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Abstract

The past half-decade has seen progress in methodology and reusable components available

to designers of music authoring tools. This thesis examines currently prevalent architectures

for music making software and applies currently available technical means to update design

methodology and architectural patterns for the next-generation of tools. It aims to map

the various categories of advances and the manner in which they relate to each other, to

the problem of building these tools. The focus is on conceptualization. The thesis aims

to understand, from historical perspectives, as well as from perspectives provided by other

domains, the fundamental problems encountered in the process of designing authoring tools.

Issues examined include building rich visual and interactive interfaces for authoring, the

use of multiple notations and formalisms to describe multiple aspects of musical struc-

ture, end-user extensibility and end-user scriptability. The results of design experiments

implementing core ideas are documented, and the manner in which the ideas from these

prototypes may be applied to the construction of real-world tools is discussed. As far as

possible, the thesis investigates existing tools, frameworks, design ideas, and architectural

possibilities that scale. In conclusion, the manner in which the investigation relates to the

future of authoring tools, and to problems faced by contemporary artists and tool-makers

is discussed.
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Sommaire

Les concepteurs d’outils logiciels pour la création musicale ont á leur disposition les progrés

en méthodologie et en composants réutilisables réalisés ces cinq derniéres années. Cette

thése examine les architectures actuelles des outils de conception musicale, et applique les

moyens techniques actuels pour améliorer la méthodologie et les modéles architecturaux qui

permettront de concevoir la prochaine génération d’outils. Cette thése essaie d’établir le lien

entre les diverses catégories d’avancés, leurs inter-relations et les problémes d’élaboration

d’outils de conceptions musicale. L’emphase est mise sur la conceptualisation. La thése

essaie de comprendre, selon une perspective á la fois historique et éclairée par les autres

domaines, les problémes fondamentaux rencontrés dans le processus d’élaboration d’outils

de conception musicale.

Les problémes examinés incluent la conception d’interfaces visuelles riches et interac-

tives pour la conception musicale, l’utilisation de plusieurs notations et des formalismes de

descriptions des divers aspects des structures musicales, l’extensibilité par les utilisateurs

ainsi que la capacité á écrire des scripts. Les résultats de prototypage de systémes de con-

ception implémentant les idées principales sont documentés, et les maniéres dont les idées

déduites de ces prototypes peuvent être appliquées á l’élaboration des outils réels sont dis-

cutées. La thése investigue autant que faire se peut les outils, les environments, les idées de

conception, et les possibilités architecturales qui s’accorde bien au probléme de construire

les outils réels. Enfin, la façon dont la recherche se relie au futur des outils de conception

musicale, et aux problémes auxquels les artistes contemporains et les concepteurs d’outils

font face.
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Chapter 1

Introduction

1.1 Context

The current work concerns the application of recent innovations in programming languages,

modeling environments, software/component engineering and human-computer interaction

to the problem of constructing tools for music designers. In particular, the research surveys

the technology currently available to construct music authoring tools and documents the

results of several design experiments with tools, frameworks and methodologies from other

domains to illustrate how these could be used to construct better tools for music authoring

and sound design. It aims to be an updated ‘field guide’ for music software architects,

designers and engineers.

The work focuses on practical considerations involved in arriving at an architecture for

music authoring tools that best leverages currently available technical means and antici-

pates the evolution or extension of the design to serve different users of such a tool. A

recurring theme in the thesis is end-user programmability. An example of an end user is a

musician, sound designer or sound engineer. Allowing end users to extend the tool using

terms and patterns they are familiar with enables them to customize the tool in a manner

that the original designer could have neither anticipated, nor had the musical expertise to

realize. An environment in which users can extend the tool using terms and notation from

their domain of expertise is called a ‘Domain Specific Design Environment’. The ultimate

goal is to enable musicians to customize their tools using familiar (if not simple) terms,

and for these customizations to be made available to other musicians with similar needs.
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1.2 Motivation

The need for such an extension environment has arisen in many other domains. Figure 1.1

shows a parametric Computer Aided Design (CAD) tool for bicycle design [Curry, 2006].

Such a system can be used by a cycling enthusiast with no knowledge of mechanical engi-

neering or CAD to generate valid bicycle designs using a constrained design environment.

The strength of such a tool lies in its ability to allow the user to generate designs that

conform to a notion of correctness as defined by the original programmer of the design

tool. The same strength is also a weakness when the end user wants to alter this notion of

what a correct and useful design is, and expand it to include a range of designs that the

original programmer did not anticipate.

Fig. 1.1 Parametric CAD tool for Bicycle Design. The Bicycle Forest, Inc.

The problem stems from the fact that the underlying tool itself is implemented directly
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in a general-purpose programming language like C, C++, Java or Python1. Such a frame-

work provides a plethora of facilities for describing any tool conceivable in any domain.2

While such a language is expressive enough to describe any tool, it is not an efficient vehicle

of expression. Usability on the one hand, and flexibility on the other, thus seem to present

conflicting requirements for a tool designer.

Fig. 1.2 Categories A and B

In the context of music authoring and sound design tools, this dichotomy manifests

itself as two categories of audio software as shown in Figure 1.2. Category A consists of

tools designed to do a specific task or set of tasks very well and Category B consists of

systems that provide a language or a framework for expressing a very large number of

musical tasks. In each category, it is anticipated that Music Authoring Tools will evolve to

occupy the ideal space in the intersection (A∩B), resulting in context specific tools that are

easily extensible, and general-purpose tools that are easily specializable. Categories A, B

and A∩B are revisited at various points in later chapters. They are central to some of the

questions that are addressed by the thesis in the context of tools and frameworks available

today: How can we make music authoring tools that are both usable and flexible? How can

we make music authoring tools that are extensible by end-users? How can we ‘boot-strap’

such an extensible environment from a small authoring-system core?

1One of the ideas explored in the thesis is to build multiple languages for describing functionality at
various levels of implementation.

2Provided that the tool can be realized by a computable process.
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1.3 Scope and Contributions

The work aims to explore existing technology with the aim of reusing it. By integrating

various existing components, it aims to arrive at a conceptualization of what is anticipated

to be the architecture of the next generation of music authoring tools. It conducts practical

prototyping exercises to confirm design hypotheses. Chapters 2 and 3 introduce the state-

of-the-art in computer-music software and frameworks and tools in other domains that were

identified as being useful to the problem of constructing authoring tools. Chapter 2 identi-

fies progress in computer music software and anticipates the features that will be available

in future computer-based music authoring and prototyping systems. It motivates the design

investigations that are conducted as part of the current work. Chapter 3 identifies tools

and frameworks from other domains, like graphics engines, visual modeling environments

and scripting and extensibility engines that may be plugged together to form an extensible

core for an authoring application. It also tries to identify various classes of frameworks that

are representative of the state-of-the-art in these domains. Chapter 4 details the results of

design investigations with tools identified in Chapter 2 and 3 to build prototypes of various

components of a music authoring tool. Architectural and design possibilities are illustrated

by demonstration. Chapter 5 summarizes the results and identifies possible directions for

future investigations and implementation.
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Chapter 2

Background

The design of computer music tools in general and music authoring tools in particular

has a long and rich history, almost as old as the history of digital computers. Advances

in computer music authoring software have mirrored advances in computer hardware and

(perhaps more so) software. In essence, the basic functions of a computer music authoring

system have remained the same. Incremental improvements have been made in terms of

usability, performance, extensibility and cost. New generations of music authoring tools

are usually distinguished by a degree of improvement in the aforementioned areas that, in

comparison with the previous generation, becomes a difference in kind rather than a dif-

ference in degree. It is a common observation that design tools within the same generation

seem to all ‘do the same thing’ with subtle differences that get consolidated into significant

differences across generations.

This chapter identifies the components of a music authoring tool and traces intra-

generational and inter-generational progress in computer music systems. It identifies cur-

rent advances in computing relevant to each of the components of a music authoring tool

that may anticipate a new generation of music authoring tools. It also additionally mo-

tivates and sets the context, from various historical perspectives, for the investigations

and design experiments conducted as part of the current work. It tries to classify various

systems as Category A or Category B systems.
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Fig. 2.1 Problems related to the design of music authoring tools

2.1 Pieces of the Puzzle

Figure 2.1 shows sub-problems encountered in the design of music authoring tools. The

remaining portion of this section introduces these sub-problems. In some cases a description

of existing art in the sub-problem is given, if relevant.

2.1.1 Infrastructure Frameworks

Various efforts in the history of computer music have focused on different sets of sub-

problems. Of these, synthesis algorithms, synthesizer design (increasingly in the form of

a virtual machine that accepts primitive synthesis-commands) and the problems related

to formalizing musical contexts are peculiar to the music domain. The remaining prob-

lems are general problems in software engineering and architecture. Nevertheless, they are

germane to the problem of constructing music authoring tools. Common sub-problems

encountered in various domains are often referred to, in software engineering, as ‘infras-

tructure’ problems, and the frameworks that are developed to address these are known as
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‘infrastructure-frameworks’.

Since these problems are common to many domains and hence useful to many people,

work on infrastructure frameworks is always ongoing and progress in software in many

domains is determined by the state of the art in infrastructure frameworks. Very often,

these frameworks are baked into the operating system itself, or inside development tools and

frameworks. Examples of such frameworks are those provided with the operating system

APIs of Unix, GNU/Linux, Mac OS and Windows families of OSes. The Java Virtual

Machine (JVM) and the .NET Common Language Runtime (CLR) are language and OS

independent abstractions over computer hardware and operating systems, provided in the

form of a universal programming-language-runtime available on different platforms.

It is sometimes also the case that infrastructure frameworks expand to include com-

ponents from progress made in specialized domains that may be useful to many others,

including music authoring. Current OSs are beginning to include advanced graphics sub-

systems that were once considered neccesary only for graphics intensive applications like

CAD and 3D games. Similarly, compilers and interpreters for domain-specific languages

defined for a specific application had to be written from scratch. Current versions of lan-

guage runtimes (such as the CLR) include compiler front-ends and template-based byte

code generation as part of the API.

By aligning the design of music authoring tools to inter operate with the design of existing

infrastructure frameworks, we can design them to take advantage of future advances in

infrastructure frameworks without re-design of the authoring tool itself. The following

sub-sections present background material related to domain-specific problems as well as

infrastructure problems.

From a more radical - or perhaps creative - perspective, Atau Tanaka [Tanaka, 2003]

discusses how artists are adapting their creative ends to match the new means available

in the form of kinds and layers of infrastructure over which to build real and virtual tools

and instruments. Thus, the layers of infrastructure define the medium available at the dis-

posal of the artist, and the evolution of these layers of infrastructure frameworks influences

the creative direction of electronic and computer-based arts in general and electronic and

computer-based music in particular.
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2.2 Evolution of Audio Synthesis Languages and Frameworks

[Category B]

2.2.1 CSound and the Music-N Family

The grand daddy of all computer music software is a program called MUSIC written in

1957 by Max Matthews at Bell Labs. MUSIC evolved into an entire family of languages,

MUSIC-II, III, IV, IV-B, IV-BF, V and MUSIC 360. Of these, MUSIC II through IV

and V were developed at Bell Labs. MUSIC IV-B was developed at Princeton University.

MUSIC 360 was developed at the MIT Media Lab by Barry Vercoe. This later evolved into

a program called CSound that is being widely used in the computer-music community to

this day [Wikipedia, 2006i].

The MUSIC-N family introduced idioms for the design of sound generation software that

continue to be used in current designs. The software differentiates between two types of data

streams generated by computational processes that are called ‘signal-rate’ (or sampling-

rate) and ‘control-rate’, respectively. Signal-rate processes specify computations that occur

between every sample of the digitized sound (in the case of CD quality mono audio this

would be 44,100 Hz). These are normally used to model the signal (sound) structure and

are implemented by functions called unit generators (or ‘opcodes’) written in C. The unit

generators are parameterized by control variables that often change much less frequently

than the signal-rate1, often at rates not exceeding 10 Hz. The processes and data that

describe the control variables are called ‘scores’ because they model the musical structure

of the piece being rendered. Figure 2.2 shows a modern CSound data file with both orchestra

and score combined into a single XML file [Wikipedia, 2006b].

2.2.2 Max/MSP, Pd, OSW and SynthBuilder/MusicKit

Visual environments involving patch-cord based interfaces for music authoring and sound

design can be traced back to a program called ‘Patcher’ written by Miller S. Puckette in the

mid-1980s as a tool for realizing a piece by Philippe Manoury called ‘Pluton’ [Wikipedia,

2006j; Puckette, 1991]. Patcher can be considered a descendant of the MUSIC-N fam-

ily and the Patcher program itself led to a family of visual sound design and event se-

quencing environments, the most notable of them being a commercial variant sold by Cy-

1FM Synthesis is an exception.
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Fig. 2.2 A modern CSound data file

cling’74 called Max/MSP. Miller Puckette went on to develop a free version of Max/MSP

called Pd [Puckette, 1996]. An environment with a similar interface was also developed

by Amar Chaudhary at the University of California at Berkeley called Open Sound World

(OSW) [Chaudhary et al., 1999].

Figure 2.3 shows a Max/MSP patch (left) and an OSW patch (right). As can be seen in

the figures, Max/MSP, Pd (very similar to Max/MSP) and OSW provide a data-flow based

language to describe both signal generation/processing and event generation/processing.

Max/MSP and Pd share a common architecture, though not the same code-base. OSW

has a significantly different architecture that centers around providing an extensible type

system [Chaudhary et al., 1999]. SynthBuilder is a similar system that was developed to

prototype various signal processing algorithms developed at CCRMA, Stanford University

[Porcaro et al., 1998]. It was one of the earlier systems that emphasized extensibility and
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Fig. 2.3 A Max/MSP patch

leveraged the capabilities of a rich infrastructure platform (NeXTStep). It is a common ob-

servation that whereas the data-flow representation works well to describe signal-generation

and transformation networks, it gets messy when used to describe control-flow or event gen-

eration and processing.

Visual editors for these environments were built from scratch. Section 3.3 describes

current technology that makes developing sophisticated visual editors easier by reusing

existing off-the-shelf components.

