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Abstract

This thesis introduces hexaphonic distortion as a way of achieving harmonically rich gui-
tar distortion while minimizing intermodulation products regardless of playing style. The
simulated hexaphonic distortion effect described in this thesis attempts to reproduce the
characteristics of hexaphonic distortion for use with ordinary electric guitars with mono
pickups. The proposed approach uses a parallel comb filter structure that separates a mono
guitar signal into its harmonic components. This simulates the six individual string sig-
nals obtained from a hexaphonic pickup. Each of the signals are then individually distorted
with oversampling used to avoid aliasing artifacts. A Stratocaster-style electric guitar was
fitted with an Ubertar hexaphonic pickup in the middle position. Simultaneous recordings
using both hexaphonic and mono pickups were made on an 8-channel preamplifier and A/D
converter. Starting with the baseline of the distorted mono signal, the simulated distor-
tion produces fewer intermodulation products with a result approaching that of hexaphonic
distortion.
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Résumé

Cette thèse présente la distorsion hexaphonique comme un moyen d’obtenir une distor-
sion de guitare harmoniquement riche tout en minimisant les produits d’intermodulation
désagréables quel que soit le style de jeu. L’effet de distorsion hexaphonique simulé décrit
dans cette thèse tente de reproduire les caractéristiques de la distorsion hexaphonique pour
les guitares électriques ordinaires avec des micros mono réguliers. L’approche proposée utilise
une structure de filtre en peigne parallèle qui sépare un signal de guitare mono en ses com-
posants harmoniques. Cela simule les six signaux de cordes individuels obtenus à partir d’un
capteur hexaphonique. Chacun des signaux est ensuite individuellement déformé avec un
suréchantillonnage utilisé pour éviter les artefacts de crénelage. Une guitare électrique de
style Stratocaster était équipée d’un micro hexaphonique Ubertar en position médiane. Des
enregistrements simultanés à l’aide de micros hexaphoniques et mono ont été réalisés sur un
préamplificateur à 8 canaux et un convertisseur A / N. En commençant par la ligne de base
du signal mono déformé, la distorsion simulée produit moins de produits d’intermodulation
avec un résultat proche de celui de la distorsion hexaphonique.
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Chapter 1

Introduction

When Cláudio César Dias Baptista invented the Regulus guitar in the 1970s, he introduced
the world to a marvellous unique new sound. Baptista’s interest and motivation in creating
this new type of electric guitar centered on reducing inharmonic distortion, which he found
to be a potentially negative aspect of distortion in traditional electric guitars with a single
pickup for all strings. While a perfect technical solution, it was too impractical for the
average guitarist and so the sound has since been little heard. Distortion effects have been
around since the inception of the electric guitar. They add sustain and harmonic overtones to
create a richer, warmer sound. In the seminal Nova Eletrônica article [1], Baptista describes
the effect as such (translated from Brazilian Portuguese):

The main modification that the distorter produces is in the timbre of the sound,
that is, it modifies, amplifying, the harmonic content of that sound. This means
that, in practice, it makes the sound of a guitar more or less pure, into a more
vibrant, richer, more aspirated sound, more like a violin sound now than a guitar
sound.

The distorted sounds that characterize many rock genres are the result of a non-linear
process that produces frequencies not present in the original signal. When the input signal
comprises a single sinusoidal frequency, the output of a non-linear system will contain in-
teger multiples of the input frequency. However, if multiple frequencies are present in the
input, the output of the system will also contain intermodulation products that may not be
harmonically related to each other [2]. The resulting spectrum can be so dense that it can
sound harsh and undefined. Quoting again from the article:

The wrapping or excessive intermodulation between the notes emitted by the
high strings and those emitted by the bass strings of a guitar, when played
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simultaneously, or in chords, [...] creating a hoarse and undefined sound that,
being useful for many purposes, is not always what is desired.

For musicians who endeavour to achieve a cleaner and richer type of distortion, there
is a need for distortion algorithms which do not suffer the harmonic limitations caused by
intermodulation.

