatness are

calculated for each grain for potential use in synthesis. Segmented grains are

tagged with timing information and audio-features are stored in a dictionary.

The research has also developed a novel granular synthesis system whereby

a user can synthesize a sound in conjunction with the granular analysis system

in flexible ways. The user can modify the temporal aspect of the sound in

various ways. Not only conventional time-scaling (stretching/shrinking) but

also user-defined grain time remapping of grains with convincing sound quality

is available in this synthesis system.

Because it is based on the granular analysis/synthesis framework, the pro-

posed scheme is good at re-producing sounds that can be well segmented. Such

sounds would be those of breaking, clapping, and rolling that take place un-

der particular conditions, for example, rolling on a ‘rough’ surface. In these

sounds, micro sound events are distinguishable to a reasonable extent so that

segmented grains are likely to correspond to micro physical interactions among

objects. With such sounds, all aspects presented in the proposed scheme will

show the best performance. For example, given a rolling sound in which micro

contacts between the ball and the surface are well transformed to distinct mi-

cro sound events, grain analysis will result in well-segmented grains, which in

turn let the grain synthesis part re-synthesize the given sound with good qual-

ity. In addition, temporal modifications would be capable of re-synthesizing

sounds as if the physical condition that governs sound generation were changed.

For example, remapping the time order of grains in reverse would generate a

sound as if a ball were rolling backward in the same trajectory as the original

sound; this result is due to the fact that the modes are excited and suppressed,
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depending on the location of excitation on the surface.

Another category of sounds that would fit the proposed scheme well is

that of constant, regular, ‘stationary’ sounds. Examples of such sounds are a

gentle fire burning, the flowing of a brook and falling rain, and so forth. Using

the stationarity analysis, those sounds can be analyzed either microscopically

or macroscopically. Owing to the nature of these sounds, time modification,

especially stretching, can be easily done, simply by using the additional grain-

based method, keeping the perceptual event density as much as possible.

The weak points of the proposed scheme are rooted in the fact that the

proposed scheme is based on the granular analysis/synthesis framework. Par-

ticularly when it is hard to segment given sounds properly so resulting grains

have little or no relations with micro physical interactions, re-synthesis does

not produce the desired results. One representative example of this is the

sound of thunder. Generally, thunder sounds are continuous, giving the over-

all impression of a continuum, but they also have a dynamically varying aspect.

Due to the continuous nature, it is hard to carry out segmentation that would

result in meaningful grains that capture distinct physical interactions. This

would in turn result in undesired re-synthesized sounds especially when tem-

poral modifications are made. Also, sounds of musical instruments would not

fit properly into the proposed scheme since the characteristics associated with

the sounds of musical instruments that would be critical in carrying out proper

segmentation are not taken into account.

Future work will include several research tasks that could potentially en-

hance the current research outcomes. One would be finding a clever way

for grain compression other than using the ‘Offset Threshold’ parameter. In

general, it is likely that redundant grains exist in a dictionary, and they in-
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cur unnecessary consumption of computer resources. By clustering redundant

grains through the use of a proper machine learning technique, the size of a

dictionary can be reduced while the quality of sound synthesis is maintained.

Another problem to think about is how to figure out the inherent rhythmic

aspect of a given sound. In contrast to music or speech, environmental sounds

are quite often non-rhythmic or have rhythms that are hard to analyze (e.g.

the sound of applause). However, if we could analyze the rhythm of a sound, it

would be beneficial insofar as it would broaden the flexibility of the synthesis

system.
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Chapter 4

Extraction and Modeling of

Pluck Excitations in

Plucked-String Sounds

4.1 Introduction

In this chapter, as an attempt to explore various aspects of sources used for

synthesizing musical sounds, we investigate ways of extraction and modeling of

excitations associated with physical models of plucked strings. We first propose

a simple but physically intuitive method to extract the excitation signal from

a plucked string signal in the time domain. By observing the behavior of

the traveling wave components in the given plucked string sound signal and

comparing that to a digital waveguide (DW) simulation, the pluck excitation

is ‘visually’ identified and extracted simply by time windowing. Motivated by

this time-windowing-based method, another method for extracting excitations

is proposed. This latter method is based on inverse-filtering given a physical

model of plucked strings which can be viewed as a source-filter framework.
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This method aims at extracting the excitation of the most compact form in

time by taking into account the plucking position and the pickup position, and

the results of both the time-windowing based method and the inverse-filtering

based method are compared to show they yield almost the same results, which

are compact in the time-domain and accurately reflect the profile of pluck

excitations in the acceleration (force) dimension. In addition, an approach

to model extracted pluck excitations using an existing glottal flow derivative

model for speech processing is proposed, and the estimation of the model

parameters is also discussed.

4.2 Background

Since the concept of physical modeling synthesis has emerged, plucked strings

have been one of the major applications. The sound quality of plucked-string

physical models is often highly dependent on the excitation model, or the way

that energy is input into the system since the action of plucking is almost the

only domain over which a performer has control in the real world. It is there-

fore essential to use proper excitations to synthesize natural plucked string

sounds that successfully convey the performer’s articulations in conjunction

with physical model-based synthesis techniques. For the purpose of both the

analysis and the synthesis of ‘natural sounding’ plucked string sounds, using

excitations analyzed from real plucked string sounds is often desirable. Con-

squently, ‘analyzing out’ the plucking excitations has attracted the attention

of researchers, leading to many interesting and useful outcomes.

The first physical model of plucked string sounds dates back to the well-

known Karplus-Strong (KS) model [51] which is actually a quasi-physical

model of plucked strings regarded as the predecessor of physical models of
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plucked strings. A noise signal is used as a pluck excitation in the KS model.

Several works [15][52][53] have addressed the extraction of the pluck excita-

tion using more advanced physical models in the form of digital filters. These

works all involve inverse filtering with recorded plucked string sound signals as

a way of decomposing the source and the filter in the source-filter framework.

This inverse filtering approach is also found in [54], where the single delay

loop (SDL) model is employed as the physical model of a plucked string. A

general source-filter model, without a specific physical model customized to

the musical instrument concerned, is often used for excitation extraction, on

the assumption that the mechanism of the sound generation from certain mu-

sical instruments follows the excitor-resonator relation [12]. In this approach,

a resonant filter that represents harmonic peaks in the spectrum of a sound

is constructed based on the analysis of harmonic peaks in the frequency do-

main and then inverse filtered with the target sound to extract the excitation.

In [16], the authors propose a method to extract the pluck excitation in a

non-parametric way by suppressing all the peaks in the magnitude response

of a plucked string sound and replacing those suppressed spectral magnitudes

with the values realized from the probability distribution associated with the

amplitudes of neighboring magnitudes.

In regards to the modeling of pluck excitations, there has been little re-

search compared to the extraction of excitations. One of the first attempts to

model a pluck excitation can be found in [55], where the extended KS model

is proposed. A one-pole filter is used to implement the difference of the up

picking and down picking, which is one of the most fundamental articulations

in playing plucking-based string instruments. In [56], Smith and Van Duyne

modeled the excitation signal fed into the physical model of the piano. They
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paid attention to the behavior of a hammer-string action and modeled the

shape of the initial force pulse wave created from the hammer strike, the re-

flected pulse returning to the strike point, and the subsequent pulse generated

from the interaction between the reflected pulse and the hammer still in con-

tact with the string, using a few low-pass filtered impulses. In [54], the authors

addressed the modeling of pluck excitations using principle component analy-

sis (PCA). They first extracted pluck excitations using the SDL-based inverse

filtering, as mentioned above and then applied the PCA to the collected pluck

excitations and built a ‘codebook’ of pluck excitations that could be used for

synthesis. Another interesting approach for modeling pluck excitations can

be found in [53] and [57], where the FIR filter is used to describe the shape

of pluck excitations. This approach might look similar to the methods pro-

posed in [55] and [56] inasmuch as the excitations are modeled using simple

FIR filters; however, the methods in [53] and [57] are different in that the filter

parameters are set based on the estimation of the actual excitation signal data.

4.3 Digital Waveguide Theory of Ideal Vibrating String

In this section, we review the digital waveguide theory, particularly as it relates

to wave propagation on an ideal string. The ideal string is assumed to be

perfectly flexible and elastic.

4.3.1 One-dimensional Digital Waveguide Theory

The wave equation for wave propagation on the ideal string is

K
∂2y

∂x2
= ε

∂2y

∂t2
(4.1)
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where K, ε, y are the string tension, the linear mass density of the string, and

the displacement of the string, respectively. A solution to Eq. 4.1, attributed

to d’Alembert, is [58]

y(t, x) = yr(t− x/c) + yl(t+ x/c) (4.2)

where yr(·) and yl(·) are functions that describe a preset string shape, traveling
to the right and to the left at the speed of c, as defined in Eq. 4.3, respectively.

c =

√
K

ε
(4.3)

In the digital waveguide, the right-going and the left-going displacement com-

Transverse displacement

t = 0

t = 0

t = t′

t = t′

Traveling wave components

t = t′

c c

Fig. 4.1 Traveling wave components and the transverse displace-
ment. The waveforms shown in the top pane are the right-going and
the left-going traveling wave components at time t = 0 and t = t′.
The waveforms shown in the bottom pane are the transverse dis-
placements at time t = 0 and t = t′, sums of the two traveling wave
components shown in the top pane.

ponents in the traveling wave solution of Eq. 4.2 are sampled at sampling in-
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terval T (in seconds), which relates to the sampling frequency fs (in Hz) as

T = 1/fs. Accordingly, the spatial variable x is sampled at the interval of X,

given as X = cT , which can be interpreted as the distance the traveling waves

move over time T . By sampling in both time and space, continuous temporal

and spatial variables can be changed so that

x −→ xm = mX (4.4)

t −→ tn = nT (4.5)

Then, Eq.(4.2) can be written as below, using the new variables:

y(tn, xm) = yr(tn − xm/c) + yl(tn + xm/c) (4.6)

= yr(nT −mX/c) + yl(nT +mX/c) (4.7)

= yr[(n−m)T ) + yl[(n+m)T ]) (4.8)

By defining the new notations as below, we can omit T in Eq. 4.8

y+(n) = yr(nT ), y−(n) = yl(nT ) (4.9)

The superscripts ‘+’ and ‘−’ denote the traveling directions, to the right and

left, respectively. The resulting expression for the transverse displacement at

time n and location m is given as the sum of the two traveling wave compo-

nents:

y(tn, xm) = y+(n−m) + y−(n+m). (4.10)
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In the digital waveguide, due to the definition of X = cT , traveling wave

components can be described with one type of variable (interpreted either as

temporal or spatial) with delays. The right-going traveling wave term y+(n−
m) can be interpreted as the output of the m-sample delay line with the input

y+(n) and, similarly, the left-going traveling wave term y−(n + m) with the

input y−(n). As can be seen in Fig. 4.2 which illustrates a part of the digital

waveguide representing the traveling-wave solution of Eq. 4.10, the physical

transverse displacement at any spatial position at time n can be computed

simply by adding the outputs of the upper delay line, which shifts samples to

the right, and of the lower delay line, which shifts samples to the left, at the

desired spatial position. In Fig. 4.2, two outputs at x = 0 and x = 3X are

shown as examples.

z−1 z−1 z−1

z−1 z−1 z−1

y(nT, 3X)

y−(n + 3)

y+(n− 3)

y(nT, 0)

y+(n)

y−(n)

y+(n− 2)y+(n− 1)

y−(n + 2)y−(n + 1)

(x = cT )(x = 0) (x = 2cT ) (x = 3cT )position :

Fig. 4.2 DWG simulation of the ideal, lossless waveguide after
[2]

So far the transverse displacement y has been used as a wave variable to

describe the digital waveguide model. In the digital waveguide, propagation

of other physical quantities, such as velocity and acceleration, could also be

described as long as they can be depicted as wave equations.