2.2.3 SuperCollider, CapyTalk/Kyma and ChucK

In essence, interpreted text-based computer-music languages described in this section are

functionally identical to the visual computer-music languages described in the previous

section. All three text based languages, however, currently factor out their synthesis sub-

system into a separate process. The synthesis language itself is implemented as a client

application that runs either as a console or as a visual environment much like an IDE

(Integrated Development Environment).
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Fig. 2.4 SuperCollider Client running on Mac OS X [McCartney, 2006]

SuperCollider

SuperCollider, chronologically the first in this family, was initially announced as a commer-

cial product on the newsgroup comp.music.research on March 21, 1996. It ran only on the

Power Macintosh and shipped as a single application that combined both the visual envi-

ronment, programming language and synthesizer. The language itself was quite similar to

its current incarnation and supported incremental garbage collection, first class functions

(closures) and a pure object-oriented type system along the lines of SmallTalk. It supported

a variety of visual interfaces to create SuperCollider objects, including patch-cord based

interfaces and envelope editors.

What set Supercollider apart was that its base language was a well-structured variant of

SmallTalk. This allowed for structured, object-oriented descriptions of complex synthesis



2 Background 12

Fig. 2.5 A SuperCollider script

processes. Event processing is described using object-oriented text-based code, and signal

processing networks are edited using the patch-cord interface. The dynamic, interpreted

nature of SmallTalk also facilitates interactive prototyping, with changes in the synthesis

code reflected in real-time changes to the audio output, much like Max/MSP. SmallTalk was

designed specifically with the purpose of supporting event-driven programming (although

in the context of graphical user interfaces). SuperCollider integrates real-time audio pro-

cessing into the Object-Method-Message model provided by SmallTalk, which works rather

well to describe the evolution of state by asynchronous interaction between many concur-

rent processes. Further, SuperCollider also provides for a functional style for description

of unit generators, which is perhaps a more natural style for specifying these connections

as explained in Dannenberg [2002]. Figure 2.5 shows a SuperCollider script.
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Fig. 2.6 Patch-cord interface in Kyma

CapyTalk/Kyma

The Kyma/CapyBara is a combination of hardware and software for sound synthesis and

sequencing designed and sold by Symbolic Sound Corporation. The Kyma is the software

portion of the unit. Similar to SuperCollider, the scripting language for the Kyma environ-

ment is a variant of SmallTalk, named CapyTalk. It was originally written as the synthesis

language for a computer music workstation designed at the University of Illinois at Urbana

Champaign called Platypus [Scaletti, 1989]. Similar to SuperCollider, Kyma also provides

alternate ways to create synthesis and sequencing objects. They may be created by writing

CapyTalk code or by using a patch-cord based interface as shown in Figure 2.6. The differ-

entiating feature of the Kyma is that it can run on a dedicated sound synthesis hardware

system called ‘CapyBara’. The CapyBara is a rack of DSPs that can be scheduled to run

Kyma patches and CapyTalk objects.
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ChucK

ChucK is a C-like interpreted language for audio synthesis developed at Princeton Uni-

versity [Wang et al., 2004]. The authors describe it as a ‘concurrent, strongly-timed audio

programming language for real-time synthesis, composition, and performance’. Historically,

the popularity of programming languages has been greatly increased by providing syntax

and semantics familiar to existing popular languages. C++, for example, was a language

based on Simula that gained a huge user base partly because of its C-programmer friendly

features. ChucK’s C-programmer friendly syntax and reuse of commonly used C program-

ming language constructs are attractive to programmers familiar with C and C++2 who

are looking for an interpreted audio-synthesis language.

The ChucK language introduces the => (chuck) operator. The operator is overloaded to

support many different semantics. It can be understood as a message invocation operator on

objects, thus making the use of the ChucK operator somewhat similar to the act of sending

messages in other languages supporting dynamic-binding like SmallTalk (and hence also

SuperCollider and CapyTalk), Objective C, Python, Ruby and Lisp. The => operator also

seems to suggest a connection, and ChucK-ing one object to another may in many instances

cause such a topological relationship to be formed between the objects. Figure 2.7 is an

example of a ChucK script. Along the lines of the architecture of SuperCollider and Kyma

systems, the ChucK language is separated from the ChucK Virtual Machine (VM) which

is much like the ‘server’ component of SuperCollider 3 (SC-3 Server). The language is also

supported by an integrated development environment called the Audicle. The Audicle is

an editor, visualizer and compiler-invocation tool for ChucK scripts. It was written from

scratch using OpenGL.

In terms of construction, a trait shared by all three systems in this family is that they

were built from scratch. This is possible because these tools aspire to be ‘Category B’

tools. Systems like SC3 Server, the Chuck VM and the CapyBara themselves facilitate

the inexpensive construction of an entire family of ‘Category A’ tools that integrate these

sound and audio language engines with various other components. Chapter 3 describes

such components designed in other domains (as well as infrastructure frameworks) that

2In terms of syntax alone, Java may also be considered to belong to the C family (also known as the
curly bracket programming languages).
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may be reused to ease the task of creating a new prototype language and environment for

audio synthesis that has been tailored to serve a particular end-user context. Section 3.3

describes tools that can be used to allow the end-user herself to create these languages and

environments. Such creation and customization by domain-experts is already commonplace

in domains like video game design.

Fig. 2.7 A ChucK script

2.2.4 Common Music, Nyquist, Elody, OpenMusic, HMSL/JMSL

This section completes the catalogue of dynamic interpreted music synthesis languages. The

languages described in this section are functional languages, although some, like Common

Music are written in an object facility implemented on top of the base functional language.
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Fig. 2.8 A CM function that describes a jazz combo

Common Music

Common Music is a music composition language written using an object facility on top of

Common Lisp or Scheme [Taube, 1991]. Figure 2.8 shows a CM function that uses other

functions (not shown) to generate the sounds of a jazz combo. Common Music leverages the

fact that all domain-specific languages expressed in Lisp have the advantages that come with

the Lisp language and environment, namely a dynamic, extensible base language with a rich

set of orthogonal operators that can be combined to express different kinds of semantics.

In particular functional languages have a rich repertoire of operations for defining advanced

control constructs using facilities like first-class continuations that make the control flow

semantics of the base language programmable (i.e., customizable by the domain-specific

language designer) [Danvy and Filinski, 1990]. Programming unit generators and filters,

for example, can be implemented efficiently using vectorized operations that can benefit

from the kinds of semantics supported by streams which in turn can be programmed using
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continuations3.

Aura, Nyquist and Serpent

Nyquist is a functional language for audio and music programming written by Roger Dan-

nenberg at CMU [Dannenberg, 1992]. Programming in Nyquist centers around abstractions

known as ‘behaviours’ and ‘environments’. The notion of an environment is central to func-

tional programming, and Nyquist defines a set of musically relevant variables that define

the environment in which a ‘behavior’ is evaluated to produce a sound. These are: ‘warp’,

‘loud’, ‘transpose’, ‘sustain’, ‘start’, ‘stop’, ‘control-srate’ and ‘sample-srate’. Figure 2.9

shows the usage of some Nyquist behaviors.

Aura is an object-oriented framework for event-processing implemented as a C++ library

written by Dannenberg and Brandt [1996]. Its markable features include a dual-model that

supports both an object-oriented and a functional view of the Unit-Generator (UG) and

Control networks. Serpent is the scripting language for Aura [Dannenberg, 2002]. It is a

dialect of Python designed for Aura. It has the added advantage of a responsive, real-time

garbage collector tuned to the needs of audio applications. Garbage collectors generally get

scheduled “when needed”, and this can cause unpredictable delays that are unacceptable in

real-time applications. Real-time garbage collectors address this need. Aura and Serpent

also have GUI interfaces developed using wxWindows that allow for graphical patch builders

and other control interfaces to be built4.

Elody

One of the most innovative of all the functional languages developed for music, Elody is

described by the authors ([Fober et al., 1997]) as a “music composition environment based

on a visual functional programming language, a direct manipulation user interface and

internet facilities”.

3Elsewhere, however, and especially so in AI, complex control structures have been criticized in recent
times, and simple message passing has been favored over them [Agha and Hewitt, 1987]. This is also
referred to as the ‘hairy control structure’ problem [Sussman and McDermott, 1972].

4The current work includes the implementation of an object-oriented event-processing framework im-
plemented by extending STK (Section 2.2.5) and a simple reference-counting garbage collector for memory
management. The OO messaging facility can itself be used to implement functional idioms on top of it.
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Fig. 2.9 Nyquist functions. 1)Sequential Behavior 2)Envelope using a
Transformation 3)Simultaneous Behavior 4)Nested Behavior

The alternative approach realized in Elody involves extending music notation systems

to also double as general-purpose programming languages. It is thus a special case of a

Category B framework in the guise of a Category A tool. It provides a general-purpose

extensibility framework based on the lambda calculus, for the purpose of extending the

domain-specific language of musical notation.

Fober et al. [1997] refer to this approach as ‘homogeneous programming’, referring to

the fact that both domain expertise (musical knowledge) as well as extensibility expertise

(software design and system modeling) are captured using the same extended version of

musical notation developed by them. This allows for end-users with little knowledge of

general-purpose programming languages to extend the system by using the music-notation

like formalism that is provided with Elody. As the authors describe it, “Elody propose
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(sic) lambda-abstraction on musical structures as a fundamental mechanism to represent

user-defined musical concepts and compositional operations.” These abstractions also have

visual representations as shown in Figure 2.10, providing for intuitive discovery, by end-

users, of programming-language like facilities in the composition notation.

Fig. 2.10 Visual Constructors in Elody for (1) Chords (2) Keyboard Objects
(3) Sequences

Elody objects can be created by end-users using a facility known as a ‘Visual Con-

structor’. Visual Constructors are widgets for creating new expressions that are atomic

expressions or composites using combinations of existing expressions. It is worth noting

that Elody itself is built on top of Grame’s MidiShare [Grame, 2000], which was designed

to be a “real time operating system for musical applications” [Fober, 1994]. It is likely that

consumer operating systems like Mac OS X and Windows will assimilate such functionality
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into future versions5.

HMSL/JMSL

HMSL (Hierarchical Music Specification Language) is a superset of the interactive, in-

crementally compiled/interpreted language Forth. It was developed by Phil Burk, Larry

Polansky and David Rosenboom at Mills College Center for Conteporary Music in 1980,

and has been extended and maintained since then [Rosenboom and Polansky, 1985]. JMSL

is a more recent, Java version of HMSL that is better maintained. Being a superset of

Forth, HMSL allows user defined extensions to the language and HMSL itself is realized as

a Forth extension. It is thus a Category B framework realized using another Category B

infrastructure framework.

HMSL introduces the concept of a musical ‘shape’. A ‘shape’ models an abstract mu-

sical structure like melody, a profile of harmonic complexity or other user defined struc-

ture/object. A hierarchical collection of these structures can be created and scheduled for

execution. Elements in the collection can be executed consecutively or simultaneously. Hi-

erarchy combined with the concurrent and consecutive scheduling semantics provide for the

description of a very large variety of musical processes. Figure 2.11 shows HMSL scripts.

HMSL also has a MIDI toolbox and a GUI toolkit for programming user interaction.

As with all the other tools the components of HMSL are built mostly from scratch.

However, it reuses the Forth compiler/interpreter to implement the programming language

itself. This is in the spirit of the design methodology advocated by the current work.

Current technology also makes it possible to build visual and textual components into a

seamlessly extensible language framework as described in Section 4.3.2.

JMSL is a more recent, Java rewrite inspired by HMSL [Didkovsky, 2004]. Unlike HMSL,

which is written as an extension to Forth, JMSL is implemented as a Java library. Although

Java is not an extensible language environment like Forth, a simpler form of extensibility is

provided by allowing the user to extend the Java API provided by JMSL. The use of Java,

on the other hand, makes it easier to deploy JMSL applications over the web. JMSL reuses

5This is also the case with video game consoles from product lines like Nintendo, PlayStation and XBox
which often evolve independent infrastructure frameworks
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Fig. 2.11 An HMSL hierarchy (1) and functions to dynamically call the
hierarchy (2).

the JSyn library [Burke, 1998] for synthesis. A JSyn plugin is available for integration with

browsers to run JMSL applets over the web.

JMSL also uses the rich GUI facilities provided with Java applications and applets to

implement various graphical object editors, for example, ‘transcribers’ to notate algorith-

mically generated music. It also provides a plug-in or extensibility API that allows for

extensions to be build to these graphical editors. These graphical editors are thus Cate-

gory A components, and JMSL itself is a Category B tool with which they are built. This

makes for a good combination. Traditional musical scores produced using the Transcriber

can also be exported to Finale®, a popular commercially available music-notation based

authoring system.
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OpenMusic

OpenMusic is an object-oriented/functional Lisp system that has a visual interface to the

Common Lisp Meta Object Protocol (MOP) and a constraint programming system for

music [Assayag et al., 1997; Agon et al., 1998; Assayag et al., 1999a;b; Truchet et al.,

2001; Bresson et al., 2005; Assayag et al., 2000a;b]. Figure 2.12 shows a composition

Fig. 2.12 A composition by Iannis Xenakis (Herma) opened in OpenMusic

created in OpenMusic. OpenMusic, being a successor to Elody, bears some resemblance to

Elody. Similarly to Elody, musical S-Expressions can be created using visual constructors.

Additionally, OpenMusic also provides access to the object-oriented features of the Common

Lisp Object System (CLOS) as well as visual metaprogramming via the Common Lisp

Meta Object Protocol. This is similar to extending and customizing a Forth system as

done in HMSL. Using the MOP allows customization and extension of the semantics of the

object model used by CLOS itself, and is a very powerful way to create domain-specific
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abstractions6. Section 3.3 visits current advances in visual meta programming and meta

modeling systems. Chapter 4 documents the results of design experiments conducted to

explore the possibility of reusing components resulting from these advances in building

music authoring systems.

2.2.5 STK, CLAM

The synthesis components described in this section are all distributed as libraries. They do

not define their own programming language. Instead, they may be called from applications

written in general-purpose programming languages.

2.2.6 Synthesis ToolKit (STK)

The Synthesis ToolKit is a C++ library for audio signal processing and algorithmic synthe-

sis designed and implemented by Perry Cook and Gary Scavone [Cook and Scavone, 1999].

STK is highly portable and builds under a wide variety of operating systems, including

realtime support on SGI, Linux, Mac OS X and Windows. The design of STK leverages

the object-oriented facilities of the C++ Programming Language. It is both a library of

reusable synthesis and signal processing components, as well as a framework within which

to design new synthesis and signal processing elements. Figure 2.13 shows a portion of the

STK Class Hierarchy. Using STK as a library involves writing a C++ program like the one

showed in Figure 2.14. The code generates a sinewave and writes it to a wav file. STK may

also be used as a framework to build new synthesis classes. This involves ‘inherit’ing a class

from one of the base classes in the hierarchy and implementing customized functionality to

produce a new type in the hierarchy.