1.1 Motivation
This research comes at the request of a contemporary musician who wished to recreate the
iconic distortion effects used by the group Os Mutantes. This seemingly simple challenge
turned out to be much more involved. Faithfully recreating the sound requires a specialized
hexaphonic pickup. Since this was unavailable to the musician and likewise for many others,
it became of interest to research a method by which hexaphonic distortion could be simulated
through digital signal processing techniques, allowing guitarists with regular mono pickups
to achieve this iconic sound.

1.2 Objectives
The proposed approach used in this thesis involves a parallel bank of comb filters. This
structure, which was informed by analysis of signals from a hexaphonic pickup, separates
a mono signal into harmonically related signals. The individually distorted signals produce
fewer intermodulation products with a result approaching that of hexaphonic distortion.

1.3 Thesis Organization
Chapter 2 provides the necessary background on intermodulation and hexaphonic distortion.
It then provides a comprehensive review of previous work on the topic of intermodulation
distortion and the literature on the digital signal processing techniques employed in this
thesis.

Chapter 3 describes the process by which recordings of an actual hexaphonic pickup
were acquired. A frequency domain analysis of the signals reveal important characteristics
of the hexaphonic pickup which lead to the main hypothesis for the thesis. Additional
findings include insights on sympathetic vibrations in electric guitar strings and cross-talk
in hexaphonic pickups.
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The hexaphonic distortion simulation algorithm involves two main development chal-
lenges. The first is the separation of harmonic signals and is the topic of Chapter 4. The
second is development of a digital emulation of an analog distortion circuit and is described
in Chapter 5.

In Chapter 6, the simulated distortion structure is evaluated from the perspective of inter-
modulation distortion, with comparisons to simple mono and actual hexaphonic distortion.
The performance of the algorithm is also evaluated in terms of computational expense.

Chapter 7 concludes the thesis by revisiting the main outcomes of the research and its
implications while also presenting opportunities for future work.

3



Chapter 2

Background and Literature Review

The hexaphonic distortion simulation approach proposed in this thesis builds upon previous
and related works on the subjects of digital distortion, intermodulation, and the use of comb
filters to analyze and process harmonic signals. This chapter provides an overview of the
topics and consolidates the literature consulted in the development of the system.

2.1 Intermodulation
To illustrate the mechanics of intermodulation, consider the non-linear system corresponding
to the 2nd-order Chebyshev polynomial of the 1st kind [3],

T2(x) = 2x2 − 1. (2.1)

When the input is a single sinusoid, this transfer function has the useful property that it
only generates frequencies up to the 2nd harmonic. For the single cosine input signal,

T2(cos(2πft)) = 2 cos(2πft)2 − 1 = cos(2 · 2πft), (2.2)
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generating the 2nd harmonic as expected. For an input consisting of f1 and f2, expanding
and combining terms reveals

T2(cos(2πf1t) + cos(2πf2t)) = 2(cos(2πf1t) + cos(2πf2t))
2 − 1

= 2 cos(2πf1t− 2πf2t)

+ 2 cos(2πf1t+ 2πf2t)

+ cos(2 · 2πf1t)

+ cos(2 · 2πf2t)

+ 1.

(2.3)

The output of the non-linear function includes the 2nd harmonic frequencies but also the
sum and difference frequencies f1 − f2, f1 + f2, along with a DC component. The non-linear
systems used in guitar distortion algorithms generate an infinite number of harmonics. Ex-
tending from this idealized example, it is easy to see how the output frequency spectrum
becomes densely filled when multiple input frequencies are present. In any guitar pickup,
vibrations in the strings are converted to an electrical signal that is then amplified. The
output of a standard mono guitar pickup is the combined signal of all six strings. Because
of this, guitarists will sometimes limit their use of distortion to single notes or power chords
consisting of fifths and octave intervals to prevent the sound from becoming muddled. On oc-
casion, musicians have worked around this limitation in the studio with multi-track recording
by dubbing single notes on top of each other [4].

2.2 Hexaphonic Distortion
Baptista’s secret for avoiding intermodulation was to use an independent pickup for each
string and one distorter for each pickup, for a total of six fuzz distorters per guitar. The
guitars Baptista built by hand for his brothers Arnaldo and Sérgio of the psychedelic rock
group Os Mutantes had many onboard effects, capable of creating very unique sounds [5].
A hexaphonic pickup, as it is commonly known, provides individual signals for each string.
Distorting these signals separately results in fewer intermodulation products while retaining
the harmonic enrichment. This unique effect gave the guitar an organ-like singing quality
pioneered by Os Mutantes. The first and most famous of these guitars used gold foil shielding
and was thus named Regulus – ‘little king’.