4 Extraction and Modeling of Pluck Excitations in Plucked-String
Sounds 74

4.3.2 Ideal Digital Waveguide Plucked String Model

In this section, the digital waveguide model of the ideal plucked string is

reviewed. The ideal plucked string can be characterized simply with an initial

string displacement shape y(0, x) and a zero initial velocity distribution along

the string ẏ(0, x). This can be interpreted as releasing a string which has

been pulled from its rest position. Figure. 4.3(a) shows an example of an

initial condition. The length of the string is L meters and accordingly the

delay length of the ‘string loop’, the total number of delays in both delay

lines, is defined as Nloop = 2L/X. Another simple choice for describing the

y+(n−Nloop/2)

nut bridge

(x = 0)

-1-1 plucking position

(x = L)

y−(n+Nloop/2)

y+(n)

y−(n)

a+(n−Nloop/2)

nut bridge

(x = 0)

-1-1 plucking position

(x = L)

a−(n +Nloop/2)

a+(n)

a−(n)

(a)

(b)

c

c

Fig. 4.3 Ideal plucked string digital waveguide models. (a) A
simulation using wave variables of displacement y(n). The initial
condition y(0, x) is characterized by the shapes loaded in the delay
lines. (b) A simulation using wave variables of acceleration a(n).
The initial condition a(0, x) is characterized by the impulses loaded
in the delay lines. All figures are after [2].

behavior of a plucked string in the digital waveguide is to use acceleration wave
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variables a(t, x), which is ÿ(t, x), since feeding impulses into both delay lines

of a digital waveguide corresponds to the ideal pluck. Figure. 4.3(b) shows

an initial acceleration distribution along the string where impulses are loaded

at the plucking point. The advantage of using an acceleration wave variable

is that the output of the digital waveguide is actually the impulse response

system, so we can use the LTI system theory for further investigation.

We also assume rigid terminations as the boundary condition applied to

both ends of a string as it is the simplest termination scenario that would

be useful for describing the behavior of the ideal plucked string. As both

displacements and accelerations should be 0 at both ends, which are assumed

to be rigid terminations, we have

y(t, 0) = 0, y(t, L) = 0 (4.11)

a(t, 0) = 0, a(t, L) = 0 (4.12)

Therefore, traveling wave components in the digital waveguide at the termi-

nations should satisfy

y+(n) = −y−(n) (4.13)

y−(n+Nloop/2) = −y+(n−Nloop/2) (4.14)

a+(n) = −a−(n) (4.15)

a−(n+Nloop/2) = −a+(n−Nloop/2) (4.16)

Therefore, a reflection coefficient of -1 should be placed at both ends of the

digital waveguide model as seen in Fig. 4.3(b).
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4.4 Time Domain Profile of the Plucked String

In order to observe the motion of a string when it is plucked, a string of an

electric guitar is plucked and the signal is recorded using a standard audio

interface. A general guitar cable with quarter inch jacks is used to connect the

guitar with the audio interface. As both terminations of a string of the electric

guitar are almost ideally rigid, especially compared to an acoustic guitar, a

signal captured by the electromagnetic pickup mounted on the electric guitar

is preferred to a signal generated by plucking a string attached to an acoustic

guitar and recorded by a microphone.

The guitar used for recording is a Fender Stratocaster American Standard

model. The scale length (the distance from the nut to the bridge) Lsc equals

64.8 cm [59]1. Figure 4.4 shows an example of an electric guitar signal recorded

as previously specified. For this signal, the lowest E string is plucked with a

plectrum at the middle of the string (the 12th fret) and the front pickup (the

one closest to the nut) is chosen to capture the string vibration. The distance

between the bridge and the front pickup is 16 cm and the sampling frequency

fs is set to 44100 Hz. The fundamental frequency f0 is 83 Hz (obtained by

simply taking a look at the spectrum and the autocorrelation of the signal).
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Fig. 4.4 Beginning of a plucked string sound observed through
electromagnetic pickup.

Given the values describing the strings vibration, the digital waveguide

1http://www.fender.com/products/americanstandard/models.php?prodNo=011040
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simulation of a string vibration is carried out for comparison with the recorded

signal (see Fig. 4.5). The length of the delay line N , half of the ‘string loop’

length, the pickup position Npu, a number of delays between the bridge and

the pickup, and the plucking position Npl are derived as

N =
fs
2f0

= 265.6627 ≈ 266 (4.17)

Npu = N − 16× 266

64.8
= 200.3210 ≈ 200 (4.18)

Npl = N/2 ≈ 133 (4.19)

For simplicity, we have assumed rigid terminations, considering neither the

effects of the bridge and the nut nor the frequency-dependent attenuation. The

filters P (z) and I(z) in Fig. 4.4 account for the effect of an electromagnetic

pickup normally used for an electric guitar. P (z) is the transfer function that

represents the characteristic of the pickup, we assumed P (z) = 1 for simplicity

here. I(z) converts between wave variable types, which is necessary because

of the nature of a pickup. As a pickup mounted on an electric guitar measures

the induced electromotive force (EMF) caused by the change of magnetic flux

through the coil in the pickup, according to Faraday’s law of induction [60]

the EMF ε is given as

ε ∝ −dΦB

dt
∝ −dy

dt
(4.20)

where ΦB is the magnetic flux through the coil. As the change of ΦB is

proportional to the change of the string displacement just above the pickup

coil, what the pickup measures is proportional to the time derivative of the

string displacement, or the string’s velocity. Thus I(z) should be an integrator

as the wave variable we use is acceleration. We have used a simple leaky
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integrator for I(z) [2] given as below,

I(z) =
1

1− gz−1
(4.21)

where g is a loss factor slightly less than 1. Hence, the final output of the

digital waveguide model will be vNpu(n), the velocity of the string.

VNpu(z)
P (z)

z−Npl

z−Npl z−(N−Np)

z−(N−Np)

E1 O1 R1

R2E2L2

L1

nut bridge

A1,Npu
(z)

A2,Npu
(z)

1
2

A1(z)

A2(z)

I(z)

O2

Aexc(z)-1
-1

Fig. 4.5 Acceleration wave variable-based digital waveguide
plucked string model with rigid terminations.

4.4.1 Excitation Extraction by Time Windowing Method

In order to obtain the impulse response of the DW system, input acceleration

aexc(n), the inverse z-transform of Aexc(z) in Fig. 4.5, is set to -1. aexc(n) is

then equally split and fed into each delay line as shown in Fig. 4.5. ANpu(z) in

Fig. 4.5 is the acceleration at the pickup position, which is given as the sum

of traveling wave components from the upper delay line, and the lower delay

line at Npu, ANpu(z) = A1,Npu(z) + A2,Npu(z), before going into the pickup

transfer function P (z). Figure 4.6 shows aNpu(n), the inverse z-transform

of ANpu(z). Thus the impulse response of the overall system vNpu(n), the

inverse z-transform of VNpu(z), can be obtained by simply integrating aNpu(n)

as illustrated in Fig. 4.7.



4 Extraction and Modeling of Pluck Excitations in Plucked-String
Sounds 79

500 1000 1500 2000 2500 3000

−1

−0.5

0

0.5

1

impulse response

sample

Fig. 4.6 The impulse response of the DW string model aNpu(n)
in acceleration prior to entering the pickup.
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Fig. 4.7 The impulse response of the DW string model vNpu(n)
obtained by integrating aNpu(n).
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Fig. 4.8 Recorded signal y(n) and the impulse response vNpu(n).

In Fig. 4.8, the impulse response of the DWmodel vNpu(n) and the recorded

signal y(n) are depicted together for the sake of comparison. We can note

the similarity in the time evolution of the ‘bump’ patterns in both y(n) and

vNpu(n). The phases of bumps in y(n) and vNpu(n) vary in the same manner.

However, the signal y(n) that we actually record represents velocity waves

because the pickup functions as an integrator. Thus, considering that the

excitation we wish to extract from y(n) is acceleration, we need to differentiate
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Fig. 4.9 Top: differentiated recorded signal y′(n). The portion
under the arrow is ãexc(n). Bottom: aLp(n).
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Fig. 4.10 ãexc(n)

y(n) to y′(n) for comparison to aNpu(n). Figure 4.9 shows y′(n) and aNpu(n)

together. The signal phase, or reflection, characteristics of y′(n) and aNpu(n)

vary in a similar manner over time. This suggests that the excitation signal

actually travels on the string in the same way that the impulse does in the

DW simulation. Therefore, by carefully taking a look at both signals, we
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Fig. 4.11 Top: vNpu(n). Middle: recorded signal. Bottom: syn-
thesized signal.

can notice that the portion up to the arrow in y′(n) in Fig. 4.9 corresponds

to the first impulse in aNpu(n). If we assume that the length of the pluck

excitation used to generate y(n) is shorter than the time interval between the

first impulse and the second impulse in aNpu(n), the indicated portion in y′(n)

henceforth referred to as ãexc(n), then the initial plucking excitation is not

distorted by reflected wave components during this time period. Therefore,

we can simply extract ãexc(n) by windowing it out from y′(n) as shown in

Fig. 4.10. One thing to note is that ãexc(n) also reflects the effect of the

electric pickup since we assumed the pick up transfer function P (z) = 1 in the

DW model. Because the plucked string DW model is linear, this extracted

excitation signal (ãexc(n)) can be used as input to the synthesis model. To

validate the proposed method, we synthesized a pluck sound by convolving
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ãexc(n) with vNpu(n) and comparing it to y(n). As shown in Fig. 4.11, where

vNpu(n), y(n) and the convolution of y(n) and ãexc(n) are depicted together,

we can see that the synthesis result reproduces the signal pattern of y(n) to a

reasonable degree. It should be noted that this time-windowing based method

would not work properly if the length of the pluck excitation in the acceleration

dimension were longer than the interval between the first pulse and the second

pulse in aNpu(n), since the shape of the pluck excitation at the very beginning

of the recorded signal would be distorted and smeared by the first reflection.

This issue will be discussed later.