STK is particularly popular because of the ease with which it may be used to build

C++ applications. C++ has been a first choice for many years for building media-rich

and computationally intensive applications and STK addresses the need for a synthesis

infrastructure framework for C++ programmers. In recent times, advances in processing

6As also a powerful way to shoot oneself in the foot. Creating useful and meaningful new object
models and semantics is not for every end-user. However, ‘power’-users may leverage such facilities for
advanced customization. When using Category B frameworks like OpenMusic to realize Category A tools
and systems, it is thus advisable, from a usability perspective, to expose these facilities in a manner that
does not obfuscate simple usage scenarios. The Perl design philosophy of ‘Make easy things easy and
difficult things possible’ is especially relevant in this context.
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Fig. 2.13 Portion of the STK Class Hierarchy.

power, dedicated sound processing hardware, as well as advances in optimized compilers

and garbage collectors has made garbage collected languages like Java and C# and dynamic

languages like Lisp, Python, Perl, Ruby and SmallTalk also viable vehicles for designing

audio synthesis libraries. Often times, however, the computationally intensive portions

of such libraries are also written as C/C++ externals7. Additionally, STK implements

innovative methods for synthesis like Physical Modeling [Smith, 1996] that may be reused

simply by instantiating the relevant STK class.

2.2.7 CLAM

CLAM is a C++ Library for Audio and Music [Amatriain et al., 2002]. It implements

the core technology used by a tool suite and platform for audio computing developed at

the Universitat Pompeu Fabra [Arum and Amatriain, 2005]. The functionality offered by

the library is similar to STK. However, CLAM includes functionality both for analysis and

for synthesis of audio. The features of the library that are highlighted by the authors are

the quality of the C++ code, which follows current best practices advocated by the C++

community, the efficiency of the implementation, the comprehensiveness of the spectrum of

functionality integrated into the library, tool suite and the extensibility of the framework.

While these qualities are not particularly relevant to end-users of the Category A tools

7The current work includes design experiments that explore the possibility of combining a synthesis
server implemented in STK with dynamic components written in other languages.
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Fig. 2.14 A C++ program that uses STK.

developed using CLAM, they are directly relevant to the users that develop tools using

CLAM. Increasingly, Category A tools that lie in the intersection are providing customiza-

tion and extensibility features to the end-user, and this involves providing a simplified

access to the internals of the tool, which effectively allows domain experts like musicians

and sounds designers to program the tool using the underlying Category B functionality of

libraries like CLAM and STK.

Good design of the Category B framework itself will thus affect the end-user programma-

bility of the Category A tool that exposes its internals. The core design entities in CLAM

have been formally represented as a metamodel expressed in UML [Amatrian, 2005]. Such

formal representation of the internal design of a framework facilitates the construction of

automatic introspection and reflection tools.
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Fig. 2.15 CLAM modules [Arum and Amatriain, 2005].

Figure 2.15 shows the organization of CLAM modules. Besides the infrastructure frame-

work that CLAM implements in the form of a library, it also provides rapid-prototyping

tools in the form of graphical tools like the Network Editor and the Prototyper. Developing

an application with CLAM involves defining the processing network using an application

called the Network Editor and defining the UI and interaction using an application called

the Prototyper.

Figure 2.16 shows a processing network being edited with the Network Editor and an

application screen being edited using the prototyper. The Prototyper itself has been built

by customizing a Category A tool bundled along with the QT library called QT Designer. It

is a number of extensions, additions and customizations to QT Designer for CLAM specific

applications. This is in the spirit of the methodology for authoring tool design recommended

by the current work. Section 3.3 presents advanced customizable modeling environments
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Fig. 2.16 CLAM Network Editor (1) and CLAM Prototyper (2) in action.

that can be used to generate applications like the Network Editor automatically, from UML

specifications.

2.3 Studio Tools/Recording and Sequencing Software

Section 2.2 explored languages and frameworks for describing, representing and realizing

the structure of processes that generate sound and the structure of processes that generate

music. This section explores tools that have been developed in the context of the more

conventional roles of computers in the music industry, that of the computer as a recording

and editing machine in a studio setting.

Also referred to as Digital Audio Workstations [Wikipedia, 2006c], the tools discussed

in this section have somewhat similar functionality, though there are markable differences
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in the quality and performance of the tools, their suitability for particular tasks, and the

number of features offered. Features offered by these software include:

1. The ability to record sound.

2. The ability to transform recorded sound using a comprehensive set of signal processing

blocks.

3. The ability to simulate acoustic instruments and analog electronics (instruments,

amplifiers and processors) in software.

4. The ability to sequence recorded sound as well as control events.

2.3.1 Audacity, Apple Logic, PropellorHead Reason, DigiDesign ProTools,

Steinberg Cubase, TwelveTone Systems CakeWalk Pro

Apple Logic Pro

Logic Pro aims to be a ‘complete music studio’ and offers a wide range of functionality,

including the ability to record sounds, sequence recorded sound (as well as control events

in the form of MIDI/OSC messages), transform recorded sound with a comprehensive

set of signal processing blocks, and modeling virtual instruments (both pre-created and

user build) in software [Wikipedia, 2006g]. Figure 2.17 shows screenshots from Apple’s

Logic Pro software. The Sculpture interface (lower box) offers the user a wide variety of

parameterized models of musical instruments and components of musical instruments (like

strings, strikeable surfaces, air columns and so on). This is effectively a parameterized

‘CAD’ for sound design, analogous to the Category A Bicycle CAD application described

in Section 1.1. The underlying models may be complex though, as the Logic Pro online

documentation hints:

The sophisticated algorithm at the core of Sculpture combines different models of

vibrating natural material: It can be glass, steel, nylon or wood or a mixture of all of

them. You can even morph between them, starting with a nylon string in the attack

phase of the sound and then decaying to the wood or metal bar of a xylophone. A

second element of the algorithm describes the way the vibration is initiated. This

means that you have the choice between a vibration that is bowed, plucked or blown,

or variations of these. You can also determine where the pick-up is positioned.
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Fig. 2.17 Logic Pro’s Sculpture (1) and Ring Shifter (2) tools.

All of the functionality available in Logic is neither scriptable nor re-usable in standalone

applications independant of the Logic Pro product. It is noteworthy that Garage Band,

another music authoring and production tool from Apple8, also uses the Logic Pro Au-

dio Engine [Wikipedia, 2006g]. Going by the trends in the 3D animation industry9the

economics suggest that the development of a reusable, professional-quality, commercially

supported (or community supported) audio engine would be very valuable. Such an engine

would constitute a Category B framework that could be used to build a whole family of

interoperable Category A tools for music authoring, as well as stand alone Category A

applications (that do not belong in the intersection A∩B).

8Targetted primarily at amateur musicians.
9The classic examples in this category are the ‘Quake’ and ‘Unreal’ 3D engines, which were originally

designed specifically for the games with the same name. Eventually, both engines were made available for
use in other games and applications [Wikipedia, 2006f].
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Propellerhead Reason

Fig. 2.18 (1) Reason’s Combinator and (2) ‘Rear View’ with a realistic patch
cord interface.

Figure 2.18 shows screenshots from the Reason software. Reason is notably different in

that it cannot to be used to record audio, or be expanded using third-party plugins. The

main feature offered by Reason is simulation of synthesis hardware in software, and the

ability to plug many of these modules together in an intuitive patch cord interface. Reason

takes the patch cord interface to new literal heights with a realistic rendering of cords as

shown in the ‘Rear View’ Figure 2.18 (lower box). The upper box shows the regular view of

the Combinator, exposing the parameters and controls of various modules that have been

combined. It is a good example of an intuitive end-user programming interface. Section 3.1

discusses currently available GUI frameworks that make it possible to provide facilities for

designers to add new professional-quality intuitive interfaces that leverage the state of the

art in 2D and 3D graphical user interfaces.
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DigiDesign’s ProTools, Steinberg’s Cubase and TwelveTone Systems’ CakeWalk Pro pro-

vide somewhat similar functionality to Logic and Reason, though they have their individual

strengths and weaknesses. GarageBand and FruityLoops are similar tools targeted at am-

ateur users.

2.4 Plugin Application Programmer’s Interfaces (APIs)

These APIs were originally designed in the context of extension module Software Develop-

ment Kits (SDKs) for effects processing in recording software (see Section 2.3). For this

reason, they are not specific to the problem of authoring tools. They provide an API to

describe new unit-generators and effects-processing algorithms. However, such APIs could

be re-used in the context of extension-APIs for an authoring tool. In particular, a subset of

the synthesizer extension API could support VST and LADSPA plugins to reuse existing

components written for these APIs.

2.4.1 Steinberg VST

The VST plug-in API was developed in relation to Steinbergs Cubase software. It is among

the most popular effects and synthesizer plug-in APIs. The VST SDK documentation

describes it thus:

In the widest possible sense a VST-Plug-in is an audio process. A VST Plug-

in is not an application. It needs a host application that handles the audio

streams and makes use of the process the VST plug-in supplies. Generally

speaking, it can take a stream of audio data, apply a process to the audio and

send the result back the host application. [...]: The host does not maintain any

information about what the plug-in did with the last block of data it processed.

From the host application’s point of view, a VST Plug-In is a black box with

an arbitrary number of inputs, outputs, and associated parameters. The host

needs no knowledge of the plug-in process to be able to use it.

The control structure of VST is known to be limited [Zbyszynski and Freed, 2005]. However,

it is well suited to describe effects plug-ins as well as as a subset of software synthesizer

plug-ins.



2 Background 32

2.4.2 Linux Audio Developers Simple Plugin API (LADSPA) and DSSI

(Disposable Soft Synth Interface)

LADSPA developed primarily as an open alternative to VST and DirectX plug-ins on the

Linux platform. The effects/filters plug-in funtionality that LADSPA aims to standardize is

very similar to VST and DirectX, and it brings these benefits to linux audio developers. It

has similar drawbacks. Development on LADSPA has been slow, as noted in the LADSPA

home page [Furse, 2006a]. LADSPA has tried to address the lack of a GUI standard for

plug-ins by coming up with an XML based GUI Specification [Furse, 2006b]. Along similar

lines, Chapter 4 describes design experiments that demonstrate the manner in which an

advanced XML based GUI specification (XAML) could be used to specify visual interaction

with authoring tool extensions.

2.5 Next Generation Music Software

This section presents music software that are in some sense, substantially different from

the software presented in the previous two sections. Both these pieces of software are

distinguished by the fact that they go above and beyond simple musical tasks and provide

the user with a palette of functionality that can be used to achieve complex musical tasks.

Cypher is a Category B framework that belongs in the intersection and HyperScore is a

Category A tool that does not belong in the intersection.

2.5.1 Cypher

Cypher is a C++ library of classes and algorithms for the Macintosh (also usable as Max

externals), that are a realization of an approach to interactive music systems proposed by

Rowe [Rowe, 1991]. It is also a complete real-time interactive music system. Rowe’s work

is inspired by Marvin Minsky’s ideas from Society of Mind [Minsky, 1986]. The implemen-

tation of Cypher is based on a societal architecture, in which small, relatively independent

agents co-operate to realize complex behaviors. In particular, the compositional part of

Cypher’s design centers around such independent musical agents, known as ‘compositional

critics’. These critics are processes that evaluate the output of a segment of composition

before it is sounded. The segment is then modified to conform to the aesthetic criteria that

the critic defines.
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In his book Machine Musicianship [Rowe, 2001], Rowe explains the idea thus:

Musicians begin formal training by acquiring a body of musical concepts commonly

known as musicianship. These concepts underlie the musical skills of listening, per-

formance, and composition. Like humans, computer music programs can benefit from

a systematic foundation of musical knowledge ... The resulting applications can be

used to accomplish tasks ranging from the solution of simple musical problems to the

live performance of interactive compositions and the design of musically responsive

installations and web sites.

Cypher builds abstractions for musical processes on top of sequences of MIDI10 events.

However, it goes above and beyond the paradigm of viewing music as a combination of

sound design and sequencing11. The musical processes modeled by Cypher’s compositional

critics embody a rule-based representation of aesthetic principles that enables it to respond

to high level features in the incoming musical stream in intelligent ways. Figure 2.19 shows

a portion of the implementation of a high-level listener object in Cypher. Cypher’s listening

and interpretation engine could be reused in intelligent authoring tools that provide the

composer with hints computed by the ‘compositional critic’ processes.

2.5.2 HyperScore

Like Cypher, HyperScore has its roots in the Hyperinstruments group at the MIT Media

Lab. Originally designed by Mary Farbood as part of her doctoral work [Farbood et al.,

2004], it was eventually made into commercial software, sold through Harmony Line Music.

HyperScore is designed as an intuitive, easy-to-use visual environment along the lines of a

sketching program. It is intended to teach children and amateurs the basics of composition

through first-hand exploration. Figures 2.20 and 2.21 show screen shots from the software.

The basic visual metaphor in HyperScore is that of the Harmony Line (box 7). It consists

of a bendable line that is associated with musical objects. The association between the

10Rowe acknowledges the limitations of MIDI, and subsequent work has focused on what he terms
‘Personal Effects’ or a library of sound and compositional building blocks that computer-based music
artists construct, effectively creating a personalized instrument [Rowe, 2005]. This concurs with the views
of Tanaka described in Section 2.1.1 as well as the approach proposed in the current work.

11Here, and throughout this thesis, the term ‘sequencing’ is used in a general sense, to mean the pro-
duction or transformation of any sequence that eventually controls an audio process.
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Fig. 2.19 Portion of the implementation of the ‘TriadListener’ class in
Cypher.

musical object and the line is made when the object is created. The creation of the object

itself is similar to Elody and OpenMusic, with the aid of ‘Visual Constructors’ (boxes 1,2).

The expression of Looping, Transposition and Sequencing are all thus subsumed within the

language of distinct, bendable lines. This is an intuitive new visual syntax for the domain

of sequencing that is different from conventional data-flow, object-oriented and functional

notations. The semantics of the language is that of highly simplified object instantiation,

composition and repetition, and it is not a Turing-complete visual language like Elody or

OpenMusic. This suggests that HyperScore is intended to be a Category A tool, which

does not belong in the intersection. Mark Zadel has developed a similar line-based interface

for laptop performance [Zadel, 2006; Zadel and Scavone, 2006].

It is useful to formalize the process of interpreting descriptions represented by ‘sentences’

in such generalized visual languages. [Costagliola et al., 2002] have developed a classifica-
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Fig. 2.20 Visual Tools in HyperScore - (1)Melody Window (2)Percussion
Window (3)Music Library (4)Sketch Window (5)Instrument Sounds (6)Vol-
ume and Tempo Control (7)Harmony Line (8)Polyphonic Mode (9)Motive
Loop Visual Feedback

tion framework for visual languages that can be used to design an automatic interpreter or

compiler generator for such visual descriptions. Section 3.1 and Section 3.3 present frame-

works that may be combined to provide an end-user extensible visual-language interpreter

facility for applications with generalized, interactive, visual languages with static and dy-

namic, 2D/3D elements supportable in the language’s concrete syntax, and innovative new

semantics for expressing musical structure12.