The hexaphonic pickup has many uses beyond distortion. Unsurprisingly, it found its
most widespread use in guitar synthesizers [6]. Early guitar synthesizers such as the EMS
Synthi Hi-Fli (1973) were nothing more than multi-effects processors without actual syn-
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thesis circuitry. The late 1970s saw the introduction of three guitar synthesizers; the ARP
Avatar, the 360 Systems Spectre, and notably, the Roland GR-500 [7]. Unlike earlier guitar
synthesizers, these three comprised a controller guitar fitted with a hexaphonic pickup and
a separate synthesizer module connected by a multi-conductor patch cable. The central
element in each of these synthesizers was a pitch-to-voltage converter that tracked the pitch
of the individual strings to control the polyphonic synthesizer parameters. While the ARP
Avatar and the Spectre proved to be prohibitively expensive and commercial failures, Roland
continued development with the GR-300. Beginning in 1984 with the GR-700, the controller
can output MIDI digital control signals that allow each voice of a polyphonic synthesizer to
be controlled by the different strings. Since then, Roland has continually developed a va-
riety of guitar synthesizer products and introduced the widely adopted 13-pin interface for
hexaphonic pickups. There are numerous other companies now offering hexaphonic guitars
and aftermarket conversion kits. Hexaphonic distortion effects have occasionally appeared
on the market, such as the Roland GR-100, and most recently, the Spicetone 6Appeal [8].
Paul Rubenstein, maker of the modern Ubertar hexaphonic guitar pickup [9] has this to say
about hexaphonic distortion:

Hexaphonic fuzz (applying fuzz to each string separately) is a way to avoid
intermodulation distortion. This means you get the fuzz distortion sound without
muddiness. The individual notes are distinct, so the chords are clear yet still
fuzzed.

Unfortunately, these effects all require an expensive hexaphonic pickup guitar and for this
reason hexaphonic effects have remained niche. This thesis expounds upon a method that
aims to simulate hexaphonic distortion using digital signal processing techniques that will
approximate the characteristics of the effect when using a regular mono pickup guitar.

2.3 Digital Distortion Effects
The effect now known as distortion was initially the result of overdriving guitar amplifiers
past their linear operating range. Tube amplifiers saturate the output at high volumes, ef-
fectively clipping the output waveform. This non-linear operation gave the electric guitar its
harmonically rich tone. Soon after, transistor-based circuits were used to simulate the effect,
offering a wider range of distortion types [7]. Since the advent of digital signal processing,
several approaches for the implementation of digital distortion effects have been proposed
[10]. The simplest ones employ static non-linear waveshaping functions that clip the ampli-
fied input. Conversely, digital emulations based on physical modeling approaches can offer
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faithful reproductions of analog audio circuits [11].

2.3.1 Aliasing Distortions

An important consideration in any digital implementation of distortion is aliasing distortion.
The non-linear distortion function produces harmonics that extend beyond the fs/2 Nyquist
limit of the input signal sampling frequency. High frequency harmonics are folded onto the
audio band, resulting in audible inharmonic distortions [2]. This is illustrated in Fig. 2.1,
where a normalized 1760 Hz sinusoid was amplified by 40 dB and clipped using an exponential
distortion function. This behaviour has been the subject of many papers and is adequately
mitigated by oversampling the input signal [10]. Oversampling is a way of suppressing
aliasing by first upsampling the input signal then applying the non-linear distortion. The
distortion products have amplitudes inversely proportional to the frequency. Increasing the
sampling frequency by a factor of N ensures that distortion products beyond Nfs/2 are
sufficiently attenuated and thus inaudible when folded over the audio band. A steep lowpass
filter attenuates frequencies above the fs/2 Nyquist limit prior to downsampling back to the
original sampling frequency.

0 5k 10k 15k 20k
Frequency [Hz]

−100

−75

−50

−25

0

PS
D

[d
B]

(a) No Oversampling

0 5k 10k 15k 20k
Frequency [Hz]

(b) 16× Oversampling

Figure 2.1: Magnitude spectrum of aliasing distortions of a 1760 Hz sinusoid.