4.5 Excitation Extraction by Inverse-filtering Using the

Single Delay Loop Model

4.5.1 Single Delay Loop Model Review

In [61], Karjalaninen et al. proposed the single delay loop (SDL) model where

the conventional bidirectional DW string model is reformed to the structure

having a single delay line. The SDL model can be regarded as an extension of

the KS model. The SDL model can be interpreted as a source filter model in

which the input is a pluck excitation of acceleration and the output can repre-

sent any variable depending on the interest. Note that the input and output

of the SDL model are not traveling wave components. Prior to discussing the

source-filter approach to the estimation of the finger/plectrum model parame-

ters, we will briefly review the relation between the conventional bidirectional

DW model and the SDL model. More detail can be found in [61].

The transfer function of the output velocity vNpu(n) in Fig. 4.12 is denoted

as VNpu(z) which is given as [61],
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Fig. 4.12 Digital waveguide structure of the non-ideal plucked
string.

VNpu(z) = P (z)I(z)(A1,Npu(z) + A2,Npu(z))

= P (z)I(z)(A1,Npu(z) +HO1,R1(z)Rb(z)HR2,O2(z)A1,Npu(z))

= P (z)I(z)(1 +HO1,O2(z))A1,Npu(z) (4.22)

HO1,R1(z), HR2,O2(z) andHO1,O2(z) are the transfer functions of the paths from

O1 to R1, from R2 to O2 and from O1 to O2, respectively. This notational

convention will be used hereafter. A1,Npu(z) has the relation as follows [61]:

A1,Npu(z) = HE1,O1(z)AE1,eq(z) +Hloop(z)A1,Npu(z) (4.23)

where,

Hloop(z) = Rb(z)HR2,E2(z)HE2,E1(z)HE1,R1(z) (4.24)

AE1,eq(z) =
Aexc(z)

2
+HE2,L2(z)Rf (z)HL1,E1(z)

Aexc(z)

2
(4.25)

Hloop(z) is the transfer function representing a round trip around the loop and

AE1,eq(z) is the transfer function representing the equivalent single excitation
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at E1 [61], where Aexc(z) is the z transform of aexc(n). Thus,

A1,Npu(z) = HE1,O1(z)
1

1−Hloop(z)
AE1,eq(z) (4.26)

Substituting Eq. 4.26 into Eq. 4.22, we can obtain the overall excitation-to-

z−2Npl Rf (z) z−2(N−Npu) Rb(z)

z−(Npu−Npl)

z−2N Rf (z) Rb(z)

Aexc(z)

ANpu
(z)

1 +HE2,E1(z) 1 +HO1,O2(z) HE1,O1(z)

1
1−Hloop(z)

Fig. 4.13 SDL model of the plucked string.

pickup transfer function such that:

H(z) =
VNpu(z)

Aexc(z)

=
1

2
[1 +HE2,E1(z)]

HE1,O1(z)

1−Hloop(z)
P (z)I(z)[1 +HO1,O2(z)] (4.27)

As shown in Fig. 4.13, in the SDL model, the effect of the plucking position

and the pickup position can be separated from the overall transfer function
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-1

-1

Fig. 4.14 Paths of the traveling impulses in the digital waveguide
model of the ideal plucked string. The circled numbers indicate
the paths of pulses in the order of arrival at the pickup position,
corresponding to those in Fig.(4.15).

H(z). They are characterized by the FIR transfer function,

Hplpu(z) = HE1,O1(z)(1 +HE2,E1(z))(1 +HO1,O2(z)) (4.28)

= z−(Npu−Npl)(1 +Rf (z)z
−2Npl)(1 +Rb(z)z

−2(N−Npu)) (4.29)

= z−(Npu−Npl) +Rf (z)z
−(Npl+Npu) (4.30)

+Rb(z)z
−(2N−Npu−Npl) +Rf (z)Rb(z)z

−(2N−Npu+Npl)

Thus Eq. 4.27 can be re-written as,

H(z) =
Hplpu(z)

2(1−Hloop(z))
P (z)I(z) (4.31)

Figure 4.15(a) illustrates the hplpu(n), the impulse response ofHplpu(z) (Eq. 4.28)

in the case of the ideal plucked string. The circled numbers in this figure cor-

respond to those in Fig. 4.14 where the input excitation aexc(n) passes the

pickup position Npu either through the upper or lower delay line four times

within 2N , in the way depicted in Fig. 4.14. Note that this order is valid only

whenNpl+Npu > N ; otherwise, the pulse on path 3© would arrive at the pickup

position sooner than the one on path 2© and the order should be switched.

Depending on the combination of the plucking position and the pick up posi-
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tion, numerous kinds of Hplpu(z) can be created, all of which are comb filters

influencing the timbre of the plucked string sound as certain modes of the vi-

brations are suppressed accordingly. The impulse response of 1/(1−Hloop(z))

shown in Fig. 4.15(b) is basically an impulse train of period 2N . As can be

seen in Fig. 4.15(c), the cascade of these two transfer functions characterizes

the overall SDL model of the ideal plucked string and accounts for the ‘bump’

pattern mentioned in the previous section.
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Fig. 4.15 Impulse responses of Hplpu(z), Hloop(z) and H(z)

4.6 Loop Filter Design for the DW and SDL Models

This section discusses the design of the loop filter embedded in the DW and

SDL models. Contrary to the ideal plucked string model where the string vi-



4 Extraction and Modeling of Pluck Excitations in Plucked-String
Sounds 87

bration is lossless and the traveling wave components are perfectly reflected,

in real world, the string vibration undergoes damping and dispersion in a

frequency-dependent manner and interacts with the bridge according to the

bridge admittance. In the DW model these phenomena are typically imple-

mented in the form of digital filters placed at the terminations that operate as

reflection filters whose input and output are traveling wave variables.

4.6.1 Frequency-dependent Decay

Losses in vibrating strings are mainly caused by three different physical phe-

nomena. Viscous drag imposed on a string, referred to as air damping, is one

of them. Also, a vibrating string undergoes internal damping as a result of

the material properties of the string. Lastly, a vibrating string loses its energy

through the supports of the string, the bridge of an electric guitar in our case,

which receives the energy from the string depending on its admittance [62].

The decaying of vibrating energy is frequency-dependent, normally in such a

way that high frequency components decay faster than low frequency ones.

Much research has investigated ways of implementing frequency-dependent

decay phenomena in the form of digital filters used in conjunction with DW

and SDL. They are mostly based on types of measurement. They use either

the measurement of frequency-dependent decay of the plucked string sound or

measurement [15][2][63][64][65][66] of admittance of the supports that generally

interface strings to the body of the instrument [67], or they are based on the

analytic solution of the wave equation [68]. The admittance data generally

accounts for the characteristics of the bridge itself and the body that interacts

with the strings both acoustically and mechanically. All losses, including the

reflection at the two terminations of the string, are consolidated in the loop
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filter Rb(z). Damping factors of harmonic partials have to be estimated. Using

the short time Fourier transform (STFT), the time evolution of the amplitudes

of each partial are tracked and then their decay rates are estimated. The STFT

of a recorded signal y(n) is

Yn(k) =
N−1∑
m=0

y(hn+m)w(m)e−
j2πmk

N , n = 0, 1, 2, · · · (4.32)

where N is the DFT size, w(m) is a window function, and h is the hop size.

Zero padding is carried out for higher resolution in the frequency domain.

The spectral peaks representing harmonic partials are detected using a peak-

picking algorithm. We used the MATLAB command findpeaks, which is

designed to find local peaks in given data. The number of harmonic partials to

be considered depends on the nature of y(n). By tracking the time evolution

of a partial’s amplitude and assuming the decay is exponential, we can use

the conventional linear regression technique to fit a straight line to a time

trajectory of the amplitude of the partial on a dB scale. Once the lines that fit

the amplitude trajectories of partials are estimated, the slopes of those lines,

βm(dB/sample), can be derived as,

βm =
Am(0)− Am(n

′)
n′h

, m = 1, 2, · · · , Npartial (4.33)

where Am(n) is the amplitude of the mth partial at the nth hop in dB and

Npartial is the number of partials considered. Then, the amount of the ampli-

tude drop of each partial per string loop length, referred to as the ‘loop gain’,
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Fig. 4.16 Line fit (dashed lines) of amplitude trajectories of par-
tials (solid lines). f0 = 147.85 Hz and fs=44100 Hz. The hop
size is 1024 samples. (a) 2th partial (295.41 Hz). (b) 11th partial
(1635 Hz).

is derived as,

gm = βm
fs
f0

= 2βmN (linear scale) (4.34)

Gm = 10gm/20 = 10βmN/10 (dB scale) (4.35)

where gm and Gm are the loop gains of the mth partial on the linear scale and

on the dB scale, respectively. The phase of the loop filter target is modeled

using linear phase term as:

Plin(ωm) = e−jωm (4.36)

where ωm is the angular frequency of the mth partial. Thus the overall target

frequency response for constructing the loop gain filter Hgain(z) at the angular
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frequencies of partials is given as

Hgain,target(ωm) = Plin(ωm)Gm. (4.37)

Measured loop gains and modeled loop phases are used to build an IIR filter

in the form of

Hgain(z) =
B(z)

A(z)
=

N∑
n=0

bnz
−n

M∑
m=0

amz−m

(4.38)

This is done using a MATLAB function invfreqz which solves the weighted

least squares problem below.

min
b,a

Npartial∑
m=1

W (ωm)|Hgain,target(ωm)A(ωm)− B(ωm)|2 (4.39)

W (ωm) is the weighting function specified at ωm and b, a are vectors of filter

coefficients given as

b = [ b0 b1 · · · bN−1 bN ] (4.40)

a = [ a0 a1 · · · aM−1 aM ] (4.41)

Figure 4.17 depicts measured loop gains Gm at 20 partials and the magnitude

response of the modeled loop gain filter Hgain(z) based on Gm. The funda-

mental frequency f0 of the targeted sound is a plucked sound of the open D

string of an electric guitar with a fundamental frequency of 147.85Hz. The

filter order of Hgain(z) is N = 1, M = 1.
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Fig. 4.17 Example of a loop gain filter. f0 = 147.85 Hz and
fs=44100 Hz. The hop size is 1024 samples. Circles represent mea-
sured loop gains from partial amplitude trajectories, and a single
curve represents the magnitude response ofHgain(z), given the filter
order N = 1, M = 1.