12These sections do not propose a specific new syntax or semantics as being valuable, though. They only
describe the tools and frameworks that may be used to ease the process of realizing tools that provide such
features.
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Fig. 2.21 Closeup of HyperScore’s Motive constructor.
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Chapter 3

Reusable Components from Other

Domains

This chapter surveys the infrastructure frameworks introduced in Section 2.1.1 in greater

detail. The functionality provided by these frameworks can be classified as belonging to

one of the three categories of a) Language b) User Interface and c) Extensibility. These

frameworks thus offer ‘support functionality’ that is needed in a usable and productive au-

thoring environment. While these do not contribute directly to the end goals of describing

and realizing musical and sound structures, they are as essential as the sound and mu-

sic engines described in the previous chapters. The survey is conducted from a high-level

design perspective. The focus here is to identify strategies with which to combine function-

ality from general-purpose off-the-shelf components and libraries developed to serve many

domains in a way that is valuable to the goal of building music authoring tools, and to

identify currently popular frameworks for realizing languages, user interfaces, and end-user

extensibility. This is intended to serve as a map or field guide for persons embarking on

musical-tool-design projects, and as supporting material for the design recommendations

proposed in the current work.

3.1 GUI Frameworks and Authoring Tools

Graphical User Interface (GUI) toolkits are low-level infrastructure frameworks and are not,

as such, relevant to the discussion. However, new-generation graphical user interfaces are

increasingly providing advanced facilities that ease the implementation of visual languages
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and user-interface extensibility in ways that are noteworthy and relevant to the design

possibilities identified by the current work. One of the goals is to identify a framework

or class of frameworks for extensible syntax design that can be used to combine textual

and visual elements seamlessly. This is motivated by the fact that data-flow languages

have a graph-based language for describing network topologies. These are especially suited

to being described with a visual language framework. However, describing event-based

behavior requires a combination of visual and textual elements, like state-charts and object-

oriented descriptions.

3.1.1 C++ and Java Toolkits: QT, wxWidgets, Swing, SWT

QT is a cross-platform GUI framework [TrollTech, 2006]. It is written in C++ and the

native API is in C++. However, it has bindings to a number of other languages, including

Python. QT implements optimized versions of its GUI using the native windowing toolkit

on each platform that it supports, hence it performs as well as the native windowing toolkit

on a given platform. QT introduced an innovative programming model to describe event-

handlers, known as the ‘signals-and-slots’ mechanism. In order to implement this feature,

TrollTech introduced proprietary extensions to the C++ language via macros, which is

compiled using the QT Meta Object Compiler (MOC) [Wikipedia, 2006k].

wxWidgets is another cross-platform C++ GUI toolkit. It has its origins in the develop-

ment of a cross-platform toolkit for the end-user programmable diagramming tool Hardy

in the Artificial Intelligence Applications Institute at the University of Edinburgh1 [Smart,

2006]. It also implements a thin wrapper around native windowing toolkits that makes

it possible to write against the wxWidgets interface and compile on many different GUI

platforms.

Both QT and wxWidgets implement ‘designer’ tools that may be used to design the GUI.

This is an important consideration in choosing GUI frameworks. QT ships with the QT

Designer tool, and wxWidgets can be enhanced with the installation of DialogBlocks, a

What-You-See-Is-What-You-Get (WYSIWYG) dialog editor (Figure 3.1). The build pro-

cess in developing a GUI using either QT or wxWidgets is similar and integrated into

1The StoryLines tool is another example of an authoring tool developed using wxWidgets also by the
author of wxWidgets [Smart, 2006]).
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Fig. 3.1 DialogBlocks, a designer for wxWidgets.

the application build procedure. Both frameworks require that the user-interface compo-

nents be laid out at compile time. This has implications for end-user extensibility, in that

new visual components created using the designers cannot be integrated into a running

application in a straightforward manner2.

SWT and the Eclipse Platform

Swing and the Standard Widget Toolkit (SWT)3 are popular GUI toolkits on the Java

platform. They differ fundamentally in their implementation philosophy. Swing aims to be

a pure Java implementation, with the entire toolkit implemented from scratch using Java,

whereas SWT reuses native implementations to the extend that it can. The upshot of this

2This does not, of course, preclude the programmatic creation of new UI elements at run-time. It only
limits the dynamic loading of UI functionality created by a user-interface designer or end-user via the
designer tool.

3A check mark is placed besides all frameworks found to meet the design requirements for extensibility
and reusability.
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is that Swing implementations tend to be uniform on all OS platforms that have a Java

implementation, whereas SWT widgets tend to have small differences in behavior that are

determined by the behavior of the native widgets. One the other hand, Swing widgets

tend to perform noticeably slower than the SWT widgets in computationally intensive

applications [Wikipedia, 2006a].

Fig. 3.2 Implementation of a Logic Circuit Editor by extending Eclipse.

SWT is part of a larger project called Eclipse, managed by the Eclipse Foundation. The

Eclipse IDE and IDE workbench are very suitable for the development of extensible music

authoring tools and are discussed in further detail in Section 3.3. The Eclipse platform

was built with the specific purpose of being a ‘universal toolset for development’ [Eclipse

Foundation, 2001]. It is a Category B framework (in the intersection) for language and

environment design. Eclipse and SWT may be considered a high-level GUI platform for

building design tools. From the perspective of the design of music authoring tools, the IDE
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and Language Workbench in the Eclipse platform are particularly relevant.

It is interesting to note that the Eclipse project is both a landmark in the development

of reusable user interface tools, as well as in the development of extensible programming

languages [Eclipse Foundation, 2001]. The toolkit is especially suitable for generating

environments for visual languages like the data-flow notation used in many sound-design

environments, as well as more general visual languages [Ehrig et al., 2005]. Figure 3.2

shows a Logic Circuit Editor implemented using the Eclipse platform.

As an aside, audio performance can be retained by implementing the audio engine for

authoring tools in C++ using a toolkit like STK or CLAM and interfacing with the Java

based GUI and language engine via the Java Native Interface (JNI), as done in languages

like JMSL.

3.1.2 Toolkits targeting the 3D space: OpenGL, Direct3D, Java3D

Using the 3D medium to design visual languages and interfaces for expressing and inter-

acting with musical and sound structures is a sparsely researched subject. Although user

interfaces for computer music software have come a long way from the state of the art at

the time of Adrian Freed’s ‘plea’ to the computer music community [Freed, 1995], there is

still scope for large leaps to be made by simply reusing and integrating the improvements

in 3D user interfaces and authoring tools.

Infrastructure frameworks offer graphics and user interface functionality at various levels

of abstraction. Libraries like SDL and DirectX offer a thin layer of abstraction over the

graphics hardware4. OpenGL, Direct3D and Java3D offer a scene graph API that facili-

tates the description of the 3D elements and transformations using a tree-like hierarchy.

Environments like the Audicle (shown in Figure 3.3) operate directly at the level of the

OpenGL scene-graph API to implement integrated development environments for sound

design and sequencing [Wang and Cook, 2004]. This involves implementing all the func-

tionality implemented in 2D user-interface toolkits, from scratch, in 3D. It is a non-trivial

effort to implement an SWT like toolkit or an Eclipse-like IDE to leverage the additional

4These APIs actually offer abstraction layers over a whole range of subsystems, including graphics,
audio and input devices.
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Fig. 3.3 Audicle: The use of the 3D medium to design a visual language
and IDE.

possibilities afforded by the 3D medium. It is easier to implement such functionality over

a 3D-engine intended for game development (Section 3.4), or with a new-generation UI

toolkit like Windows Presentation Foundation (Section 3.1.6).

3.1.3 Flash

Adobe Flash is a graphics platform that evolved in the mid ’90s primarily as a means

for embedding vector graphics and animation on web pages [Wikipedia, 2006d]. With the

introduction of the Flex group of technologies in 2004, it has evolved into a full fledged cross-

platform user-interface platform for developing both web and stand-alone applications. Flex

also comes with a powerful designer tool that generates an XML description of the user-

interface5 designed in a way that permits the UI design to be decoupled from the control

5The XML description format used by Flex is called MXML.
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or application functionality.

User-interfaces that are deployable both on the desktop and over the web are particularly

relevant to application extensibility, because web-deployable applications are designed to

be installation-free. This means that new functionality can be added and deployed in a

web-application even while it’s running. Combined with the fact that the application is

automatically accessible by millions of users over the internet, this makes a very potent

architecture for end-user extensibility. Music and other design-intensive domains, in partic-

ular, are well suited to an end-user extensible application architecture that is deployed over

the web, as application extensions and design-artifact additions by members of a design

community are instantly accessible to everyone over the internet. Desktop applications, on

the other hand, have full access to various resources and privileges not available to web

applications. Being able to use the same resources across both implementations shortens

development time.

3.1.4 Mozilla/Javascript

With the increase in popularity of the Mozilla Firefox browser, the runtime for the user

interface6 and component/extensibility toolkit designed to implement the Firefox browser

became universally available. This made the Mozilla platform a viable way to develop

both user interfaces and application extensibility [Boswell et al., 2006]. The component

technology implemented for the Firefox browser, which is the foundation for its scriptabil-

ity and extensibility features, is called XPCOM. The graphics and layout engine, Gecko,

(implemented for Firefox) is reusable as XPCOM components. Like Flex, Mozilla de-

fines a declarative XML-based GUI description format known as the XML User interface

Language (XUL). Of particular interest is the fact that the Mozilla framework allows for

user-interface overlays to be dynamically de-serialized from XUL files at runtime. This

means that a running Mozilla application can be extended with new UI components that

have been serialized into XUL files. This brings the Mozilla platform up to the level of an

infrastructure framework that facilitates the development of an extensible application as

advocated by the current work.

6Originally known as the Cross Platform Front End (XPFE).
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3.1.5 SVG/DHTML/Javascript (a.k.a AJAX)

Fig. 3.4 A comparison of major components in a Mozilla based application
with traditional DHTML/Javascript applications.

The years 2005 and 2006 have seen the resurgence of a user-interface and web-application

model that predates the Mozilla framework - a combination of DHTML and Javascript. In

its current form, known as ‘Asynchronous Javascript And Xml’ (Ajax), the principle advan-

tage claimed by the model is a standards-based replacement to proprietary user-interface

technologies for the web, like Adobe’s Flash/Flex [Garrett, 2005]. The Ajax model involves

using a combination of Dynamic HTML (DHTML) (as shown in Figure 3.4), Cascading

Style Sheets (CSS) and ECMA-262 Script (Javascript) to develop rich user interfaces for

applications that run inside sundry browsers7. All three of these technologies have been

standardized by the W3C. The importance of Ajax is its portability across browser tech-

nologies. As such, there is no guarantee that the most competitive UI technology available

would adhere to these standards. It is appropriate when designing a tool where portability

is of the utmost concern, and the lowest-common-denominator functionality that the stan-

dards guarantee across browser platforms is adequate. Recently, entire windowing toolkits

have been developed for the Ajax platform, thus creating new user-interface platforms

on top of this virtual user-interface platform. Of course, these windowing toolkits bring

with them their own set of incompatibility problems while retaining compatibility with

web-browser standards.

7As compared with Mozilla technologies, which require the Mozilla browser.
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3.1.6 Windows Presentation Foundation (WPF)

Fig. 3.5 iBlocks, a music remixing application written using WPF.

Windows Presentation Foundation is the graphics sub-system of the Windows Vista

family of operating systems. Figure 3.5 shows portions of the UI of a music remixing

application written using WPF. The family itself is scheduled to be released in January

20078. WPF assimilates many of the improvements in SWT, Flash and Mozilla while

adding other useful features. Like Flex/Flash’s MXML and Mozilla’s XUL, WPF uses an

XML based application description language developed for Windows Vista called the XML

Application Markup Language (XAML). Similar to Mozilla, XAML descriptions of user-

interfaces can be built into applications that are deployed either on the desktop or via the

8The information on WPF included in the current work is based on design experiments with the WinFX
Beta SDK version 2.0 Build 50215. As the design experiments only aim to reach conceptual conclusions
about the nature of the programming model supported by the WinFX SDK, the Beta status of the SDK
does not influence the relevance of the conclusions made.
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web. Like Mozilla, WPF supports user-interface overlays, and allows designer-generated

XAML to be de-serialized dynamically to load user-interface components into a running

application. WPF applications can be scripted and extended using any .NET language,

which includes C++/CLI9, C#, Visual Basic and Python.

WPF supports some features unique to all the user-interface frameworks surveyed so

far. One such feature is ‘control/content composition’. This enables any element of the

user-interface to serve as a container for any other element. For example, this would allow

a text editor control to allow arbitrary shapes to be laid out next to letters, or for list

controls to contain lists of complex shapes, which in turn could be trees of other complex

shapes. Another feature is what is known as ‘lookless controls’. All WPF controls have

a well defined abstract structure and behavior. However, the visual appearance of the

controls can be arbitrarily customized, beyond basic “skinning” facilities provided by most

frameworks. WPF simplifies the programming of interactivity greatly by supporting hit

testing of arbitrary elements in the GUI and declarative specification of animation. The

hit testing also works with the animation turned on. All of these features also have 3D

versions and the elements actually go through the 3D rendering pipeline. This, combined

with the availability of a good number of 2D and 3D designer tools10 for WPF makes it a

great choice for developing extensible, end-user scriptable authoring applications.

3.2 Scripting Languages and Embedding/Extension Facilities

Every so often, users of a Category A tool find themselves repeating a complex sequence

of operations many times with different values. Though the structure of the operation

remains the same, it operates on different values. This may involve copying a certain set of

objects and applying some transformation to all of them, generating a sequence or creating

a set of objects based on a sequence of data. An early solution to these problems involved

allowing the user to record his actions involving the user-interface as ‘macros’ or repeatable

operations, and to ‘play’ the sequence of operations back when it needed to be repeated.