2.3.2 Reducing Intermodulation Distortion

While there is much literature on digital distortion effects, the role of intermodulation is not
often addressed, and only a few algorithms attempt to minimize intermodulation distortion
in their design. Such approaches are based on multiband distortion units, the most popular
of which is the Quadrafuzz [12]. By splitting the input signal into separate frequency bands
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and applying a clipping distortion to each band independently, multiband distortion limits
the intermodulation components to those in a given band.

Fernández-Cid and Casajús Quirós [3] took this concept to the extreme, combining a
waveshaping function with a 13-band filter bank. Their research was focused on achieving a
highly customizable type of distortion through the use of Chebyshev polynomials that offer
precise control over the harmonic partials. The algorithm requires a normalized input whose
amplitude envelope is flattened. This is achieved by dividing each band of the input signal by
an envelope estimation prior to waveshaping and restoring it afterwards. Timoney et al. [13]
furthered this concept by showing that static waveshaping could be used to emulate analog
distortion circuits. Abel and Werner [4] applied this technique to a modal reverberator
architecture to produce distortion without intermodulation products.

However, no one has yet explored a method to simulate hexaphonic distortion. Gui-
tar pickups exhibit their own non-linear behaviour [14]. With the addition of cross-talk
between individual pickups and sympathetic vibrations [15], the output signal of a hexa-
phonic pickup will always contain some unrelated harmonics, which when distorted, results
in limited amounts of intermodulation thereby giving it its distinctive tone.

2.4 Digital Processing with Comb Filters
The algorithm proposed in this thesis makes use of a bank of comb filters to extract harmonic
content from electric guitar signals. This section highlights some of the important previous
audio research that also made use of comb filters.

2.4.1 Harmonic Sound Separation

Many instruments, including the guitar, produce predominantly harmonic sounds that con-
sist of integer multiples of a fundamental frequency f1. Auditory source separation techniques
can take advantage of the harmonic structure of many natural acoustical signals to signifi-
cantly increase the robustness of frequency tracking [16]. A comb filter also exhibits peaks at
integer multiples of a fundamental frequency and can therefore be used to reduce harmonic
interference or to enhance a harmonic signal buried in noise, provided the “teeth” of the
comb coincide with the harmonics of the harmonic signal. Välimäki et al. [17] demonstrated
several such approaches. A comb filter is used to attenuate the harmonic components of a
signal thereby extracting the background noise component. The authors go on to describe a
“harmonic extraction filter”; by cascading the comb filter with a 2nd-order resonance filter,
it is possible to extract a single harmonic component. Since the calculation fs/f1 rarely
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yields an integer number sample delay M , in practice, the delay line of the comb filter is
implemented as a fractional delay line to avoid such inaccuracies.

When used in parallel, comb filters can separate harmonic signals. A comb filter with
peaks located at the multiples of the second harmonic f2 will extract even harmonics and
a complementary comb filter with peaks shifted by f2/2 will extract odd harmonics. This
method is used in digital color TV systems to separate the interlaced luminance and chromi-
nance signals in composite video signals [18].

Comb filters have been employed in sound source separation and polyphonic pitch de-
tection, where the main application is automatic music transcription [19]. Traditional pitch
detection algorithms based on the extraction of the fundamental frequency struggle with
the dynamically changing harmonic components produced by musical instruments. Taking
advantage of the fact that musical instrument sounds are composed of a fundamental fre-
quency corresponding to each tone and its harmonic frequencies, Miwa et al. [20] developed a
method of detecting the pitch of polyphonic music played by several instruments by observ-
ing the intermediate outputs of a series combination of twelve comb filters each attenuating
a tone from C to B. Detecting a zero output reveals the presence of the tones corresponding
to one or more of the comb filters. By process of elimination, successive reshuffling of the
comb filter cascade order eventually reveals the individual tones that make up the signal.