4.6.2 Dispersion

Because of the stiffness of the strings of an electric guitar, particularly the

low strings, propagation of waves is frequency-dependent in the way that high

frequency components travel faster than those of low frequencies [62]. Thus

an impulse traveling on a stiff string becomes more and more like a ‘ringing’

swept sinusoid. This dispersive nature of wave propagation is an important

aspect of stringed instruments that accounts for the ‘inharmonicity’ which

often contributes to characterizing the timbre of string instruments, especially

pianos. If the inharmonicity coefficient B is known, then the ‘inharmonic’

partial frequencies can be computed as given in [69],

fk = kf0
√
1 + Bk2 (4.42)
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where f0, fk are the fundamental frequency and the frequency of the kth

partial, respectively. There are many research studies proposing filter design

techniques to simulate dispersion particularly in the DW model for sound syn-

thesis [55][70][71][72][73]. They all use allpass filters to approximate frequency-

dependent delays. In order to design such a dispersion filter so that it can
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Fig. 4.18 Comparison of the spectrum of a recorded plucked
string sound and the theoretical harmonics. Blue line is the magni-
tude response of the recorded plucked string (the low open D string
of an electric guitar) sound. Black circles represent the peaks of
magnitude responses. Red stars(*) are theoretical harmonics. Top:
theoretical harmonics are just the multiples of the fundamental fre-
quency. Bottom: theoretical harmonics are adjusted according to
the formula of Eq. 4.42 given the estimated B.

operate in the DW model, we first estimated the inharmonicity coefficient B

using the algorithm proposed in [74] where B is estimated in an iterative way

given the spectrum of the target sound. Figure 4.18 shows an example of com-

parisons between the magnitude response of a recorded plucked string sound

and the theoretically derived harmonic partials. As shown in the top pane,

sounds generated by plucking a typical electric guitar string have inharmonic-
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ity due to the stiffness of the string, thus the theoretical harmonics deviate

from the measured harmonic spectral peaks. After applying the inharmonic-

ity formula Eq. 4.42 given the estimated B, we can see how the theoretical

harmonics better align with the measured ones.

Using the estimated B, the phase delay of the target sound is further

derived. Based on this phase delay, a dispersion filter is designed using the

dispersion filter design algorithm proposed in [72]. The algorithm involves

designing a second-order Thiran allpass filter, and the designed allpass filter

is then cascaded four times to yield the final dispersion filter as below,

Hdispersion(z) =

(
a2 + a1z

−1 + z−2

1 + a1z−1 + a2z−2

)4

(4.43)

where a1 and a2 are the coefficients of the second-order Thiran allpass filter.

4.6.3 Loop Filter

In our model, we have lumped together the effect of Rf (z) to Rb(z) for the

sake of convenience so that Rf (z) is set as the rigid termination, simply set to

-1, and Rb(z) contains all the properties of lossy and stiff string vibration and

the bridge. We refer to Rb(z) as the loop filter hereafter. The loop filter Rb(z)

where all the losses and phase properties are consolidated can simply be given

as below, by cascading the filters that were constructed separately:

Rb(z) = Hgain(z)Hdispersion(z) (4.44)

It should be noted that the dispersion filter has a large number of delays, as its

design is based on the phase delay. These delays should be compensated for by

adjusting the length of the delay lines in the DW. The length of the delay lines
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in the DW are adjusted with respect to the phase delay at the fundamental

frequency (first harmonic) of the plucked string sound as the delay lines are

supposed to determine the fundamental period.

4.7 Inverse Filtering

Once the entire SDL model has been built, we can inverse filter the recorded

signal with the SDL model H(z) (Eq. 4.31) as a preliminary step for extracting

a pluck excitation. The inverse filtering consists of two steps. First the loop

part of H(z), 1
1−Hloop(z)

, is inverse filtered from the given recorded signal, and

then Hplpu(z) is inverse filtered with what remains afterwards. Prior to inverse

filtering, a signal of an electric guitar captured by an electromagnetic pickup

y(n) is differentiated to convert y(n) to an acceleration representation. The

differentiation is conducted using a simple high-pass filter D(z) = 1/I(z). The

result of inverse filtering on Y (z) with the loop part of the H(z), referred to

as Hinv(z), is given as ,

Hinv(z) = Âexc(z)Hplpu(z) = Y (z)D(z)(1−Hloop(z)) (4.45)

where Y (z) is the z-transform of y(n) and Âexc(z) is the z-transform of the

pluck excitation âexc(n) that we are aiming to estimate. Note that Âexc(z)

should be distinguished from Ãexc(z) which represents the z-transform of the

excitation aexc(n) obtained by the time windowing method. Hinv(z) is the

response of Hplpu(z) when Âexc(z) is given as an input. As shown in Fig. 4.19,

the impulse response of Hinv(z) is the remaining signal after the effect of the

loop part 1/(1−Hloop(z)) is removed from Y (z).
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Fig. 4.19 1st: original signal. 2nd: inverse-filtered original signal.
3rd: notch-filtered original signal. 4th: the first period of the ideal
plucked string SDL model.

4.7.1 Comparison to Notch Filtering

In order to verify the validity of using inverse filtering, a comparison with the

results of notch filtering is discussed in this section. A notch filter to remove

each harmonic peak in the spectrum of a plucked string sound is designed as
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Fig. 4.20 Blue : original spectrum, Red : after notch filtering.
Black : after inverse filtering using SDL model. Red circles indi-
cated detected peaks. Spectrums are offset for comparison.

follows:

R = e−
πBW
fs (4.46)

zp = Re
j2πfp
fs (4.47)

Hnotch(z) =
(1− e

−πBW
fs e

j2πfp
fs z−1)(1− e

−πBW
fs e

−j2πfp
fs z−1)

(1− re
−πBW

fs e
j2πfp
fs z−1)(1− re

−πBW
fs e

−j2πfp
fs z−1)

(4.48)

Hnotch(z) =
(1− zpz

−1)(1− z∗pz
−1)

(1− rzpz−1)(1− rz∗pz−1)
(4.49)

where fp (Hz) and BW (Hz) are the frequency of the pth peak and the associ-

ated bandwidth, respectively; zp is the pole corresponding to the pth harmonic

peak; and R is the radius of the pole zp. The poles in the notch filter are for

the isolation of notches. r is the factor that controls the amount of notch

isolation. Hnotch(z) is the notch filter constructed as a second order section
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based on r and zp, targeted for removing the pth harmonic peak. The notch

filter design technique given here is from [2].

Example

The signal that is notch filtered in this example was originally a sound gener-

ated by a pluck at the 21st fret on the open A string (5th string) of an electric

guitar. The front pickup (the one closer to the neck) was used to capture

the strings vibration. 61 notch filters were designed and applied to the given

signal. Thus,

Open A, plucked at 21th fret, front pickup
f0 108.3 Hz

Total delay line length (2N) 408
pluck position Npl 142
pickup position Npu 154

Table 4.1 Parameters of the DW ideal plucked string model.

HE2,E1(z) = Rf (z)z
−284 (4.50)

HE1,O1(z) = z−12 (4.51)

HO1,O2(z) = Rb(z)z
−100 (4.52)

Hloop(z) = Rb(z)Rf (z)z
−408 (4.53)

1

1−Hloop(z)
=

1

1−Rrb(z)Rf (z)z−408
(4.54)

Hplpu(z) = [1 +Rf (z)z
−284]z−12[1 +Rb(z)z

−100]

= [z−12 +Rb(z)z
−112 +Rf (z)z

−296 +Rf (z)Rb(z)z
−396] (4.55)

Rf (z) = −1 (4.56)
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In Fig. 4.19, the original recorded plucked sound, the result of notch-filtering,

the result of inverse filtering, and the first period of the impulse response of

the SDL model of an ideal plucked (Eq. 4.54, Eq. 4.55) string are shown.

Comparison of all the signals in Fig. 4.19 indicates that the similar ‘bump’

patterns of a single period are observed in all the signals. Fig. 4.20 shows the

original magnitude response, the one after inverse-filtering, and the one after

notch filtering. It appears that the result of inverse-filtering and the result of

notch-filtering are in good agreement with each other. The prominent peaks

are well suppressed in both residual spectra.

4.8 Extraction of Pluck Excitation Using a Recursive

Least Square Algorithm

In the previous section, we introduced a method to extract a pluck excitation

from a recorded plucked string sound by simply time-windowing the beginning

of the recorded signal. This method allows for extracting a compact, physically

meaningful pluck excitation and is also applicable to physical model-based

synthesis. However, the method is valid only when a certain condition is

satisfied. As the method is based on time-windowing, the shape of a desired

pluck excitation should be visible in the waveform of the given signal, with

its original shape preserved. In order to satisfy this condition, in the impulse

response of the ideal plucked model corresponding to the given signal, the

interval between the first pulse (corresponding to the path 1© in Fig. 4.19)

and the first reflected pulse (corresponding to the path 2© in Fig. 4.19) should

be longer than the length of the expected pluck excitation. Otherwise, the

original shape of the expected pluck excitation could not be observed in the

waveform of the given signal, as the tail of the pluck excitation directly fed
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into the string would be smeared by the head of the pluck excitation which

travels back after the first reflection. On the assumption that the plucking

sound is the result of the convolution of the pluck excitation and the impulse

response of a stringed instrument, we can ‘deconvolve’ the pluck excitation

from the given signal even if the aforementioned condition is not satisfied. In

this context, we can view how the result of the inverse filtering introduced in

the previous section is the convolution of the pluck excitation and Hplpu(n).

In this section, we are proposing a method to deconvolve the pluck excitation

from the result of the inverse filtering by using the RLS algorithm.

4.8.1 Recursive Least Square Algorithm

The Recursive Least Square (RLS) algorithm, or the Recursive Least Square

filter, is a widely used adaptive filtering technique. Like other adaptive filters,

the RLS filter takes two kinds of inputs, one of which is a desired signal d(n)

and the other is an input signal u(n), as depicted in Fig. 4.21. The output of

the RLS filter y(n) can be written as

y(n) = wH(n)u(n) (4.57)

where u(n) is the input signal vector and w(n) is the coefficient vector of the

RLS filter. The filter output is then used to obtain the difference between the

desired signal d(n) and y(n), which is referred to as the error e(n).

The cost function that the RLS algorithm attempts to minimize is the

weighted least square error given in [75] as

ε(n) =
n∑

i=0

λn−i|e(i)|2 (4.58)
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Fig. 4.21 RLS filter

where λ is the forgetting factor used to discriminately weight the error e(i) in

such a way that more weight is put on the more recent error. From setting

∇ε(n) = 0, we obtain the optimal solution as

w(n) = Φ(n)−1z(n) (4.59)

where

Φ(n) =
n∑

i=0

λn−iu(i)uH(i) (4.60)

z(n) =
n∑

i=0

λn−iu(i)d∗(i) (4.61)

are the time average correlation matrix of u(n) and the cross correlation vector

between u(n) and d(n), respectively. Since the number of terms e(i) included

in the weighted least square error ε(n) increases as n increases, we need to

derive recursion relations for computational efficiency. Using the matrix in-

version lemma [76] and the definitions ofΦ(n) and z(n), the recursion relations
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for the RLS filter are derived as follows:

Φ−1(n) = λ−1Φ−1(n− 1)− λ−1k(n)uH(n)Φ−1(n− 1) (4.62)

z(n) = λz(n− 1) + u(n)d∗(n) (4.63)

k(n) =
λ−1Φ−1(n− 1)u(n)

1 + λ−1uH(n)Φ−1(n− 1)u(n)
(4.64)

where ‘*’ denotes the hermitian operator and k(n) is the gain vector. Using

Eqs. 4.59, 4.62, 4.63, and 4.64, we can finally derive the filter coefficients update

formula in the RLS filter as

w(n) = w(n− 1) + k(n)[d∗(n)− uH(n)w(n− 1)]. (4.65)

The main difference between the RLS algorithm and the gradient-based algo-

rithm is that in the RLS algorithm, the input signals are used as they are,

while the ensemble average of those signals is used in the gradient-based al-

gorithm. This makes the RLS algorithm dependent on the input signal itself

at every time instant, whereas the statistics of the input signals determine the

behavior of the gradient-based algorithm.