9CLI stands for Common Language Infrastructure. C++/CLI includes proprietary extensions to
ISO/C++ for .NET

10At the time of this writing (July 2006), Microsoft Expression and Microsoft Acrylic products are
available for 2D interface design. Xamlon, Zam3D and Maya support XAML output for 3D models and
interfaces.
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This solves the problem of repeating the operations, but still leaves the problem of changing

the data for new invocations of the macro. A common solution to this problem involves

giving access to the underlying implementation of the tool via a programming language (a

Category B framework). The access is given by exposing this interface via the user interface

itself. Thus, the user can record a macro, and then modify the ‘script’ corresponding to

that macro via a macro editor. Additionally, she can modify this script to prompt for the

data required for the particular invocation of the script. This concept of editing a ‘script’ of

operations eventually led to the use of scripting languages to allow the end user to automate

high-level tasks. Commonly used scripting languages include Javascript, Python, Perl and

Basic. Less common but important languages include Lua, described by the authors as an

‘extensible extension language’ [Ierusalimschy et al., 1996] and Guile, a light-weight dialect

of Scheme.

These languages are relevant in the light of an additional design requirement for music

authoring tools - designing in advance for end-user scriptability. How can we architect

these tools to be scriptable from the bottom-up? There are many frameworks available that

facilitate automatic addition of scriptability to systems. One method is to use a ‘wrapper

generator’ like the Simplified Wrapper and Interface Generator (SWIG) [Beazley, 2003] .

Another method is to design all the components of the system to be Component Object

Model (COM) components or Common Object Request Broker Architecture (CORBA)

components. More recently, the .NET platform allows all .NET components to be scripted

using any .NET language. There are implementations of a variety of scripting languages

for .NET, with the most supported languages being Visual Basic Scripting Edition and

IronPython. Irrespective of the method of generating bindings of the internal interfaces of

the application to scripting languages, the application design needs to be fundamentally

altered to support the kinds of operations that are needed to allow the end user to automate

application tasks. Section 4.2 illustrates the design process involved in going from a C++

library for synthesis (STK) to a simple, scriptable, object-oriented software synthesizer

(Grease).
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3.3 Visual Modeling Tool Generators

Text-Based scripting languages have been the traditional way to support automation of

repetitive tasks in many application domains. Computer music, on the other hand, has

been well served by visual scripting languages like Max/MSP and OSW. Requirements

from a very different domain have driven the development of reusable and reconfigurable

visual language environments - the field of Modeling and Simulation. Principally consisting

of researchers studying complex physical systems composed of a combination of discrete

and continuous behavior, this community has driven innovation in formally-described gen-

erators for automatically generating visual environments that are tailor-made for editing

and compiling visual models. These visual models describe systems in a very narrow and

well-defined field of enquiry, for example, logic circuits.

In recent times, the tools produced from the Model Driven Architecture (MDA) school

of software engineering have converged with those produced by the physical systems com-

munity resulting in tools like the Generic Modeling Environment (GME). Another closely

related approach is the ‘Software Factory’ approach proposed by Jack Greenfield and Keith

Short [Greenfield and Short, 2003], which has ultimately resulted in the Domain Specific

Languages (DSL) toolset in the Visual Studio Team System product from Microsoft. The

technical differences in methodology are not relevant to the current work. Some of these

tools, and the manner in which they can be used for automating the implementation of

portions of a music authoring tool, are described below.

3.3.1 AtoM3

AtoM3 is a tool for modeling and meta-modeling developed at McGill University [Vangheluwe

and de Lara, 2002; 2003]. It consists of a graph-transformation kernel and a graphical editor

engine, developed in Python and Tcl/Tk. AtoM3 can be used to automatically generate

visual modeling environments for a wide variety of visual languages. Figure 3.6 shows a

visual environment for modeling road traffic, generated using AtoM3. The approach used

in AtoM3 can be compared to generalizing the process of generating compilers for a textual

language. AtoM3 and GME extend the idea of compiler-compilers like yacc and SableCC to

the realm of visual languages. The process of implementing a visual language environment

using AtoM3 involves specifying the entities and relationships in the abstract syntax of the
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Fig. 3.6 A visual modeling environment generated by AtoM3 [Sun, 2005]

visual language using a meta-formalism like Entity-Relationship (ER). The semantics of the

visual language are then formally specified by defining graph transformations that map the

visual models to another, well-known formalism like Discrete Event Specification (DEVS).

The approach of assigning a semantics to a language by mapping it to another language

is known as Denotational Semantics [Stoy, 1977]. The language can also be interpreted by

assigning an ‘operational semantics’ by generating code that runs on some model of com-

putation. Such a model could be, for example, a C++ program or MIDI/OSC commands

to a synthesizer. AtoM3 provides an intuitive, declarative, rule-based system for defining

such transformations.

3.3.2 GME - A Generic Modeling Environment

GME is a tool-suite for building visual environments and interoperable tool chains for many

different domains. Like AtoM3, GME has a generic graph engine as well as a configurable

editor engine. The editor engine, also known as the ‘GUI client’ to the GME engine,
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Fig. 3.7 A visual modeling environment generated by GME [Institute for
Software Integrated Systems, 2006]

can be configured by meta-models that are specified using UML, similar to metamodel-

ing with Entity Relationship in AtoM3. The process of using GME to generate a visual

modeling environment is slightly different than in AtoM3. The meta-modeling phase is com-

mon, but GME metamodels are specified using UML11. Metamodels in GME are known as

‘paradigms’. Once a visual formalism (for example, data-flow networks) for the domain has

been defined as a GME paradigm in UML, it can be used to generate a visual environment.

Figure 3.7 shows a simple data-flow modeling environment generated using GME. Once

the formalism has been finalized, it can be used to generate a skeletal interpreter using

GME’s component creation tool. GME exposes its graph engine core and graphics engine

as COM components, hence the generated skeletal interpreter can be extended using any

11The fact that the meta-modeling formalism (UML or ER) can itself be customized or modeled using a
meta-meta-model is illustrative of the completeness of the methodology of meta-modeling.
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programming language that supports programming against COM12. Using this interface,

interpreters can be written that transform or ‘run’ the visual models that are created by

a user using the generated modeling environment. The GME tool is further explored in

Section 4.1. GME also provides a visual language for graph transformation called ‘Graph

Rewriting And Transformation (GReAT)’ [Agrawal, 2003], that bears some similarity to

the environments provided by Elody and OpenMusic13. It also bears some similarity to

AtoM3’s rule-based transformation facility in that it (GReAT) is also rule-based.

3.3.3 EMF - Eclipse Modeling Framework and GEF - Graphical Editing

Framework

The Eclipse framework (introduced in Section 3.1.1) provides Java-based components for

building extensible development environments. Among these is a recent framework for

interchanging various representations of an underlying model, called the Eclipse Modeling

Framework, or EMF. EMF allows programmers to generate Java code from models, extract

models from annotated Java code, and interchange these representations with XML and

UML representations.

The Graphical Editing Framework, on the other hand, is a toolkit for building graphical

editors using Eclipse components. Together14, the EMF and GEF can be used to build

visual modeling environments. Figure 3.8 shows AcmeStudio, a visual tool for architec-

tural15 modeling developed at Carnegie Mellon University [Schmerl and Garlan, 2004]. The

development model afforded by EMF/GEF (which are Category B frameworks for build-

ing visual languages) is not as simple and straightforward as programming with tools like

AtoM3 and GME (which are Category A tools for building visual language interpreters and

compilers). On the other hand, building complex generalized visual languages comparable

with those that can be built with WPF (see Section 3.1.6) turns out to be too much of a

12Currently, however, the skeleton generation tool itself supports only C++ and Visual Basic, so this is
a practical limitation.

13This similarity is purely from the point of view of the semantics of the visual language, and has
nothing to with musical capability. GME and GReAT are completely unaware of music domain specific
functionality.

14There is no dependence between EMF and GMF, and they may be used independently of each other
as well.

15“Architecture” here refers to the architecture of complex systems in general, not just buildings, as used
in the conventional sense.
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Fig. 3.8 Diagram created with AcmeStudio, a visual modeling environment
designed using GEF

hack with Category A tools, and frameworks like WPF and EMF/GEF are more suitable

in such cases.

3.4 Reusable Technology from the Video Game Industry

The computer gaming industry has evolved an entire methodology and set of tools for

dealing with the fact that a large part of the game implementation process involves artists

and designers who need to produce design and implementation artifacts that go into the

game. These artifacts must be in a form process-able by machine. Yet, they cannot be

created by programmers16 because they require artistic expertise that they do not posses.

Visual design and animation, for example, is a highly technical field with its own set

16Although a lot of modern large-scale games separate the activities, game design and programming were,
in the beginnings of the game industry, often done by the same person. Notable designer/programmers are
Sid Meier, Chris Sawyer, Will Wright and John Carmack [Wikipedia, 2006e].
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of concepts and patterns. While programmers and software architects design the 3D and

sound engines that actually render the models, how can the same engines be used by artists

who have little knowledge of the programmatic interfaces to the engine? The problem

extends all the way to the end users, with demand for tools that allow gamers, who are

end users that have neither specialized artistic skills nor extensive programming knowledge,

to customize games and produce their own modifications or ‘mods’ as they are known in

the gaming industry. Such modifications are valuable to some community of gamers, and

often add great value to the gaming experience. The following sections describe tools that

address a number of these problems [Wikipedia, 2006f]. Game engines are Category B

infrastructure frameworks for realizing games that build on various low-level APIs. Game

engines are often designed with components that are years ahead of the technology that

is used in business applications. This is usually because failure in games does no harm

beyond causing a poorly selling game. For this reason, the returns on the success of a

cutting-edge technique in games are usually much more than the risks associated with its

failure. This is also the case in the domain of music authoring applications. The technology

developed for game engines, is thus a good source for advanced, re-usable components for

music authoring tools. Examples of popular game engines include Quake, Unreal Engine

3, RenderWare and Visual3D.NET

3.4.1 Game Content Editors

3.4.2 Game Engines

Game content editors are authoring tools for game assets that include all assets that can

be rendered using the various components of the game engine. These include 2D/3D visual

art, physical models and processes, rules used by the Artifical Intelligence (AI) engine,

and so on. A good example is the Unreal Engine 3 Content Editor [Epic Games, 2006],

UnrealEd. UnrealEd is a WYSIWYG editor for game assets that can be rendered using

the Unreal Engine. It provides high level tools to edit 3D models, textures, animation

and other assets. It also serves as a development environment for the scripting language

supported by the Unreal Engine, called UnrealScript. Figure 3.9 shows a terrain editor

that is part of UnrealEd [Epic Games, 2006].
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Fig. 3.9 A terrain editor for Unreal Engine 3

3.4.3 Visual Scripting in Game Design

Describing game assets requires more than just creating static models and other art-work

using a content editor. It is easy for programmers to encode the dynamics of game pro-

cesses using general-purpose programming language interfaces that the game engine ex-

poses. How can the same processes be described by concept-design experts who possess

a deep understanding of the game’s ‘concept’, but do not possess sufficient programming

skills? Describing dynamic processes and rule-based systems have become an integral part

of the conceptualization of various aspects of the game and the need for an intuitive lan-

guage that can be used by game designers to describe the dynamic entities in game concept

design has led to visual scripting environments for game design. Figure 3.10 shows Virtools

Dev, a popular visual environment for game concept design [Virtools Inc, 2006]. The visual

language complements Virtools Scripting Language, the text-based scripting language for

the Virtools engines.
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Fig. 3.10 Virtools Dev Authoring Environment with Visual Scripting.

3.4.4 ‘Mod’ Authoring Tools

‘Mod’ or modification authoring tools put the power of modifying games into the hands

of the ultimate end users, the gamers themselves. The idea is to model variations in

game play and expose this via a Category A tool. Often, however, the Category A tool also

exposes a Category B framework that gives advanced mod designers access to the underlying

game engine interfaces via a scripting language. Between game content editors, designed

for seasoned designers and artists and ‘mod’ authoring tools designed for both amateurs

and professionals, there are many architectural patterns in extensible and customizable

authoring tools to be adopted from the video-game industry.
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Chapter 4

Concept Demonstrations

This chapter presents the design and implementation of proof-of-concept demonstrations

of the architectural styles for music authoring applications advocated by the current work.

The manner in which combinations of a chosen set of off-the-shelf tools and frameworks can

be used to produce extensible authoring environments is demonstrated. The objective is to

use proven existing components and to identify the manner in which they could be glued

together to interoperate. The components fall under 4 categories: a) Synthesis and audio

signal processing frameworks and engines; b) Graphics and user interface frameworks; c)

Visual modeling tool generators and engines; d) Scripting language engines.

The goal is not to produce a quantitative evaluation. Rather, the concept of integrating

various classes of tools and frameworks for the purpose of building end-user extensible au-

thoring environments is sought to be validated by demonstration. However, the choice of

components in each class has been influenced by literature and online community reviews

(surveyed in the previous chapters) with regard to the following criteria: 1) suitability

for the purported role of the component in the overall architecture of an extensible au-

thoring environment 2) performance 3) commercial and/or community support 4) ease of

integration with other quality components.

It is noteworthy that in each class, many components, including those surveyed in the

previous chapters, meet the aforementioned criteria and may be more suitable in a given

context. In the context of the demonstrations, the choice of some components (for example,

the use of IronPython as a scripting engine) has been influenced by the need to integrate
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with other components (like Windows Presentation Foundation). The design rationale and

implementation details involved are further elucidated in the sections that follow. The

manner in which the same goals can be attained with comparable tools and frameworks is

highlighted where relevant.

4.1 Experiments with GME

Early on, the Generic Modeling Environment (GME) toolset was identified for use as an

extensible visual-language interpreter/compiler for interpreting multiple visual notations1.

The environment was introduced in Section 3.3.2. The implementation details involved in

using GME are detailed here. The manner of extending GME to support a given visual

notation is prototyped for the case of signal-flow graphs and hierarchical sequences. The aim

is to illustrate the manner in which these environments can be automatically generated from

formal descriptions. The visual language is mapped to C++ code that uses the Synthesis

ToolKit (STK), introduced in Section 2.2.6.

4.1.1 Steps involved in using GME

Figure 4.1 shows the steps involved in generating a new visual authoring environment

using GME. The process is quite similar to using a ‘compiler-compiler’ like yacc, bison,

ANTLR or SableCC [Wikipedia, 2006a] to generate a compiler for a textual language. In

the case of environments like GME, the ‘grammar’ of the visual language is specified using a

declarative meta-language, UML. Unlike the context-free Backus Naur Form (BNF) meta-

language traditionally used to describe the syntax of textual languages, the meta-language

used by GME is the object-oriented Unified Modeling Language (UML), in conjunction

with the Object Constraint Language (OCL)2.