Gainza et al. [19] revisited the use of comb filters for musical sound source separation,
this time relying on multi-pitch estimation (MPE) to detect the comprising signal pitches,
followed by frequency-domain filtering. In this short-time Fourier transform (STFT)-based
approach, the FIR comb filter provides the magnitude response that extracts a harmonic
sound source when multiplied with the signal in the frequency domain. Since the peaks of
an FIR comb filter are very wide, a configurable number of bins on either side of the spectral
peaks are set to zero. While this method is effective in the separation of harmonic signals,
the high resolution of the STFT required for MPE and frequency-domain filtering imposes
large latencies in the system making it unsuitable for real-time applications. Furthermore,
the authors express frustration with the inaccuracies in the pitch detection system.

2.4.2 Comb Filter-Based Harmonic Enhancement

The multiband distortion and modal reverberator architectures discussed in the previous
section are preprocessing approaches to harmonic-enhancing distortion, whereby the signal is
separated prior to distortion. In applications where the desired harmonics are predetermined,
such as in classical waveform synthesis, an IIR comb filter postprocessing approach to alias
reduction has been proposed by J. Pekonen and V. Välimäki [21]. In the same way that digital
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implementations of distortion produce aliasing, sampling of continuous-time waveforms with
frequencies above the Nyquist limit introduces aliasing distortions. The authors proposed a
combination of IIR comb filter and DC blocking filter to attenuate the aliased components
that lie between the harmonics.

A postprocessing approach as such may also prove to be an effective method of removing
intermodulation distortions, provided that the individual pitches of the original signal are
accurately tracked. Because of the numerous difficulties involved with polyphonic pitch
detection mentioned previously, the hexaphonic distortion simulation proposed in this thesis
is designed to avoid intermodulation distortions from being generated in the first place.

2.4.3 Other Uses of Comb Filters

Traube and Depalle [22] used an FIR comb filter structure in a simple digital physical model
of a guitar string. The notches in the spectrum correspond to the harmonics that have a
node at the plucking point. With this model, the plucking position can be extracted from a
recording by fitting the comb filter delay value to the measured spectral envelope.

The extraction of pitch from a musical excerpt is closely related to the extraction of
tempo, with the difference being that frequencies of interest are greatly reduced – typically
corresponding to the range 30 to 240 beats per minute. Scheirer [23] describes an algorithm
for beat-tracking musical signals of several genres. Drawing from a psychoacoustic model of
rhythmic perception, the signal is divided into six bands from which amplitude envelopes
are calculated. This vastly simplifies the analysis data. Each processed envelope channel is
passed to a filter bank of comb filters for which the delays cover a range of pulse frequencies.
The filter with response peaks matching the signal will have larger output. The filter with
maximum energy output is selected as the tempo of the signal.

Comb filters are often found in echo simulation and reverberation effects. The influential
Schroeder and Moorer reverberation architectures employ parallel feedback comb filters and
a cascaded all-pass structure [24, 25]. Both of these types of filters will be seen in the
development of the harmonic separation structure proposed in this thesis.
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Chapter 3

Hexaphonic Pickup Recordings

The first step in development was the recording of an actual hexaphonic pickup and is
the topic of this chapter. The recordings provided vital insights into hexaphonic audio
signal characteristics and later served as the reference for comparison in the evaluation of
the simulated hexaphonic distortion. Additionally, this chapter explores the implications of
sympathetic vibration and cross-talk in hexaphonic pickups.

3.1 Recording Setup
The electric guitar used in the audio recordings for this research was a Peavey Raptor Plus
fitted with an Ubertar Hex Plus pickup. The Peavey Raptor series of Stratocaster-style
electric guitars have three pickups. The neck and middle pickups are single coil pickups and
the bridge pickup is a dual coil humbucker. A five-way switch selects either one of the neck,
middle, or bridge pickups, or a combination of the neck-middle or middle-bridge pickups.

The Ubertar hexaphonic pickup [9] takes the shape of a single coil pickup but consists of
six low-noise HC coils. A six-conductor wire lead connects to a 7-pin output jack, allowing
for simultaneous output of both hexaphonic and mono signals1. The length of the wire lead
on the hexaphonic pickup was too short to install it in the neck position, making the middle
position the most straightforward option. The hexaphonic pickup was also slightly wider
than the pickup it was replacing and the slot in the pickguard had to be filed down slightly.

The Ubertar breakout box provides 1/4′′ outputs for each string. These were connected
to the high impedance instrument inputs of an RME Micstasy 8-channel preamplifier and
A/D converter. The mono neck pickup was simultaneously recorded on the seventh channel.