4.8.2 Extraction of Pluck Using RLS Filter

The desired signal d(n) used for RLS filtering is the result of inverse filtering

in Eq. 4.45 as

D(z) = Âexc(z)Hplpu(z) = Y (z)(1−Hloop(z)) (4.66)
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where D(z) is the z-transform of d(n) and the output of the RLS filter d̂(n) is

the approximation of d(n) given as

d̂(n) = wH(n)hplpu(n) (4.67)

where w(n), hplpu(n) are vectors of size (Nexc × 1) defined as,

w(n) = [w(1, n) w(2, n) · · · w(N − 1, n) w(N, n)]T (4.68)

hplpu(n) = [hplpu(n) hplpu(n− 1) · · ·

hplpu(n− (Nexc − 2)) hplpu(n− (Nexc − 1))]T (4.69)

and Nexc is the length of w(n). Note that in the RLS filtering in Eq. 4.67,

hplpu(n) corresponds to the input signal andw(n) corresponds to the coefficient

vector of the RLS filter. w(k, n) denotes the kth coefficient of w(n) at the nth

iteration. The optimal solution for Eq. 4.67 is

w(n) = Φ(n)−1z(n) (4.70)

where Φ(n) and z(n) are matrices of sizes (Nexc × Nexc) and (Nexc × 1), re-

spectively, defined as

Φ(n) =
Nexc∑
i=0

λn−ihplpu(i)h
H
plpu(i) (4.71)

z(n) =
Nexc∑
i=0

λn−ihplpu(i)d
∗(i) (4.72)
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By updating the recursion relations below in the same way as in Eq. 4.62 ∼
Eq. 4.64,

Φ−1(n) = λ−1Φ−1(n− 1)− λ−1k(n)hH
plpu(n)Φ

−1(n− 1) (4.73)

z(n) = λz(n− 1) + hplpu(n)d
∗(n) (4.74)

k(n) =
λ−1Φ−1(n− 1)hplpu(n)

1 + λ−1hH
plpu(n)Φ

−1(n− 1)hplpu(n)
(4.75)

we can derive the RLS filter update equation for w(n) as

w(n) = w(n− 1) + k(n)[d∗(n)− hH
plpu(n)w(n− 1)] (4.76)

By using the RLS algorithm, one can observe how the estimate of pluck exci-

tation w(n) varies as updated.

To validate the algorithm, an ideal plucked string sound is synthesized

by feeding a synthesized excitation into a DW model. For the synthesized

excitation, a Hann window of 50 samples long is used. Figure 4.22 illustrates

hplpu(n) of the ideal DW model and the synthesized one. Figure 4.23 illustrates

the time updates of the RLS filter. As updating goes on, the updated RLS

filter becomes more like the first bump, a Hann window, in hplpu(n) of the

synthesized signal, here from the sixth pattern. It shows that, for an ideal

case, the RLS is able to extract the excitation perfectly. For another example,

an extraction using the RLS algorithm is applied to a recorded plucked-string

sound. As the first ‘bump’ in d(n) (Fig. 4.24) is the least distorted shape of

the pluck excitation, the estimated w(n) at the early stage of updates may

possibly be the desired estimate. Note that the first and the third bumps in

hplpu(n) are ideal impulses, as depicted in Fig. 4.24. This is because the first

bump did not go through any flipping from one delay line to the other delay
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Fig. 4.22 hplpu(n) and d(n) of the synthesized plucked string
sound using an ideal DWG model and a Hann window.

line at either end, which corresponds to path 1© in Fig. 4.14 and Fig. 4.15; and

the third bump corresponding to path 3© in Fig. 4.14 and Fig. 4.15, is flipped

at the ‘nut’ side where only the phase inversion occurs as all the losses and

the dispersion are consolidated into the filter Rb(z) located at the other end,

as defined in the previous section.

Figure 4.25 depicts the time updates of the RLS filter. Different from the

result for an ideal plucked string case, from the seventh pattern, the shape of

the RLS filter coefficients start becoming different from the first bump pattern

in the recorded signal. This is because hplpu(n) does not perfectly describe the

true waveform of the first cycle of the recorded signal. Figure 4.26 and 4.27

show examples of pluck excitations extracted by using the method introduced

in this section. The first three examples from the top in Fig. 4.26 have a com-

mon feature in that all of them first gradually rise, then undergo sharp falls,

and then return to zero. Also, the magnitudes gradually decrease after short

rises in the low frequency region. These three examples are extracted from

sound samples that were created by down-picking a string with a plectrum

generally used for playing an electric guitar. The angle of plucking is some-
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Fig. 4.23 Updates of the RLS filter w(n), temporally updated
from the bottom to the top. The black one at the very top is the
original signal.
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Fig. 4.24 hplpu(n) and d(n). Amplitudes (acceleration) are nor-
malized for the comparison.

where between one perpendicular to the body of the guitar and one parallel

to the body in the direction away from the lowest string toward the highest

string. The last example in Fig. 4.26 and the second example in Fig. 4.27 de-

pict pluck excitations obtained from sounds where a player especially tried to

pluck as perpendicularly as possible to the guitar’s body with up-picking. In

these examples, we can see that the extracted pluck excitations do not show the

phase changes (the gradual rises followed by sharp downfalls, then return to

zero) that appeared in the excitations previously mentioned, but rather show

gradual rises and falls. Based on these observations, it can be conjectured

that the electromagnetic pickup senses a fluctuation differently in relation to

the angle of fluctuation. The first example in Fig. 4.27 is from a pluck sound

created by plucking with the thumb using the same plucking angle as the first

three excitations we discussed. This sound is the ‘dullest’ since the thumb is in

contact with the string longer than the duration a plectrum is in contact with

the string; thus, the width of the impulsive portion in the excitation signal is

longer than others and, in the magnitude response, the magnitude decreases
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Fig. 4.25 Updates of the RLS filter w(n), temporally updated
from the bottom to the top.
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most quickly as the frequency increases, compared to other excitations. The

last example in Fig. 4.27 is from the sound generated by plucking upwardly a

string with a finger at the angle that is perpendicular to the guitar body in

the same way as in the last example in Fig. 4.26 and the second example in

Fig. 4.27. An interesting point to note is the way the excitation shape evolves.

It shows an abrupt sharp peak neighbored by valleys. This may be explained

by the way the finger interacts with the string while plucking. A string is in

contact with a finger facing upward before the finger moves to begin a pluck

action; and as the pluck action begins, the string slips away from the finger

with acceleration; just before the string is completely released from the finger’s

flesh, it is hit by the fingernail. This may explain why we see an abrupt sharp

uprise in the excitation shape. Sound examples synthesized using extracted

excitations are available on-line2. Various combinations of extracted pluck-

ing excitations and the SDL models with different parameters (fundamental

frequencies, pickup and plucking positions) can also be found.

4.9 Parametric Model of Pluck and Estimation

In this section, we will discuss parametric modeling of an extracted pluck ex-

citation and estimation of parameters given the extracted pluck excitation.

Considering typical shapes of extracted excitations, an attempt to use a para-

metric model originally developed to describe a glottal flow derivative is cre-

ated for these tasks. Among many models, the well-known Liljencrants-Fant

(LF) model [77] is chosen to fit the pluck excitations, and parameter estima-

tion is conducted using the extended Kalman filter [78] since the LF model is

a non-linear model.

2http://www.music.mcgill.ca/∼lee/pluckexcitation
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Fig. 4.26 Examples of extracted excitations. Figures on the left
side are extracted excitations and those on the right side are the
spectra of the extracted excitations. Amplitudes of extracted exci-
tations are normalized for the comparison.
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4 Extraction and Modeling of Pluck Excitations in Plucked-String
Sounds 110

4.9.1 Liljencrants-Fant Model

The Liljencrants-Fant (LF) model is one of the most widely used parametric

models. It describes one period of the glottal flow derivative (GFD) waveform.

The LF model involves four parameters that determine the waveform of the

GFD. Those four parameters are time indexes te, tp, ta and the amplitude Ee.

If one cycle of the GFD is tc, then the GFD g(t) is determined by the LF

model as

g(t) =

⎧⎪⎪⎨
⎪⎪⎩
E0e

αtsin(ωgt), 0 ≤ t ≤ te

−Ee

εta
[e−ε(t−te) − e−ε(tc−te)], te < t ≤ tc.

(4.77)

E0, ωg, α and ε are derived as

ωg =
π

tp
(4.78)

εta = 1− e−ε(tc−te) (4.79)

α =
tc − te

eε(tc−te) − 1
− 1

ε
(4.80)

E0 = − Ee

eαtesin(ωgte)
(4.81)

As shown in Fig. 4.28, Ee is the amplitude of the minimum of the GFD at te,

the glottal closing instant, and ta is the time constant representing the return

phase in terms of how quickly the GFD comes back to zero from its minimum

point. tp is the instant where the glottal flow reaches its maximum. t0 is the

starting point of the cycle and is set at 0. Parameters E0, ωg, and α describe

the shape of the open phase, and Ee and ε describe the shape of the return

phase.
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Fig. 4.28 LF model

4.9.2 Parameter Estimation of LF model Using the Extended

Kalman Filter

The Extended Kalman filter

The extended Kalman filter (EKF) is a variant of the Kalman filter that can

be used when a given state space model is non-linear. Basically, the EKF

approximates the non linearity in the given non-linear state space model by

‘linearizing’ it, resulting in a linear state space model; and it then applies the

original Kalman filtering in order to estimate the state from observed samples.

The non-linear state space model is described as [75]

x(n+ 1) = F(n,x(n))x(n) + u(n) (4.82)

y(n) = C(n,x(n))x(n) + v(n) (4.83)
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Equation 4.82 is the state equation in which x(n) is the state vector whose

dimension is assumed to be (M × 1); and F(n,x(n)) is the transition matrix

of dimension (M × M), which is non-linear. The state equation is driven

by a zero-mean, white noise vector u(n) of size (M × 1). Equation 4.83 is

the observation equation. y(n) is the observation vector assumed to be of

dimension (N ×1), which is corrupted by the (N ×1) white noise vector v(n);

and the (N ×M) vector C(n,x(n)) is the measurement matrix, which is also

non-linear. White noise vectors u(n) and v(n) are assumed to be independent

of each other so that

E[u(n)uH(m)] =

⎧⎪⎪⎨
⎪⎪⎩
Q(n), n = m

0, n �= m

(4.84)

E[v(n)vH(m)] =

⎧⎪⎪⎨
⎪⎪⎩
R(n), n = m

0, n �= m

(4.85)

where Q(n), R(n) are the correlation matrices of u(n), v(n), respectively.