Once the structure and constraints of the visual modeling language and environment

are defined as a ‘meta-model’ in UML, a tool called the ‘MetaGME interpreter’ is invoked

to generate the visual environment using these descriptions. This environment can now

1The initial choice was AtoM3. The choice of GME was motivated both by the possibility of implement-
ing ‘Decorators’ (custom visualization for types programmable using ActiveX technology) as well as the
author’s familiarity with the C++ programming language, the language best supported by GME. Thanks
to Hans Vangheluwe of the School of Computer Science at McGill for referring the author to GME.

2The UML and OCL are standards defined and maintained by the Object Management Group
[Wikipedia, 2006b; Object Management Group, 2006]
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Fig. 4.1 Steps involved in designing a new visual environment in GME.

be used to create visual models conforming to the formally defined visual language. Next,

a component creation tool is used to generate a skeletal COM-based interpreter for the

visual language with do-nothing operations associated with each node type. The skeletal

interpreter may then be modified to map the visual language models to other models,

code, or real-time audio. The skeletal interpreter is generated as a set of C++ classes

that represent the actions to be taken by the interpretor when visiting each node type.

The class-implementation stubs may now be filled out to implement the semantics of the

language. The next two sub-sections demonstrate this process for two visual languages,

one for sound design and another for sequence design.

4.1.2 Generating a sound design environment using GME

The steps are illustrated here for the case of designing a sound design environment that

allows a set of simple primitives to be combined to design sound synthesis and processing

networks.

Step-I Figure 4.2 shows an extract from a formal meta-model of the environment

in UML3. The meta-model expresses the elements of the visual syntax, and

3The complete model includes around 20 types and this model can be constantly updated to add new



4 Concept Demonstrations 59

Fig. 4.2 UML extract from the meta-model for the sound design environ-
ment.

the ways in which they may be connected together. UML allows set and sub-

set relationships to be expressed. For example, the types ‘input-socket’ and

‘output-socket’ are both defined to be specializations of the super-type ‘socket’.

This allows for assertions about sockets to be made, that apply to both input

and output sockets. Types may also have attributes, with constraints specified

on them. For example, a ‘mixer’ type can be defined such that the gains on each

channel are non-negative. Object attributes can be edited in a toolbar in the

generated visual environment. Constraint implementation is further discussed

in Section 4.1.3. Types may also be associated with a simple image to be dis-

played as an iconic representation of objects of the type. For more advanced

use-cases, a visualizer class may be implemented using the GME Software De-

velopment Kit (SDK) for objects of the type. The visualizer can be implemented

in any language that supports ActiveX/COM programming. The visualizer can

utilize the structure and content of the object to appropriately visualize it. For

features to the language. However, consistency conflicts with the models defined in previous versions of
the language must be taken into account before making such modifications.
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example, a frequency response may be visualized by drawing a spline to fit the

peaks and troughs of the response function. Decorators are not explored in this

demonstration.

Fig. 4.3 The generated sound design environment.

Step-II Once the environment was formally described, the MetaGME interpreter

was invoked to automatically generate a visual editor for language. The envi-

ronment so generated was then used to create a number of models to determine

whether it actually allowed the users to create the class of visual models intended

to be meta-modeled in MetaGME. The meta-model is modified and Step 2 is re-

peated until this is true. As many iterations as are required to produce the final

environment may be carried out to arrive at the final environment4. This is im-

portant as the meta-modeling process is prone to conflicts arising from evolving

the meta-model. The user-interface of the visual design environment is much

4This is, of course, not a rigorous way to test whether the environment meets the specifications. A
discussion of the design of a suite of test-cases to automate the testing of the visual environment is outside
the scope of the thesis investigation, and is specific to the requirements of the particular environment being
designed.
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like many classic sound design environments like Max/MSP, OSW and Synth-

Builder. Unlike many of these environments, though, the visual language of the

generated environment can be customized to a large degree by re-designing the

meta-model of the environment.

Fig. 4.4 Extract from code generated by the model compiler

Step-III A skeletal interpreter for the visual language was generated using a tool

called the ‘Builder Object Network (BON) Component Creation Tool’. The

tool generates a set of graph-traversal classes specific to the particular visual

language environment meta-model for which it was invoked. The interpreter

can be understood as a set of transformations5 on the object graph that repre-

sents the model in the visual language. The interpreter skeleton generator tool

5The object-graph itself is generally not modified. The transformation results in new object-graphs or
linear-structures (possibly commands to a synthesis virtual machine).
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exposes the object-graph via an API called the ‘Builder Object Network’. The

interpreter is invoked via a button in the toolbar in the generated visual envi-

ronment. It is realized as a dynamic link library (.dll) module that gets linked

in with the visual environment. A registration process is automatically invoked

to make the connection with the visual-editor module and the interpreter dll, as

part of the interpreter build process. For the interpreter skeleton generated for

the environment illustrated in Figure 4.3, the object graph included elements

of the following types: Container, WaveOut, WaveIn, Adder, Delay, BiQuad,

Gain, InputSocket, OutputSocket, ImpulseGenerator and NoiseGenerator.

Fig. 4.5 Outline of the sound-design-model compiler.

Step-IV The skeletal interpreter was then used to fill out the implementation for the

actual interpreter. The semantics chosen for the language was to interpret the

object-graphs as a signal-processing network realized using C++ code target-

ing STK. Invoking the interpreter in the generated environment produces C++

source code representing the synthesis or signal-processing component repre-

sented by the visual model being edited. This code was then compiled using

the Visual C++ compiler to generate .wav files. Figure 4.4 shows an extract



4 Concept Demonstrations 63

from the code generated for the model shown in Figure 4.3. Other usage scenar-

ios are just as easily implemented. The interpreter may be designed to generate

code or intermediate representations to achieve other tasks. The generated code

may be integrated into a larger C++ application, or with code generated using

other visual formalisms (for example, state-charts representing the behavior of

the user-interface of the sound-synthesis or signal-processing component). The

code may directly write MIDI/OSC streams to a software synthesizer6. Similar

scenarios are explored in Section 4.2. These scenarios, however, use an archi-

tectural style different from the model-driven architecture7 style presented in

the current section. Figure 4.5 illustrates the outline of the algorithm used by

the model compiler.

4.1.3 Generating a sequencing environment using GME

Step-I The sequencing environment provides a simplified representation of musical

elements that is a “language” for modeling tonal structure. Figure 4.6 shows

an extract from the meta-model used to describe the language and environ-

ment formally. The language includes types such as Note, Chord, ‘Chunk’ (a

generic container for musical objects of any type), ‘ChunkItem’ (a super-class

that represents the most generic sequence-able item, which is specialized to

model other musical structures that the language defines) and so on. Types

such as ChunkItem are labelled as ‘FCO’s. FCOs are ‘First Class Objects’.

They represent an abstract class of objects that cannot be instantiated. Only

one of the sub-classes can be instantiated. This is similar to an abstract base

class in C++. For example, there is no real meaning to creating a new object of

type ChunkItem in the absence of additional information regarding what kind

of ChunkItem object it is. On the other hand, a ChunkItem of Silence can be

meaningfully instantiated. The MetaGME language provides many such pow-

erful abstractions for describing modeling languages, including Models (objects

with hierarchical structure), Atoms (primitives), References (aliases), Sets, As-

6STK itself does not support OSC. A software synthesizer that supports OSC may be used, or an OSC
compatibility layer could be added for an STK based synthesizer.

7‘Model Driven Architecture’ is also a technical term used to refer to the specific brand of model-based
design advocated by the OMG [Wikipedia, 2006h].
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Fig. 4.6 Extract from the meta-model for the tonal structure language.

pects and Attributes.

Step-II Figure 4.7 shows the visual environment generated by running the tonality

modeling language meta-model through the MetaGME interpreter. The en-

vironment utilizes hierarchy/containment as the principal abstraction8. The

user-interface is quite similar to the sound-design environment. Complex ob-

jects are built by dragging and dropping primitives on to the design surface

of the complex object. Attributes are set using the properties toolbar (lower

right corner of Figure 4.7). It is noteworthy that the environment is atypical

of the application of GME to music authoring environments advocated here,

in the sense that it provides a general purpose, Category B language to model

music. More typically, a very specific musical context would be meta-modeled

to generate a Category A tool9. The meta-model for such a language, however,

would use a few hundred elements and would build over abstractions much

8A full scale environment for modeling musical structures of a particular variety would utilize many of
the other abstraction mechanisms provided by MetaGME.

9For instance, the arpeggios in a specific piece by, say, Al Di Meola.
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Fig. 4.7 The visual environment generated for the tonal structure language.

like those used in the current demonstration. Detailed user-experience and

information-architecture research with musical experts, required to arrive at

such a meta-model, is beyond the scope of the current work. Greenfield et al.

[2004], in a recent account of meta-modeling, notes that:

Natural languages, such as English, art, sculpture and music, are evolv-

ing organic phenomena. Given the current state of the art, they are too

complex to be processed effectively by ... (meta-modeling methods).

Though the problem of arriving at a general description for ‘all music’ or for

music of ‘an entire genre’ is infeasible, Category A tools for prototyping specific

works may be designed using the methodology demonstrated here. Such a tool

may also be generated by providing the domain-expert (musician or performer)

with a Category B language and environment similar to the environment de-

scribed here and writing meta-interpreter to generate the Category A tool de-

scribed by the musician using the Category B language. This would be similar
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to using the MetaGME interpreter to generate the tonality language from the

MetaGME (UML) meta-model. GME provides a facility called ‘Metamodel

Composability’ that is similar. However, this would necessitate the musician to

learn UML, which is rather unfriendly. More work is therefore required to make

the generation of new environments by musicians, unaided by an engineering

team, a reality. However, the cost and effort of producing such an environ-

ment is tremendously decreased by utilizing the methodology just outlined10.

Tools like AtoM3 reduce the learning curve even further by replacing the step

of writing an interpreter in C++ by a declarative rule-based transformation

facility.

Step-III The compiler generation process using the BON component creation tool

is identical to the previous experiment.

Step-IV As in the previous experiment, the compiler for the sequencing language

was designed to emit C++ source code utilizing STK. Figure 4.8 shows an

extract from the C++ source emitted for the model. This results in a user-

Fig. 4.8 Extract from the C++ code generated for a sequence model.

10As a casual estimate, the author spent about 2 months learning the GME tool set. However, after
the initial learning curve, utilizing GME to generate the environments discussed here took an average of
a mere 10 days per environment. This is far lesser than approximately 6 months required to hand-code
these environments. The quality of the resulting tool is also far superior. These numbers were not part of a
formal quantitative study on the development activity. [Vanderbilt University, 2006] links to some studies
by Vanderbilt University that may provide additional insights.
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experience similar to compiling a CSound score file11 and less like utilizing an

interactive sequencer. This may be remedied by emitting MIDI/OSC messages

to a real-time synthesizer directly, as opposed to generating source code. This

was not explored in the experiment. Sections 4.2 and 4.3.1 explore this possi-

bility with ‘Grease’ and WPF.

4.2 Design of the Scriptable Synthesizer - ‘Grease’

4.2.1 Motivation

One of the challenges faced in the GME-based implementation was the mapping to the

generated source code. End-users deal with high-level entities like signal-flow graphs and

hierarchical representations of music. However, these are difficult to map to a low-level

infrastructure framework like STK12. The ‘Grease’13 library was designed as a dynamic

wrapper around STK that provided a simpler programming model for describing both the

structure of signal-flow networks as well as event-driven and state-based behavior using a

uniform, message-based programming model similar to Objective-C or SuperCollider. It

also provides for a simple extensibility framework. The extensibility framework currently

provides for build-time extensions for synthesis components. With a few modifications, it

can also support run-time extensions. It already supports run-time extensions to the user-

interface and message-based components by leveraging the dynamic programming facilities

of the .NET platform.

The programming interface provided by the Grease wrappers is very similar to other

dynamic, interpreted synthesis languages like Max/MSP, SuperCollider and ChucK. The

choice of implementing a wrapper around STK, as opposed to using the existing libraries,

was motivated by the need to integrate with the Microsoft .NET platform. The .NET

platform itself was chosen for its ability to interface components written in one language

with many other languages, for the introspection and reflection facilities provided by the

11RTCSound is an interactive version of CSound [Vercoe, 1990].
12Obviously, it is even harder to map the representations directly to a buffer of samples representing

digital audio.
13The name ‘Grease’ was chosen to contrast with the traditional role of scripting languages, which is to

act as a ‘glue’ between existing components. The implemented wrappers are seen as introducing dynamism
between components created with STK, acting, in some sense, as a lubricant.
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framework, as well as the ease of integration with the rich platform for visual interaction

provided by Windows Presentation Foundation. Section 4.2.5 describes the manner in

which exposing the synthesizer as a .NET assembly allows the functionality from Grease

to be made available to C# programs and IronPython14 scripts, each of which has its

strengths in particular implementation scenarios.

A similar solution can be designed to integrate with the graphical and modeling facili-

ties provided by the Swing and the Eclipse platform, by interfacing Grease to expose its

functionality to Eclipse via the Java Native Interface (JNI). The Python scripting can be

implemented in this scenario using Jython, a Python implementation targeting the Java

Virtual Machine (JVM) [Hugunin, 1997b]. This may be implemented in future versions.

The graphical features and WYSIWYG designers provided by WPF were better suited than

the ones provided by the SWT and Eclipse platforms for the purpose of the demonstrations.

However, both the .NET CLR and the JVM provide for reflection and introspection based

dynamic loading of components at run-time, facilitating automatic extensibility. .NET

based runtime extensions are explored in Section 4.3.1.

4.2.2 Grease Design

Figure 4.9 shows the key classes in the Grease class hierarchy. These classes are involved

in implementing the message-passing semantics and the dynamic, garbage-collected inter-

face provided by the library. Examples of wrapper classes, like Composite, Sequence and

GuitarString are displayed in small-text.

Interface and High-Level Semantics

The Object class defines the simple interface that is required of all Grease objects. The

interesting methods are tick, processMessage, and GetID. The tick method moves the

Grease object to the next clock-tick in the simulation, and in the case of signal-processing

objects, generates a sample of audio in the process. However, all Grease objects are assumed

to be inherently ‘tick’-able. Being a virtual function, it may be overridden by different

classes to implement the ticking semantics of that class. ‘processMessage’ implements

14IronPython is a Python implementation targeting the .NET Common Language Runtime (CLR)
[Hugunin, 1997a]. The CLR is a virtual machine functionally very similar to the Java Virtual Machine.
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Fig. 4.9 Highlights of the Grease C++ hierarchy.

the message invocation semantics that defines the programming model of Grease. Much

like SmallTalk and SuperCollider15, all activities in Grease occur as a result of sending

messages to objects. The creation of objects is no exception. Objects can be created by

sending the name of the object’s class to the ‘new’ object. The method-invocation is tied

to the message by a lookup table that is defined on a per-class basis. The ‘Object’ base

implements a set of macros that must be used by implementers of new Grease types. These

macros automatically expand into code that installs a lookup table that maps messages to

member-function pointers for the class. All messages are dispatched by the lookup table

to the appropriate member function.