1Here mono refers to the signal captured from a single or dual coil humbucker pickup. This is a summed
signal consisting of the vibrations of all six strings.
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A photo of the recording equipment setup at the Centre for Interdisciplinary Research
in Music Media and Technology (CIRMMT) is shown in Fig. 3.1.

Figure 3.1: Hexaphonic recording setup. The hexaphonic pickup is the middle pickup. The
color patch cables connect the breakout box to channels 1 through 6. An additional patch
cable connects the mono pickup to input channel 7.

The height of the hexaphonic pickup was adjusted for even volumes across each string
and each string was carefully tuned using an electronic tuner prior to each recording. The
audio was recorded using Adobe Audition, whose multitrack audio editing and frequency
display features proved very useful during the analysis.

3.2 Audio Analysis
To capture a full set of analysis data, the recordings consisted of single pluck and strum
recordings of the open strings and the first twelve frets with the use of a capo — a clamp
fastened across all the strings. Plucking each string with the capo at each fret position
creates a complete set of recordings covering the entire chromatic scale over three octaves
from E2 to E5. As an example, Fig. 3.2 shows the six-channel hexaphonic pickup recording
and Fig. 3.3 the mono neck pickup recording of the open strings.

Up until this recording experience, it was unclear what digital signal processing meth-
ods should be pursued in the formulation of the hexaphonic distortion simulation. Many
approaches were in consideration, most of which relied on some incarnation of a filter bank.
However, upon initial observations of the magnitude spectrums of the recordings, which
looked much like the familiar comb filter magnitude response, the use of a bank of parallel
comb filters rapidly became the most intuitive solution. As seen in Fig. 3.4, the separate
outputs of the hexaphonic pickup are predominantly harmonic with a magnitude response
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Figure 3.2: Open strings hexaphonic pickup recording. There is a small amount of signal
cross-talk (bleed) to adjacent pickups. The presence of a signal in the low E2 pickup when
plucking high E4 is due to sympathetic vibrations.
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Figure 3.3: Open strings mono pickup recording. Plucks of low E2 to high E4 followed by two
strums.

resembling the teeth of a comb filter. This lead to the theory that a signal composed of
several of these harmonic signals could be decomposed into harmonic signals using comb
filters.

3.3 Sympathetic Vibrations
Measurements with a hexaphonic pickup provide a unique opportunity to compare and
analyze sympathetic vibrations in guitar strings versus cross-talk from adjacent pickups.
Sympathetic vibration is the transmission of energy of a plucked string to the other strings
through the bridge [15]. Cross-talk, on the other hand, is the contamination of a pickup
signal due to vibrations of an adjacent string. The measurements shown in Fig. 3.2 demon-
strate both cross-talk and sympathetic vibrations, though it requires some careful analysis
to distinguish the two. Cross-talk is readily apparent in the signals from adjacent strings for
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Figure 3.4: Magnitude spectrum of plucked open A2 and G3 strings recorded using a hexa-
phonic pickup.

each individually plucked open string. For example, when the D3 string is plucked (red), a
bit of signal is seen in both the A2 and G3 pickup signals. At the same time, sympathetic
vibrations might appear in other pickup signals if any of the plucked string frequency partials
match any partials in the other strings. For example, when the high E4 is plucked, the next
highest signal amplitude is found at the low E2 pickup, which is the farthest string from the
one plucked. The third highest signal amplitude is in the A2 string. The partials of the E
strings line up exactly and the second partial of the A2 string (330.0 Hz) is very close to
the first partial of the high E4 string (329.6 Hz). If the frequency ratio between strings is
a simple integer fraction, the coincident partials that occur at the common multiples are
numerous and the resonance of the string increases.

In a parallel exploration of consonance and dissonance, early investigations by Helmholtz
found that note intervals with small integer ratios were perceived as more consonant. Later
psychoacoustic studies support the theory that coincident partials produce consonant in-
tervals and a number of models have been suggested to provide a concrete definition of
consonance [26]. While perceptual studies [27] show that human perception of consonance
and dissonance is more nuanced than these models suggest, they will serve adequately in
this exploration of sympathetic vibration.