Also, it is assumed that u(n) is independent of y(n), and v(n) is independent

of both x(n) and y(n).

The EKF recursively finds the estimate of the state x(n) in the minimum

mean square error (MMSE) sense. The a priori estimate (prediction) of the

state at time n+ 1 given the observation up to n is,

x̂(n+ 1|n) = F(n, x̂(n|n)) (4.86)

where x̂(n|n) is the a posteriori estimate (filtering) of the state at time n given
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the observation up to n, which is recursively obtained as

x̂(n|n) = x̂(n|n− 1) +Gf (n)[y(n)−C(n, x̂(n|n− 1))]. (4.87)

Gf (n) is the gain matrix for the EKF, which can also be recursively derived

as

Gf (n) = K(n, n− 1)CH(n)[C(n) +K(n, n− 1)CH(n) +R(n)]−1 (4.88)

whereC(n) is the newly defined matrix that is a partial derivative ofC(n,x(n))

with respect to x(n), evaluated at x̂(n|n− 1) as

C(n) =
∂C(n,x)

∂x

∣∣∣
x=x̂(n|n−1)

. (4.89)

and K(n, n − 1) is referred to as the predicted state-error correlation matrix

given as,

K(n, n− 1) = E[(x(n)− x̂(n|n− 1))(x(n)− x̂(n|n− 1))H ]. (4.90)

K(n, n− 1) is updated as,

K(n, n− 1) = F(n, n− 1)K(n− 1)FH(n, n− 1) +Q(n− 1) (4.91)

F(n, n − 1) is also newly defined for the EKF in the same way as C(n) is in

Eq. 4.89, but it is evaluated at x̂(n− 1|n− 1):

F(n, n− 1) =
∂F(n,x)

∂x

∣∣∣
x=x̂(n−1|n−1)

. (4.92)
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K(n) is the filtered state-error correlation matrix defined as,

K(n) = E[(x(n)− x̂(n|n))(x(n)− x̂(n|n))H ] (4.93)

and also recursively estimated as,

K(n) = [I −Gf (n)C(n)]K(n, n− 1) (4.94)

With the initial conditions given below,

x̂(1|0) = E[x(1)] (4.95)

K(1, 0) = E[(x(1)− E[x(1)])(x(1)− E[x(1)])H ] (4.96)

and using Eq. 4.84 ∼ Eq. 4.94 which recursively update variables as a new

observation is fed in, the optimal estimate of state vector x(n) can be obtained.

Estimation of LF parameters using the EKF

This section deals with the estimation of LF parameters in the case of an ex-

tracted pluck excitation. To fit the LF model to an extracted pluck excitation

obtained from the RLS algorithm, w(n), the LF parameter estimation method

proposed in [78] is used. This method employs the EKF to recursively estimate

the LF parameters. The discrete time signal version of the LF model is given

in [78] , with tc = 1, as

g(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− Ee

sin(
πTe

Tp

)
e−α(Te− n

N
)sin(

πn

TpN
), 0 ≤ n ≤ TeN

− Ee

εTa

[e−ε( n
N
−Te) − e−ε(1−Te)], TeN ≤ n ≤ N

(4.97)
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where Te = te/tc, Tp = tp/tc and Ta = ta/tc, respectively. For an extracted

pluck excitation w(n), the estimated RLS filter coefficient, two separate EKFs

are employed, one for the open phase (0 ≤ n ≤ TeN) and the other for the

return phase (TeN ≤ n ≤ N) (Fig. 4.28). In order to estimate α, the state

space model that describes the waveform of GFD during the open phase is

constructed as

α(n) = α(n− 1) (4.98)

g(n) = Co(n, α(n)) + q(n) (4.99)

where q(n) is a white noise process and the transition matrix Co(n, α(n)) of

size (1× 1) is given from Eq. 4.97 as,

Co(n, α(n)) = − Ee

sin(
πTe

Tp

)
e−α(Te− n

N
)sin(

πn

TpN
) (4.100)

With the time derivative of Co(n, α(n)) evaluated at α̂(n|n− 1) given as,

Co(n) =
∂Co(n, α(n))

∂α

∣∣∣
α=α̂(n|n−1)

(4.101)

=
Ee

sin(
πTe

Tp

)
(Te − n

N
)e−α̂(n|n−1)(Te− n

N
)sin(

πn

TpN
) (4.102)

and assuming that Te and Tp are known, we can evaluateC0(n) andC0(n, α(n)).

tp can generally be found at the first zero-crossing point ahead of te. Accord-
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ingly, the EKF update equations for the open phase can be derived as follows:

Gf (n) = K(n, n− 1)CH
o (n)[Co(n) +K(n, n− 1)CH

o (n) +Q(n)]−1 (4.103)

α̂(n|n) = α̂(n|n− 1) +Gf (n)[w(n)−Co(n,w(n|n− 1))] (4.104)

K(n) = [I −Gf (n)Co(n)]K(n, n− 1). (4.105)

For initial conditions, we set K(1, 0) = 1 following the results of internal

experiments and the suggestion from [78]. Q(n) is estimated from the portion

of the extracted pluck excitation where noise is dominant and relatively little

meaningful information is present. This is usually a portion ahead of the

beginning of the pluck excitation. The initial value for α̂, α(1|0), is determined

within the range 1-100 as proposed in [78]. To find the optimum α(1|0),
the EKF is run using an α(1|0). An estimated α̂ is obtained and then the

minimum square error (MSE) between the w(n) and the synthesized excitation

is calculated using the obtained α̂. This process is repeated for all the integer

numbers within the range (1-100) for α(1|0). Among all the tried α(0|1), we
pick the α(1|0) that yields the smallestMSE between w(n) and the synthesized

excitation. Once all initial conditions are set, we can recursively estimate ε

using the EKF updates and the state space relation in Eqs. 4.98 and 4.99 as

below,

α̂(n|n− 1) = α̂(n− 1|n− 1) (4.106)

K(n, n− 1) = K(n− 1). (4.107)
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In the same way as the open phase, the state space model describing the

waveform of GFD during the return phase is constructed as

ε(n) = ε(n− 1) (4.108)

g(n) = Cr(n, ε(n)) + v(n), (4.109)

where v(n) is a white noise process and the transition matrix Cr(n, ε(n)) is

given from Eq. 4.97 as

Cr(n, ε(n)) = − Ee

εTa

[e−ε( n
N
−Te) − e−ε(1−Te)]. (4.110)

With the time derivative of Cr(n, ε(n)) evaluated at ε̂(n|n− 1) given as

Cr(n) =
∂Cr(n, ε(n))

∂ε

∣∣∣
ε=ε̂(n|n−1)

(4.111)

=
Ee

ε̂(n|n− 1)Ta

[(
1

ε̂(n|n− 1)
− n

N
− Te)e

−ε̂(n|n−1)( n
N
−Te) (4.112)

− (
1

ε̂(n|n− 1)
+ 1− Te)e

−ε̂(n|n−1)(1−Te)].

the EKF update equations for the return phase can be derived as follows:

Gf (n) = K(n, n− 1)CH
r (n)[Cr(n) +K(n, n− 1)CH

r (n) +V(n)]−1 (4.113)

ε̂(n|n) = ε̂(n|n− 1) +Gf (n)[âexc(n)−Cr(n, ε̂(n|n− 1))] (4.114)

K(n) = [I −Gf (n)Cr(n)]K(n, n− 1). (4.115)

Just as with the open phase, we initially have K(1, 0) = 1, and V(n) is esti-

mated in the same way as Q(n) is estimated. ε(1|0) is also determined in the

same way that α(1|0) is determined but here the range for ε(1|0) is 1-200, as
suggested in [78]. Once all initial conditions are set, we can recursively esti-
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mate ε using the EKF updates (Eq. 4.113 ∼ Eq. 4.115) and the state space

relation in Eqs. 4.108 and 4.109 as follows:

ε̂(n|n− 1) = ε̂(n− 1|n− 1) (4.116)

K(n, n− 1) = K(n− 1). (4.117)

Tp Te Ta α ε α(1|0) ε(1|0)
Ex1 0.7983 0.8448 0.0690 10.9179 11.2937 11 12
Ex2 0.7607 0.8036 0.0536 23.9384 21.0114 24 21
Ex3 0.8298 0.8696 0.0797 18.1079 9.5485 19 9
Ex4 0.7018 0.7345 0.0655 12.9454 16.4931 13 16.5

Table 4.2 Estimated LF model parameters. Ex1, Ex2, Ex3 corre-
spond to the extracted pluck excitations (1), (2), (3) in Fig. 4.26 and
Ex4 corresponds to the extracted pluck excitation (5) in Fig. 4.27.

In Table 4.2, estimated LF model parameters are shown for pluck exci-

tations that are extracted using the RLS algorithm discussed in the previous

chapters. Figure 4.29 depicts the time-domain signal and frequency magnitude

response of an extracted excitation and the model derived using the EKF. In

the time domain, the LF model well approximates the region where the accel-

eration excitation is returning to zero from the minimum point, corresponding

to the return phase of GFD; but it appears that the sharp rising at the be-

ginning of the extracted excitation is not modeled as well as the return phase.

However, synthesized plucking sounds using the synthesized excitation actually

sound quite natural. Sound examples are available3.

3http://www.music.mcgill.ca/∼lee/pluckexcitation
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Fig. 4.29 Extracted excitation and modeled excitation. Top pane
illustrates the extracted excitation and the modeled excitation in
the time domain. α(1|0) = 18, ε(1|0) = 9. The bottom pane
illustrates the magnitude responses of the extracted and modeled
excitations.
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4.10 Discussion - Finger/String Interaction

So far we have assumed the overall plucked-string sound generation mecha-

nism as a linear time invariant (LTI) system, as many physically-based pluck

sound synthesis techniques do. However, rigorously, when plucking action

takes place, there should be a bi-lateral interaction between a string and a fin-

ger/plectrum. Here we investigate how the interaction model can be associated

with the extraction and modeling of pluck excitations.