Memory Management

The creation of objects is orchestrated by ‘ClassFactory’ in conjunction with ‘ObjectRefer-

ence’. Each new type implemented in Grease must register a ClassFactory implementation

that generates objects of the type. On invocation of the ‘new’ message, a global class-

factory method looks up the class-factory registry to retrieve the appropriate class factory

and instructs it to generate a new object. The library-user is not directly given access to

an Object pointer though. In order for the object life-times to be automatically managed

15As also the JavaScript interface to Max/MSP.
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by the garbage collection scheme, all Objects are wrapped by an ObjectReference handle

class, which enables the garbage-collection. The ClassFactory therefore returns to users an

ObjectReference to the Object that was created.

Since ObjectReferences are passed and stored by value, their life-times are automati-

cally tied to the life-time of the program-block in which they (or the object that contains

them) are defined. This completely frees the Grease library user from having to worry

about allocating and deallocating synthesis and sequencing objects. ObjectReference itself

implements garbage collection using a reference-counting strategy. The idea is to keep

track of the number of references to an object and to delete the object when the reference

count reaches zero, as described in [Wilson, 1992]. The reference-counting scheme, though

not the most suitable in all cases, is popular with many language implementations. The

standard implementation of Python, for example, uses reference-counting to implement

its garbage collector. Other popular language implementations that use reference-counted

garbage collectors include Visual Basic and Delphi [Wikipedia, 2006].

Core Extensible Language

The Grease library offers various programming-language-like features that are implemented

on top of the basic message-passing scheme. Control-flow constructs in the Grease library

are also implemented as first-class objects. An example is the Repeat object. It is the

Grease equivalent of a while loop. Loops are executed by instantiating a new Repeat ob-

ject (or modifying the parameters of an existing one) with the count, the target object and

the message to be sent as arguments. The use of the message passing facility to imple-

ment all language constructs was motivated by the original architectural requirement of

having an extensible language and was directly adapted from the ideas behind SmallTalk,

SuperCollider and the Javascript interface to Max/MSP. This facilitates the end-user to im-

plement new control-flow constructs that may be particularly suited to modeling a specific

signal-processing or sequencing task.

Uniform Representation of Signal-Flow and Sequencing

Creation of signal-flow graphs is also done by sending messages to the new object (for

unit-generator and sequencing-object creation) and sending connection messages to the
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appropriate objects. It is worth noting that Grease was meant to be used in conjunction

with a visual editor like the ones developed in Sections 4.1.2 - 4.1.3 (using GME) and Sec-

tion 4.3.1 (using WPF + IronPython). Therefore, while a message-sequence representation

of signal-flow graphs may seem unnatural to do by hand, it is very amenable to being

generated and manipulated by visual editors. In addition, the underlying message-based

implementation enables interactive end-user scripting to be added automatically by expos-

ing Grease variables via a command-line or GUI interface. This opens up the possibility

of using innovative combinations of visual modeling and textual programming to describe

musical processes.

4.2.3 Programming from the Grease Console

Fig. 4.10 Exposing the Grease synthesizer via a console.

Figure 4.10 shows a sample application exposing the Grease synthesizer via the console.

The synthesizer can be scripted using the simple message-passing syntax as illustrated. New

objects are given names by the user as they are created. Sending a message to an object

involves naming the object and suffixing the message and its parameters after the name.

Adding an object as a source to the ‘dac’ object causes it to be added to the audio output,
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as well as to invoke its tick method to synchronize with the audio output. The object may,

in turn, tick its sources to produce its output, and so on. These details are hidden from the

end-user of the scripting interface and are only relevant to the synthesis-application and

extension/external-object developers.

In Figure 4.10 above, an instance of an extension object called Guitar is created. The Fret

message causes the Guitar to update its internal state to reflect the fret-pattern passed as

part of the message. It mimics the positioning of the left-hand16. Future ‘Strum’ messages

strum the specified strings, taking into account the previously set fretting pattern. A

sequence of periodic strumming can be scripted by using the Repeat object. More complex

loops and conditionals are currently best implemented by writing an extension object as

discussed in Section 4.2.417. Of course, if the extension object itself is a signal-processing

element (for example an extension that implements a guitar effects pedal), such an object

can be modeled using a tool like GME or AtoM3, and a model-compiler can be written to

generate an entire class of Grease extensions (in this case different kinds of guitar effects

pedal implementations), as well as the UI that can be used to ‘script’ it visually when the

extension is instantiated. Internally, the UI would interact with the scripting interface to

manipulate the instantiated extension at run-time.

4.2.4 Extending the Synthesizer - Mixing Grease code with Regular C++

This section illustrates the manner in which Grease, a Category B framework, can be used

to implement Category A objects. The case of a specific drum loop is considered. The

variations in the drum loop, which are meant to be navigated at run-time, are captured

inside a Grease extension and are exposed as methods. The resulting extension can be

scripted at run-time to explore all the variations in the drum-loop. It is best understood

as a ‘reactive-loop’. The demonstration is intended to serve as an illustration of the usage

of the framework in a simplified performance/prototyping context. The drum loop consists

of a bass track and a snare track.

16In the case of a right-handed guitarist, and vice versa.
17It is also possible to write a simple set of conditional operators themselves as external objects. This

would allow a particular set of sequencing scenarios to be scripted at run-time, instead of writing extension
objects for each scenario.
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Fig. 4.11 C++ Interface for a Grease extension.

The implementation consists of a C++ class that captures the possible dynamics or

interaction with the loop and exposes this interaction. Figure 4.11 shows the use of Grease

macros to automatically generate the message dispatch and the Grease extension interface

implementation for the class. The sequence supports the addition and deletion of the bass

and snare tracks at run-time. Additionally, the loop may be reset while it’s running. This

simple set of operators can be used to script the loop at runtime, generating an interesting

set of variations. The variations can be used to prototype a more complex sequence that

can be saved as a script. The script, in turn can be loaded by another C++ based extension.

This interplay of C++ code and Grease script can be leveraged to tackle a wide range of

sequencing problems.

Figure 4.12 shows an extract from the C++ implementation file. Item 1 illustrates the

manner in which Grease objects can be instantiated from C++ code. The code does not

use ‘new’ and ‘delete’ operators, but rather delegates the object creation to the appropriate

ClassFactory. The returned ObjectReference is stored by value in the CustomDrumLoop
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Fig. 4.12 Extract from the C++ implementation for the extension.

object. In turn, the CustomDrumLoop object registers a ClassFactory object that creates

CustomDrumLoops. This allows either the command line, or another C++ extension to

delegate the creation of CustomDrumLoops to the ClassFactory. Additionally, the reference

counting scheme implemented through the ObjectReference class manages the life-time of

the DrumSurface objects (see Figure 4.12, Item 1). Therefore, no ‘delete’ operations are

necessary to free the DrumSurfaces. They will be deleted when they are no longer being

used, as determined by the reference-count going to zero. Grease macros are used again

to map the message handlers to the appropriate messages. Item 2 illustrates the use

of C++ control-flow constructs like ‘if’ statements to orchestrate the sequencing. The

ObjectReference class overloads the << operator to mean message-dispatch. This causes

the message to be looked up in the message-dispatch table corresponding to the type of

object that the ObjectReference contains, and the invocation of the appropriate member

function.



4 Concept Demonstrations 75

Fig. 4.13 Grease/CLRs place in the proposed extensibility/scriptability ar-
chitecture.

4.2.5 Converting Grease into a .NET accessible assembly

The need to integrate the synthesizer functionality with a rich, scriptable18 user-interface

motivated the conversion of the Grease C++ library into a .NET assembly (the .NET

equivalent of a library file). Windows Presentation Foundation (WPF) was among the few

graphics and windowing frameworks identified that was both rich in its feature set and

supported scripting and extension at run-time. WPF can be programmed in any language

that has a compiler that targets the .NET Common Language Runtime (CLR).

Since the Microsoft C++ compiler supports the automatic compilation of existing C++

code to target the CLR, a first attempt was made to build Grease from the ground up

as a managed assembly. Though the build was successful with a few changes to Grease

and STK, the performance degraded audibly. To remedy this, a set of wrapper classes was

written for the synthesizer class alone that marshalled data from CLR client code to the

C++ Grease/STK code. Thus, the Grease code was retained as a native/Win32 library

18There are two kinds of scripting involved in this discussion. One involves scripting the synthesizer.
The other involves scripting the user-interface. It is currently challenging to accomplish both with a single
scripting language. Grease script is used to script the synthesizer and IronPython is used to script the UI.
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and a wrapper that transformed calls from CLR code to the C++ code was written. This

resulted in absolutely no audible degradation of performance. The synthesizer component

is now programmable in the entire spectrum of .NET languages, including C#, Visual Basic

and IronPython. The position of the Grease/CLR component in the proposed application

architecture is illustrated in Figure 4.13. This retains all synthesis and sequencing code in

C++ and pushes only the user-interface and scripting functions to the ‘managed’ or CLR

space, striking a balance between flexibility on the one hand and performance on the other.

4.3 Experiments with WPF

Windows Presentation Foundation was identified as representative of the state of the art

in user-interface and graphics technology. Its rich 2D and 3D capabilities include the

ability to use arbitrary graphics as user-interface elements (with full hit testing and con-

tent/composition support). Graphic design tools like Microsoft Expression Graphic De-

signer (for graphical element design), Microsoft Expression Interactive Designer (for UI

behavior design), Maya, Zam 3D, and many other third-party19 tools are available that

support the creation of professional-grade 2D and 3D graphics that can be exported to

XML Application Markup Language (XAML), Microsoft’s hierarchical object serialization

format.

Initial experiments with XAML-compatible tools included generating and designing var-

ious UI and visual language elements with Expression Graphic Designer. UI behaviors

were implementable in a simple manner by exporting the XAML generated by Expression

Graphic Designer into Expression Interactive Designer. The UI front end could simply use

synthesizer elements by including a reference to the Grease managed assembly. Figure 4.14

shows a mock-up of a signal-flow graph designed in Graphic designer. The tool generates

XAML that can be transformed at build time using the MS-Build tool, or at run-time using

the dynamic XAML deserializer as described in Section 4.3.1. The experiments confirmed

the possibility of a) Hit testing, drag/drop and other interactivity for arbitrary graphic

elements; b) Composing complex visual elements by nesting elements; c) Adding interac-

tivity at build time using the designers, and at run-time using dynamic script. This was

19Here by third-party is meant organizations other than Microsoft offering support for Microsoft tech-
nologies and tools.
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Fig. 4.14 A mock-up of visual elements for signal-flow prototyped using a
graphical design tool (1) and an extract from the generated XAML markup
(2).

followed by a complete prototype that involved building a visual element that validated the

idea of boot-strapping the authoring environment using increasingly complex components

with visuals and behavior. The manner in which this process could be combined with the

model-based design methodology described in Section 4.1 is discussed further in Section

5.1.

4.3.1 Embedding a XAML + IronPython-based Scripting and Extensibility

Engine

Figure 4.15 shows the use-case that motivated the prototype involving embedding a XAML

markup + IronPython-based scripting and extension engine. New types of synthesis and

sequencing objects often necessitate the construction of new interactive visual editors that

can be used by end-users to a) construct objects of the type and b) manipulate the ob-
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Fig. 4.15 Steps involved in writing a new visual extension

jects at run-time. Dynamic languages have been a popular choice for implementing user-

interface dynamics. An example is Tcl/Tk [Ousterhout, 1994]. In particular, new code for

user-interface behavior can be generated by the script itself using meta-programming tech-

niques. The process of scripting a running application using a language like Python involves

exposing all the program variables to an embedded Python interpreter. This traditionally

involved running a wrapper generator to generate Python callable versions of all functions

and types (Section 3.2). Much of this is automated by the .NET framework. Since the

Grease synthesizer is implemented in native C++, it is manually exposed as a managed

assembly (Section 4.2.5). The designer used to generate the user-interface generates C#

code, which builds into a .NET assembly. The IronPython engine leverages the meta-data

included in these managed assemblies to automatically bind symbols in the IronPython

interpreter to variables in the .NET assembly that creates it (the engine). It uses the re-

flection features of the .NET framework to generate Common Intermediate Language (CLI)

byte-code corresponding to methods in the IronPython script, while the application is run-

ning. This byte-code is then compiled by the Just In Time .NET compiler to machine code,



4 Concept Demonstrations 79

also while the application is running. This results in a rather efficient20 variety of end-user

scripting and extensibility that integrates seamlessly with the originally compiled portion

of the application as shown in Figure 4.16. The process can be used to boot-strap more

complex environments, by using the visual designers to generate other visual designers.

Fig. 4.16 Run Time and Build Time extensions to an Authoring Tool

4.3.2 Prototyping an interactive guitar chord editor using the scripting facility

This section explores the process of using the embedded scripting engine to prototype a

visual component for manipulating a set of synthesis and sequencing objects. The com-

ponent adds itself to a core authoring environment that provides a scripting window and

access to the synthesizer. The example relates to representing chords meant to be played

with a six stringed guitar. The only way to represent this in Grease script syntax would be

as a string of six integers indicating the fret positions on the respective strings. A chord

20[Hugunin, 1997a] includes comparison between traditional Python interpreters and IronPython.
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is visualized with a guitar fret-board, with dots indicating the fretted positions. As a first

step towards a language that translates the visual representation to the underlying Grease

messages whenever it is encountered, it is useful to build a self-contained and ‘nest-able’21

component. The steps involved in the process are:

Step-I The graphical elements that represent the new type are designed using the

WYSIWYG interface provided by Expression Graphic Designer as shown in

Figure 4.17. Although the current representation doesn’t involve animate-able

portions in the syntax, this is allowed by WPF and supported by the designers.

The grid represents the first four frets of a six stringed guitar. The horizontal

lines represent the strings and the vertical lines represent the frets.

Fig. 4.17 Designing the visual elements for the chord-editor

Step-II The XAML for the visual elements is exported from the designer to the

clip-board22. This is then pasted onto the scripting window in the authoring

environment. The XAML representation is human-readable. Inspecting the

representation gives hints as to the kind of meta-program that can be developed

21The nesting here is used in a visual sense. Any WPF element that conforms to the Sys-
tem.Windows.UIElement type can be nested inside another System.Windows.UIElement type according to
the layout rules specified by the type of the container element.