4.10.1 Finger/plectrum model

In [79], Cuzzucoli and Lombardo proposed a physical finger/plectrum model

based on lumped elements (masses, springs and dampers) that is integrated

with the DW structure. Evangelista and Eckerholm [3] and, later, Evangelista

and Smith [19] enhanced Cuzzucoli and Lombardo’s model. In their model the

interaction between the finger/plectrum during the plucking action at point xp

on the string is described. These models are rooted in the following equation

of motion,

(M + μΔ)
∂2y

∂t2
+R

∂y

∂t
+Ku− f(t) = f0(t) (4.118)

where y is the displacement of the string. M , K and R are the mass, stiffness,

and damping parameters of the finger. μ and Δ are the linear mass density

(kg/m) of the string and the length of the string segment, centered at xp. f0(t)

is the force that the finger/plectrum exerts on the string. The force f(t) is a

transverse tensile force acting on the string segment. With the assumption of
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a small deformation of the string, f(t) is given as:

f(t) = K0

(
∂y

∂x

∣∣∣∣
xp+

Δ
2

− ∂y

∂x

∣∣∣∣
xp−Δ

2

)
(4.119)

where K0 is the tension of the string. Assuming Δ = X (X: the spatial

sampling interval) and by substituting Eq. 4.119 into Eq. 4.118 and applying

the finite centered difference scheme, we can obtain the scattering junction

structure in a DW illustrated in Fig. 4.30 (details about this can be found in

[3]). The scattering junction relation can be described in matrix form [3][19]

as

⎡
⎢⎣Y

−
out(z)

Y +
out(z)

⎤
⎥⎦ = S(z)

⎡
⎢⎣Y

−
in (z)

Y +
in (z)

⎤
⎥⎦+

C(z)F0(z)

2

⎡
⎢⎣1
1

⎤
⎥⎦ (4.120)

where Y ±
in/out(z) are the z-transforms of the signals y±in/out(n) and the matrix

S(z) is given as:

S(z) =
1

2

⎡
⎢⎣Q(z) + 1 Q(z)− 1

Q(z)− 1 Q(z) + 1

⎤
⎥⎦ (4.121)

In the model proposed by Evangelista and Eckerholm [3], the transfer function

Q(z) is given as:

Q(z) =
1

B(z)
(4.122)

B(z) =
M

μX
(1− z−1)2 + ρ(1− z−2) + κz−1 + 1 (4.123)
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C(z)
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1
2

1
2

u−
in(n)

u+
out(n) u+

in(n)

u−
out(n)

F0(n)

1
2

Fig. 4.30 Diagram of the plucking scattering junction, from [3]
(slightly modified).

and

ρ =
R

2
√
μK0

, κ =
KX

K0

(4.124)

The force coupling filter C(z) is

C(z) =
2Xz−1

K0B(z)
. (4.125)

The model defined with the transfer functions above is referred to as the CLEE

(Cuzucolli-Lombardo-Evangelista-Eckerholm) model. In [19], the CLEE model

is enhanced in such a way that the passivity of S(z) is guaranteed. For this

model, the equation of motion (Eq. 4.118) is Laplace-transformed so that [19]:

[(M + μΔ)s2 +Rs+K]Y (x, s) = F (s) + F0(s) (4.126)

F (s) = K0

(
∂Y (x, s)

∂x

∣∣∣∣
x+Δ

2

− ∂Y (x, s)

∂x

∣∣∣∣
x−Δ

2

)
(4.127)

where Y (x, s) is the Laplace transform of y(x, t) with respect to time. Also,

f(t) is transformed to F (s) and the Laplace transforms of the incoming and
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outgoing waves are

Y −(x, s) = L[y−(x, t)](s) = L[yl(t+ x/c)](s) = e+
sx
c Yl(s) (4.128)

Y +(x, s) = L[y+(x, t)](s) = L[yr(t− x/c)](s) = e−
sx
c Yr(s) (4.129)

where L(·) is the Laplace transform operator, and the derivatives with respect

to x are

∂Y −(x, s)
∂x

= +
s

c
e+

sx
c Yl(s) = +

s

c
Y −(x, s) (4.130)

∂Y +(x, s)

∂x
= −s

c
e−

sx
c Yr(s) = −s

c
Y +(x, s). (4.131)

Then Eq. 4.127 can be written as

F (s) =
K0s

c
[Y −(xp +

Δ
2
, s)− Y +(xp +

Δ
2
, s)

−Y −(xp − Δ
2
, s) + Y +(xp − Δ

2
, s)]. (4.132)

If we substitute Eq. 4.130 and Eq. 4.131 into Eq. 4.126, we get

(Y −(xp − Δ
2
, s) + Y +(xp − Δ

2
, s))E(s)− F (s) = F0(s)

(Y −(xp +
Δ
2
, s) + Y +(xp +

Δ
2
, s))E(s)− F (s) = F0(s) (4.133)

where

E(s) = (M + μΔ)s2 +Rs+K. (4.134)
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By substituting Eq. 4.132 into Eq. 4.133, we obtain

⎡
⎢⎣ Y −(xp − Δ

2
, s)

Y +(xp +
Δ
2
, s)

⎤
⎥⎦ = S̃(s)

⎡
⎢⎣ Y −(xp +

Δ
2
, s)

Y +(xp − Δ
2
, s)

⎤
⎥⎦+

C̃(s)F0(s)

2

⎡
⎢⎣ 1

1

⎤
⎥⎦ (4.135)

where S̃(s) is

S̃(s) =
1

2

⎡
⎢⎣ Q̃(s) + 1 Q̃(s)− 1

Q̃(s)− 1 Q̃(s) + 1

⎤
⎥⎦

and Q̃(s), C̃(s) are

Q̃(s) = −cE(s)− 2sK0

cE(s) + 2sK0

(4.136)

C̃(s) =
2c

cE(s) + 2sK0

. (4.137)

Applying the bilinear transformation

s =
2

T

z − 1

z + 1
. (4.138)

we finally get the z-domain transfer functions Q(z), C(z) as

Q(z) = Q̃

(
2

T

z − 1

z + 1

)
(4.139)

C(z) = C̃

(
2

T

z − 1

z + 1

)
(4.140)

4.10.2 Finger/plectrum-String Interaction with SDL

We can now investigate how the interaction model described thus far is rep-

resented within the SDL model framework. To this end, we re-write the scat-
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Q(z)− 1

1
2

1
2

a+in(n)

a−out(n) a−in(n)

a+out(n)

F0(n)

Q(z) + 1

Q(z)− 1

Q(z) + 1

G(z)

Fig. 4.31 Scattering junction at the excitation point.

tering junction that represents the interaction (Eq. 4.135) as follows:

⎡
⎢⎣Y

−
out(z)

Y +
out(z)

⎤
⎥⎦ =

1

2

⎡
⎢⎣Q(z) + 1 Q(z)− 1

Q(z)− 1 Q(z) + 1

⎤
⎥⎦
⎡
⎢⎣Y

−
in (z)

Y +
in (z)

⎤
⎥⎦+

C(z)F0(z)

2

⎡
⎢⎣1
1

⎤
⎥⎦ (4.141)

where Y +
out(z), Y

+
in (z), Y

−
out(z) and Y −

in (z) are the z-transforms of string dis-

placements y+out(n), y
+
in(n), y

−
out(n) and y−in(n) as shown in Fig. 4.31. We can

write down the formula above describing finger/string interaction in terms of

z domain representations of acceleration wave components as follows,

⎡
⎢⎣A

−
out(z)

A+
out(z)

⎤
⎥⎦ =

1

2

⎡
⎢⎣Q(z) + 1 Q(z)− 1

Q(z)− 1 Q(z) + 1

⎤
⎥⎦
⎡
⎢⎣A

−
in(z)

A+
in(z)

⎤
⎥⎦

+
I2(z)G(z)F0(z)

2

⎡
⎢⎣1
1

⎤
⎥⎦ (4.142)

where A+
out(z), A

+
in(z), A

−
out(z) and A−

in(z) are the z-transforms of acceleration

wave components a+out(n), a
+
in(n), a

−
out(n) and a−in(n). I(z) is an integrator. By
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letting Q′(z) = (Q(z)− 1)/2, we get

⎡
⎢⎣A

−
out(z)

A+
out(z)

⎤
⎥⎦ =

1

2

⎡
⎢⎣2 + 2Q′(z) 2Q′(z)

2Q′(z) 2 + 2Q′(z)

⎤
⎥⎦
⎡
⎢⎣A

−
in(z)

A+
in(z)

⎤
⎥⎦

+
I2(z)G(z)F0(z)

2

⎡
⎢⎣1
1

⎤
⎥⎦ (4.143)

Let us first consider a non-coupled case in which P (z) = 1 so that the scattering

matrix is given as the following identity matrix:

⎡
⎢⎣A

−
out(z)

A+
out(z)

⎤
⎥⎦ =

⎡
⎢⎣1 0

0 1

⎤
⎥⎦
⎡
⎢⎣A

−
in(z)

A+
in(z)

⎤
⎥⎦+

I2(z)G(z)F0(z)

2

⎡
⎢⎣1
1

⎤
⎥⎦ (4.144)

A−
out(z) = A−

in(z) +
I2(z)G(z)F0(z)

2
(4.145)

A+
out(z) = A+

in(z) +
I2(z)G(z)F0(z)

2
(4.146)

According to our DW model of the plucked string in Fig. 4.12, we have the

relation

A+
in(z) = HE2,E1(z)A

−
out(z). (4.147)
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Using Eqs. 4.145 - 4.147, we also have

A+
out(z) = HE2,E1(z)(A

−
in(z) +

I2(z)G(z)F0(z)

2
) +

I2(z)G(z)F0(z)

2
(4.148)

A−
in(z) = H2

E1,O1(z)HO1,O2(z)A
+
out(z) (4.149)

A1,Npu(z) = HE1,O1(z)A
+
out(z) (4.150)

A2,Npu(z) = H−1
E1,O1(z)A

−
in(z) = HE1,O1(z)HO1,O2(z)A

+
out(z) (4.151)

where A1,Npu(z), A2,Npu(z) are the z-transforms of a1,Npu(n), a2,Npu(n), respec-

tively. Inserting Eq. 4.149 into Eq. 4.148 gives

(1−HE2,E1(z)H
2
E1,O1(z)HO1,O2(z))A

+
out(z)

=
HE2,E1(z)I

2(z)G(z)F0(z)

2
+

I2(z)G(z)F0(z)

2

(4.152)

Considering the coupled case, from Eq. 4.143 we have,

A−
out(z) = (1 +Q′(z))A−

in(z) +Q′(z)A+
in(z) +

I2(z)G(z)F0(z)

2
(4.153)

A+
out(z) = Q′(z)A−

in(z) + (1 +Q′(z))A+
in(z) +

I2(z)G(z)F0(z)

2
(4.154)

and using Eqs. 4.145 - 4.147, we get

A+
out(z) = Q′(z)A−

in(z) +
HE2,E1(z)(1 +Q′(z))2

1−HE2,E1(z)Q′(z)
A−

in(z)+

HE2,E1(z)(1 +Q′(z))I2(z)G(z)F0(z)

2(1−HE2,E1(z)Q′(z))
+

I2(z)G(z)F0(z)

2
.

(4.155)
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Substituting Eq. 4.149 into Eq. 4.155, the results are

A+
out(z) = Q′(z)H2

E1,O1(z)HO1,O2(z)A
+
out(z)

+
HE2,E1(z)(1 +Q′(z))2

1−HE2,E1(z)Q′(z)
H2

E1,O1(z)HO1,O2(z)A
+
out(z)

+
HE2,E1(z)(1 +Q′(z))I2(z)G(z)F0(z)

2(1−HE2,E1(z)Q′(z))
+

I2(z)G(z)F0(z)

2
(4.156)

and

(1−HE2,E1(z)H
2
E1,O1(z)HO1,O2(z)

−HE2,E1(z)Q
′(z)−Q′(z)H2

E1,O1(z)HO1,O2(z)

− 2HE2,E1(z)Q
′(z)H2

E1,O1(z)HO1,O2(z))A
+
out(z)

=
HE2,E1(z)I

2(z)G(z)F0(z)

2
+

I2(z)G(z)F0(z)

2
(4.157)

Let C(z) denote the coupling term in Eq. 4.157 in a way that,

C(z) = −HE2,E1(z)Q
′(z)−Q′(z)H2

E1,O1(z)HO1,O2(z)

− 2HE2,E1(z)Q
′(z)H2

E1,O1(z)HO1,O2(z) (4.158)

= −Q′(z)(HE2,E1(z) +H2
E1,O1(z)HO1,O2(z) + 2HE2,E1(z)H

2
E1,O1(z)HO1,O2(z))

(4.159)

then Eq. 4.157 can be re-written as

(1−HE2,E1(z)H
2
E1,O1(z)HO1,O2(z) + C(z))A+

out(z)

= (1−Hloop(z) + C(z))A+
out(z)

=
HE2,E1(z)I

2(z)G(z)F0(z)

2
+

I2(z)G(z)F0(z)

2
(4.160)
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where Hloop(z) = HE2,E1(z)H
2
E1,O1(z)HO1,O2(z) as defined in Eq. 4.24. The

observation A+
out(z) can then be written as

A+
out(z) =

1 +HE2,E1(z)

1−Hloop(z)

I2(z)G(z)F0(z)

2
(non− coupling) (4.161)

A+
out(z) =

1 +HE2,E1(z)

1−Hloop(z) + C(z)

I2(z)G(z)F0(z)

2
(coupling) (4.162)

Using, either Eq. 4.161 or Eq. 4.162 and Eq. 4.150, Eq. 4.151, we have,

ANpu(z) = A1,Npu(z) + A2,Npu(z)

=
H2

E1,O1(z)(1 +HO1,O2(z))(1 +HE2,E1(z))

1−Hloop(z) + C(z)

I2(z)G(z)F0(z)

2
(4.163)

If we assume the non-coupling case and perform inverse filtering accordingly,

then we get

F̃ (z) =
1−Hloop(z)

1−Hloop(z)

I2(z)G(z)F0(z)

2
=

I2(z)G(z)F0(z)

2
(4.164)

which shows that the result of the inverse-filtering F̃ (z) is the same as the

modeled excitation. If we assume the coupling case, then

F̃ (z) =
1−Hloop(z)

1−Hloop(z) + C(z)

I2(z)G(z)F0(z)

2
(4.165)

Using the series expansion, the equation above becomes,

F̃ (z) ∼ (1 +
C(z)

1−Hloop(z)
+ · · · )I

2(z)G(z)F0(z)

2
(4.166)

As seen in Eq. 4.166, if we assume that the bilateral interaction exists, the

inverse-filtering based on the SDL model would not be appropriate to extract
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the input excitation since the coupling term C(z) includes the parameters

associated with the finger model. In addition, as the input excitation is char-

acterized by both G(z) and F0(z), deconvolution of these two terms would be

another issue if one were to aim at estimating the finger model parameters in

G(z). In order to solve these problems, the plucked string model should be

viewed within another framework in which the coupling term could be taken

into account more robustly. This will remain for future work.

4.11 Conclusion

In this chapter, we have proposed an intuitive method to simply extract the

pluck excitation from a plucked-string signal based on time windowing. It

was inspired by observing the way traveling wave components behave in the

plucked-string sound signal and by comparison with a DW simulation. In-

spired by this time-windowing method, a pluck excitation extraction technique

based on inverse-filtering associated with the SDL model is also proposed. We

found that pluck excitations extracted using the time-windowing method and

the inverse-filtering based method are well matched in certain cases. The

inverse-filtering based method is appropriate in most cases of pluck excita-

tions, whereas the time-windowing based method has its limit. The excitation

extracted by the proposed methods is compact and physically more meaning-

ful, facilitating the use of excitations for synthesis in conjunction with phys-

ical models such as DW and SDL. In addition, we carried out a research on

constructing a parametric model of excitations and estimating the associated

parameters.

All the tasks described in this chapter are attempts to investigate the

sources that are used to synthesize the sounds of musical instruments. Con-
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trary to the sources used for generating abstract, non-musical sounds inves-

tigated in the previous chapters, the sources associated with musical instru-

ment sounds have much to do with the expression intended by performers. A

plucked-string sound, as one of the simplest and the most intuitive cases in

terms of sound generation mechanism, and the source-filter-based extraction

of pluck excitations obtained from this research will provide more chances for

investigating performance expressions quantitatively and, accordingly, lead to

richer flexibility in synthesis. In addition to the future work derived from the

above discussion, there is the chance for enhancement of various aspects of

the work in this chapter. First, we could take into account a typical dual-

polarization of a string vibration to build either a DW or an SDL model. This

would enable one to investigate the angle of plucking more systematically. An-

other issue worth considering involves the possibility of constructing a better

parametric model of excitations. In this task, though the LF model originally

developed for GFD can be used, a better model customized to pluck excita-

tions could be constructed. Furthermore, other kinds of estimation techniques

besides the EKF might be tried, and they could possibly yield better and more

interesting results.
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Chapter 5

Conclusions

In this thesis, various source types used for sound analysis/re-synthesis are

thoroughly investigated and novel analysis/re-synthesis methods are proposed.

Sources are defined in the context of a source-filter model and a granular

analysis/re-synthesis framework. Particular cases are selected to verify our

viewpoint regarding source types, and novel analysis/re-synthesis algorithms

are proposed for each case.

First, an analysis and synthesis scheme of rolling sounds is proposed. Based

on the contact timing information obtained through a process similar to onset

detection, an overall rolling sound is segmented into individual contact events

and fed into an analysis/synthesis system for the estimation of time-varying

filters. Subband-LP analysis allows greater focusing on significant spectral

features. For resynthesis, synthesized contact events are concatenated to cre-

ate the final rolling sound. It is found that the proposed scheme works better

for specific kinds of rolling sounds in which each micro contact is relatively

well preserved. This novel ‘divide and conquer’ approach allows for analy-

sis and synthesis of rolling sounds at a single contact level, linking spatially

varying resonance/anti-resonance characteristics of rolling phenomena to the
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temporal interpretation based on time-varying filter models. This spatial-time

correspondence improves existing approaches of applying source/filter models

to analysis/synthesis of rolling sounds with the capability of taking the varying

resonance/anti-resonance into account more systematically.

Next, a novel granular analysis/synthesis scheme for complex sounds is

proposed. The granular analysis component segments a given sound into

grains by detecting transient events. Through the analysis to distinguish

stationary/non-stationary regions in the sound, different segmentation param-

eters can be assigned for each region, allowing the user to apply different cri-

teria for defining the grain in each region. Furthermore, several useful audio

features are extracted from each grain for potential use in synthesis. With

the granular synthesis component, the user can synthesize sounds with pre-

analyzed grains. In addition, various kinds of time modification are possible

for flexible synthesis with convincing sound quality. Both granular analysis

and synthesis components are provided with GUIs. The proposed granular

analysis/synthesis scheme differentiates itself from others in both analysis and

synthesis. In the analysis stage, the proposed scheme is capable of flexible

parameter adjustments with respect to the characteristics of given sounds. In

this respect, we also proposed a novel criteria for grain segmentation referred

to as the ’stationarity measure’ that can classify given sounds based on how

consistent and regular the nature of the sound is, allowing for different pa-

rameter settings within a sound. The time modification schemes proposed

for the synthesis stage includes novel strategies, the grain extension method

and the additional grain-based method, for efficiently filling unnecessary gaps

caused from time stretching and shrinking. In addition, the grain time remap-

ping enriches the flexibility of the synthesis in conjunction with time stretch-
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ing/shrinking, allowing users to rearrange the temporal orders of grains at will

via a graphic interface.

Finally, we propose a simple but physically intuitive method to extract

the pluck excitation from a plucked string signal using time windowing and

another physically informed method based on inverse-filtering associated with

the physical model of plucked strings. Both methods are well matched in cer-

tain cases; however, the inverse-filtering method is applicable to a wider range

of cases of pluck excitations than the time-windowing method. The excita-

tion extracted by the proposed methods is compact in time and physically

meaningful, so it can be directly used with physical models for plucked-string

sound synthesis. In addition, a parametric model of excitations based on the

LF model is proposed. We expect that pluck excitations obtained using the

proposed methods will contribute in a quantitative way to research on perfor-

mance expressions. The major contribution of the research is to find a way

to extract the ‘temporally-meaningful and accurate’ pluck excitation using a

parametric physical model. The extracted pluck excitation clearly defines the

correspondence between the excitation in the acoustic domain and the sig-

nal domain. As the pluck excitation extracted by the proposed algorithm

preserves the temporal evolution, we are able to investigate the temporal be-

havior of pluck excitations not only in the physics domain but also in the

signal domain. Also, we demonstrated the use of a parametric model for pluck

excitation inspired by speech synthesis.

We believe that the specified and categorized source components developed

through this research will contribute to the evolution of sound synthesis tech-

niques used in computer-based music by providing more and greater flexibility.
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5.1 Future Work

Future work will include several research tasks that could potentially enhance

the current research outcomes. One would be finding a clever way for grain

compression other than using the ‘Offset Threshold’ parameter for the pro-

posed granular analysis/synthesis scheme. In general, it is likely that re-

dundant grains exist in a dictionary, and they incur unnecessary consump-

tion of computer resources. By clustering redundant grains through the use

of a proper machine learning technique, the size of a dictionary can be re-

duced while the quality of sound synthesis is maintained. Another problem

to think about is how to figure out the inherent rhythmic aspect of a given

sound. In contrast to music or speech, environmental sounds are quite of-

ten non-rhythmic or have rhythms that are hard to analyze (e.g. the sound

of applause). However, if we could analyze the rhythm of a sound, it would

be beneficial insofar as it would broaden the flexibility of the synthesis sys-

tem. There are some issues remaining as future work regarding the research of

pluck excitation extraction. First, we could take into account a typical dual-

polarization of a string vibration to build either a DW or an SDL model. This

would enable one to investigate the angle of plucking more systematically. An-

other issue worth considering involves the possibility of constructing a better

parametric model of excitations. In this task, though the LF model originally

developed for GFD can be used, a better model customized to pluck excita-

tions could be constructed. Furthermore, other kinds of estimation techniques

besides the EKF might be tried, and they could possibly yield better and more

interesting results.

Future work should also include perceptual studies to better inform the

results of all the synthesis approaches discussed in this thesis. Necessary per-



5 Conclusions 136

ceptual studies would involve not only the comparison between the synthesized

sound and the original sound and but also the evaluation of how natural or

realistic the synthesized sounds are without comparison to the original sounds,

in order to verify and evaluate the proposed analysis/synthesis schemes.
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