22Prior to Step 2, the generated XAML is augmented with a button declaration via Expression Interactive
Designer. The button is intended for articulating the chord representation.
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to add dynamics to the component. Each fret on a single string is represented

by a line-segment element. The line-segment elements are given identifiers in

the XAML representation to reflect the corresponding string number and fret

number. For example, the fifth fret on the second string is given the identifier

‘ 52’. The dots are given similar identifiers.

Step-III An IronPython meta-program is written that exploits the structure in the

identifiers to generate IronPython functions that handle MouseDown events on

the line-segments and the dots. The functions generated by the IronPython

meta-program assume the existence of a reference to the Grease synthesizer.

The meta-program is entered into the IronPython window in the authoring

environment.

Fig. 4.18 Python meta-program for generating the dynamics.

Step-IV Clicking on ‘Install new Visual Component’ initiates the component instal-

lation process. The XAML is streamed through the .NET XML parser, and

an in-memory representation of the entire visual-tree is recreated. The meta-

program is executed via the IronPython engine, which attaches event-handlers

to the visual-tree. When the process is completed, the component is rendered

inside the parent window and is fully functional, as shown in Figure 4.19.

Step-V The meta-program also generates GreaseScript calls via the IronPython ref-

erence to the synthesizer object.

The behavior of the environment provides for interactive editing of tabulature23-like

representations of guitar chords. Some basic patterns were experimented with to test the

23Guitar tabulature is very similar to the notation used here and is a common way of sharing chord
representations among amateur musicians.
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Fig. 4.19 The new visual component rendered inside the parent environ-
ment.

interactivity. The creation of patterns was fairly straightforward. Clicking a string-segment

between two frets turns on the dot in the segment, effectively fretting the string segment

between the frets. Clicking on the dot un-frets the segment, removing the dot. These

behaviors were generated by the IronPython meta-program and dynamically associated

with the visuals. Clicking on the ‘Strum!’ button invokes the synthesizer. Figure 4.20 shows

the results of creating some basic chord patterns24. The IronPython script generated for the

visual component constructor automatically invokes GreaseScript to create a ‘Guitar’ object

via the synthesizer reference available to the IronPython engine. The ‘Guitar’ component,

in turn is a build-time extension to Grease that internally delegates its functionality to the

GuitarString objects that in turn generate samples using STK’s ‘Plucked’ class. The signal-

flow graph representing the connection between the Guitar objects with the Mixer objects

is also created by invoking GreaseScript through the IronPython synthesizer reference.

24The guitar strings are assumed to be in standard tuning.
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Fig. 4.20 Simple chords being edited in the installed interactive chord editor
component.

4.3.3 Possible Enhancements to the Extension Prototype

It is straightforward to make the fine-grained functionality of the visual editors available to

the end-user programmatically via the IronPython interface. This could be used, for exam-

ple, to allow the end-user to create macros that strum the chord with a specific sequence

of chords in a particular rhythm. Taking the idea of boot-strapping a more complex envi-

ronment further, the same design could be applied to create a visual chord sequencer using

a StackPanel element that internally delegates the visual and audio rendering, as well as

interactivity of the chords to the Chord components that it holds. These are not explored in

the demonstrations. The IronPython meta-program currently generates a set of functions.

It could be made to generate a Python class-declaration for a meta-constructor, making

the component even more modular. In all, the functionality provided by the base environ-

ment and the scripting engine opens up the possibility of creating future functionality in
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the authoring environment as self-contained extensions with rich visuals and interactivity.

It also opens up the possibility of creating meta-editors, that allow end-users to generate

other editors, much along the lines of Elody, OpenMusic, AtoM3 and GME.
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Chapter 5

Conclusions and Future Work

This chapter tries to re-situate, in retrospect, the ideas and results from previous chapters in

the context of the thesis investigation and the larger context of computer-music research.

The technical and artistic implications of the design experiments are summarized and

possible directions for future research and development are outlined.

5.1 Conclusions

As introduced in Chapter 1, the aim of the thesis was to evaluate technical advances in

various software domains, and to use this evaluation to update design methodology for the

creation of music authoring tools that balanced the benefits of extensible special-purpose

(Category A) tools and specializable general-purpose (Category B) frameworks. This con-

sists, in essence, of supporting the related features of end-user extensibility, customization

and personalization. While this is a considerably challenging goal, it is a goal shared by

many other domains and they have evolved re-usable components for realizing these goals

over the years.

5.1.1 Historical perspective

Chapter 2 surveyed the history of computer music software and identified components of

authoring tools that were common to traditional synthesis languages, libraries and studio

software. In particular, audio synthesis programming languages can be seen as Category

B frameworks for music authoring. These languages themselves have evolved at least
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two distinguishable components, one specialized for the task of describing sound design

and processing, and another specialized for the task of describing ‘control’ sequences -

sequencing. Recording and studio-based software, on the other hand, has traditionally

evolved as a package of Category A tools that are each designed to solve a specific task.

While Category A tools like guitar-synthesizer modules and drum sequencers tend to be

better suited, in terms of ease of use, to the particular usage contexts for which they were

developed, they tend to be inflexible to possible variations in usage contexts that may be

required by particular groups of end-users. Category B frameworks like audio synthesis

programming languages, on the other hand, are designed to express solutions to a very

large class of problems. While they are very flexible, it is hard for domain-experts without

significant programming experience to use them.

5.1.2 Identification of re-usable tools from other domains.

Two classes of ‘meta’-frameworks surveyed in Chapter 3 were identified as a fertile starting

point for design investigations. The goal was to assimilate the problem of bridging Category

B frameworks and Category A tools, into well-developed, existing conceptual and imple-

mentation frameworks for solving this problem. The frameworks have evolved in response

to the fact that this problem is ubiquitous across domains.

Visual Modeling Tool Generators

The first of these ‘meta’-frameworks has evolved from the modeling and simulation commu-

nity and is a design methodology called ‘model-driven architecture’. In Chapter 4, a prag-

matic approach was taken to identify possible ways of re-using the tools developed by this

community to the problem of developing authoring tools. Visual environment generators

that facilitated the automatic generation of context-specific, restrictive, visual modeling en-

vironments for certain aspects of music authoring were explored. These environments are

generated from formal descriptions of the environments called ‘meta-models’. They require

a formal analysis of the usage context in advance. Results of experiments that involved

generating simplified prototypes of sound-design and sequencing environments using the

GME tool were documented.
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Scriptability, Scripting Language Engines, and Informal Notations

The second of these ‘meta’-frameworks are re-usable ‘scripting’ language engines. These

are Category B frameworks that facilitate the process of exposing, to the end-user, the

underlying Category B components used to build a Category A tool. The motivation for

including such a feature is that Category A tools like drum sequencers are often (but

not always) themselves built with more general purpose components like audio synthesis

programming languages. By giving the end-user optional access to this facility, usage-

scenarios that were not conceived by the tool designer, but realize-able with the underlying

components used to build the tool, may be constructed by the end-user herself. Since

the intention is to support un-anticipated usage-scenarios, the dynamic nature of scripting

languages is actually well suited to the task. Chapter 4 explored the process of embedding

the IronPython engine to script the user-interface of an authoring tool. It explored the

process of making a scriptable audio synthesizer. It also explored the utility of both the

synthesizer and UI scripting facilities by demonstrating their use to build extensions to the

synthesizer and the user-interface, respectively.

GUI and Graphics Toolkits

This thesis also investigated the trade-off between visual and textual representations. For-

malized notations like those used by hierarchical signal-flow, state-charts and petri-nets

have a well defined syntax and semantics. These are useful to describe well-defined sound

synthesis and sequencing processes. On the other hand, context-specific or artist-specific

processes cannot be anticipated by tool designers, and these are best served by visual

versions of Category B frameworks like dynamic scripting languages. Visual scripting is

popular in many other craftsmanship-intensive domains like visual design, narrative design

and game design. Even though many aspects of these domains are very much amenable to

formal design and analysis, a large part of the creative process involves using the authoring

tool in unanticipated contexts. Visual scripting facilities provide for end-users to tailor the

authoring tool to function as required in these undefined contexts1, using a friendlier version

of text-based Category B scripting frameworks. Chapter 3 explored some visual scripting

solutions developed in the video game industry. It also explored Category B graphics and

1The context is defined in an operational sense as ‘the context enabled by the modification made by
User X’, but this does not qualify as a formal definition of the context.
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GUI frameworks that could be used to build visual scripting solutions. These were ex-

plored further in Chapter 4 in the context of Windows Presentation Foundation related

demonstrations, which, along with the reflection facilties, compiler front-ends, automated

interpreter engine bindings and integration with professional graphic design tools available

for the .NET framework, constitutes an excellent framework for the design of hybrid, tex-

tual/visual scripting languages. Chapter 4 explored the manner in which dynamic visual

components may be designed and installed at run-time and hierarchically composed into

an interactive visual scripting facility. The ‘content-composition’ feature of Windows Pre-

sentation Foundation, along with the dynamic code-generation features of IronPython on

the .NET platform made this possible. The tool support provided by the platform to mix

these components with efficient C++ implementations of a synthesizer further increased

the value of the platform2.

5.2 Future Work

5.2.1 Integration of Bottom-Up and Top-Down Approaches

Chapters 3 and 4 presented both pre-designed, formally modeled approaches, also known as

‘top-down’ approaches to building context-specfic tools and on-the-fly, informal, interactive

and prototype-driven approaches, also known as ‘bottom-up’ approaches. They recognized

the importance of both these approaches, which stems from the fact that better tool support

can be built using pre-designed, top-down approaches, when applicable. On the other

hand, the creative process inherently demands the application of the authoring tool in un-

anticipated contexts and bottom-up approaches involving dynamic languages and scripting

are especially relevant here. It is possible to combine these approaches by using a scripting-

based solution itself to implement a top-down modeling tool. This would allow for partial

solutions expressed with informal descriptions to be stream-lined, in the long run, into

well-defined context-specific design tools.

2It is important to note that these features may be available in upcoming versions of many other
platforms.
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5.2.2 Leveraging Dynamics and the 3D Medium

The visual language design explorations were concerned with 2D demonstrations with lim-

ited interactivity. These ideas translate to the 3D medium with interactive animations.

Such a visual language mapping dynamic elements to other dynamic3 elements may blur the

boundaries between computer-based prototyping/design and computer-based performance.

Thus, the act of a musician in the role of a composer exploring musical possibilities is con-

cretized by the visual interface to the prototyping tool and made available to an audience,

transforming the compositional/prototyping activity into an improvisational/performance

activity. The WPF/IronPython approach scales to many 3D scenarios by using XAML ex-

ported from 3D design tools like Maya and Zam 3D. For richer experiences, the environment

can be rebuilt to use a gaming engine like Unreal Engine 3.

5.2.3 Using alternative input devices for language interaction

Along the same lines, it is possible to extend this notion of an interactive language and

environment to use non-traditional input devices better suited to the interaction. A chord

editor, for example, could be manipulated with a midi-guitar or keyboard. A hierarchical

space of related chords, on the other hand, could be navigated by a combination of arm

and palm gestures, captured using devices like the Polhemus Liberty and the Vicon. A

calculus for combining gestures in a manner that allows the expression of sequencing and

sound processing could be built by the hierarchical composition of visual editors and input

interaction behaviors.

5.2.4 Extending the architecture to enable web deployment

The most practical enhancement to the entire architecture would be to facilitate the con-

struction and deployment of new funtionality over the web. This would require extension-

representations to be stored in a structured storage like a traditional database and to

provide for versioning and search features for the database of extensions. A well imple-

mented versioning scheme would allow for the collective/community-driven development

of genre-specific and style-specific extensions to the authoring tool core, which could be

downloaded or executed directly over the web. Searchability would ensure the discovery

3Here ‘dynamic’ does not mean ‘dynamic language’ in a programming-language sense. Rather, it means
dynamic visual elements (animation) in the syntax of the language.



5 Conclusions and Future Work 90

of useful community authored artifacts by other users in search for similar funtionality.

Such functionality could possibly be realized by re-using existing architecture for Massively

Multiplayer Online Role Playing Games (MMORPGs).

5.3 Artistic and Philosophical Significance

5.3.1 Personalize-able Infrastructure - The Creation of a New Artistic

Medium

Artistic creation, in general, defies credible analysis from an engineering perspective and,

more so, from a scientific or even rational perspective. It is often regarded as the proverbial

black-hole of scientific and rational enquiry into human thought and existence. Turning

the tables around, [Becker and Eckel, 2003] refer to the epistemological and metaphysical

function once attibuted to works of art, “in so far as truth4 could appear in a given work

(of art)”. However, they also refer to the shift in modern theories of art towards approaches

oriented to affirm the utilitarian, explanatory stance of the empirical sciences.

Even from such a purely utilitarian stance, the direct relationship between the value of a

work of art and the technique or effort required to produce it, has paradoxical interpreta-

tions in relation to the applicability of technology to the arts. Theodore Adorno famously

objected to the commoditization and mechanization of musical art in his 1932 essay, ‘On

The Social Situation of Music’ [Adorno, 1932]. A review of Adorno’s book, ‘Essay’s on

Music’ [Adorno, 2002; Schroeder, 2003] quotes him as saying about his reading of Wagner

that he

... realized without reservation that the binding, truly general character of musical

works of art is to be found, if at all, only through the medium of their particularity

and concretion, and not by recourse to any kind of general types.

Also referring to Adorno, [Becker and Eckel, 2003] note that

He pointed out that [the]5 epistemological objective of art always was diametrically

opposed to that of technique: While technique aimed at a general ordering and a

global control, art - in contrast - revealed individual and particular aspects of the

4The epistemological funtion being related to the central nature of the notion of truth to human enquiry.
5Parenthetical remarks are additions by the current author.
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human existence. In artistic expression, new views of the world which contrast with

general paradigms of technology (science) could be experienced and articulated. In

its lack of purpose, art aimed not at making something available, but rather, in its

very distance from the attitudes proper to technique, it referred to alternative modes

of individual and cultural ways of living.

The empowerment of artists themselves with the ability to create tools that address the

needs of new artistic contexts defined by them was the motivating vision behind the inves-

tigations in the current work. While the investigations did not quite get to the point of

demonstrating a clear path to the realization of this long-term goal, the technical review

and design experiments point strongly towards the readiness of the state-of-the-art for re-

alizing such transformative, malleable and personalize-able media. They add to existing

technical evidence in the music-technology literature for a possibly paradoxical resolution of

the conflict between technological control and individual expression, with the empowerment

of individual expression by technology itself.
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