Harmonic entropy is one such model. It is a measure of interval consonance, where a
lower HE(i) indicates a more consonant interval. A detailed definition of harmonic entropy
is provided in Sec. 6.1.1. It turns out that this definition also provides a good model of
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sympathetic vibration. Consider the intervals between a plucked high E4 string and each of
the other strings in Table 3.1.

Table 3.1: The equal-tempered intervals i between E4 and the other open strings notes and
the corresponding harmonic entropy.

Open string note E4 B3 G3 D3 A2 E2

Frequency [Hz] 329.6 246.9 196.0 146.8 110.0 82.4
i [cents] 0 500 900 1400 (200) 1900 (700) 2400 (1200)
HE(i) 0.021 1.873 2.979 2.48 0.073 0.021

Unsurprisingly, the two-octave interval between the high E4 and low E2 string has an
equally low harmonic entropy value. The sympathetic vibrations observed in the A2 string
are also confirmed by a low entropy value. Figure 3.5 shows the root mean square (RMS)
amplitude for each string of the recording from Fig. 3.2 from 40 to 50 seconds in which the
high E4 string is plucked. The RMS amplitude illustrates the combination of sympathetic
vibrations and cross-talk present in a given string caused by plucking the E4 string. A scaled
plot of the harmonic entropy values from Table 3.1 is overlaid. The plot is reflected about
the horizontal axis such that complex intervals contribute to less sympathetic vibration. The
close fit suggests that the harmonic entropy model could prove to be a useful tool in modeling
or distinguishing sympathetic vibration. Such a model may be useful in instrument simu-
lation algorithms [28] that utilize a coupling matrix to synthetically generate sympathetic
vibration, providing parameter values at any tuning.
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Figure 3.5: Total RMS amplitude for each pickup when plucking a high E4 overlaid with the
expected propensity of each string to sympathetically resonate.
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Chapter 4

Separation of Harmonic Signals

This chapter describes the harmonic signal separation algorithm by introducing several digi-
tal signal processing concepts, discussing their implementation in the system, and describing
the decisions made during the design process of the parallel comb filter bank.

4.1 Comb Filters
Vibrating strings generally exhibit harmonic spectral content. In the case of the electric
guitar, a single guitar tone consists of frequency components at a fundamental plus all odd
and even harmonics with magnitudes of the higher partials diminishing as the frequency
increases [2]. This intrinsic characteristic of plucked strings is made evident by the strong
presence of harmonics in the individual pickup signals. Frequency analysis of the hexaphonic
pickup signals inspired a parallel comb filtering structure that separates a mono signal into
harmonically related signals for subsequent effect processing.

4.1.1 FIR Comb Filter

The finite impulse response (FIR) feedforward comb filter is obtained by summing an input
signal with the same signal delayed by M samples. From the block diagram in Fig 4.1, the
difference equation of the feedforward comb filter is given by

y[n] = b0x[n] + bMx[n−M ], (4.1)

where x[n] is the input signal and y[n] is the output signal. bM is the feedforward gain
coefficient and b0 is the blend coefficient.

A system with a finite impulse response h[n] is called an FIR system. The impulse
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x[n]
×
b0

+
y[n]

z−M ×
bM

Figure 4.1: FIR comb filter block diagram.

response of the feedforward comb filter is given by

h[n] = b0δ[n] + bMδ[n−M ], (4.2)

where the unit impulse is defined as

δ[n] =

1, n = 0

0, n ̸= 0.
(4.3)

The impulse response of the feedforward comb filter therefore simply consists of two non-zero
terms, thus satisfying the finite duration of M + 1 samples.

The transfer function relates the Z-transforms of input signal and output signal of the
described system,

HFF(z) =
Y (z)

X(z)
= b0 + bMz−M . (4.4)

A plot of the frequency response is shown Fig. 4.2. The frequency is expressed in radians
per sample, where

ω =
2πf

fs
. (4.5)

The feedforward comb filter has spectral peaks at frequencies that are multiples of 2π/M
for positive values of bM and nulls at multiples of 2π/M for negative values of bM . In other
words, changing the sign of bM results in a comb filter with peaks shifted by π/M . To
extract a harmonic signal, the peaks must coincide with the integer multiple harmonics so
only positive coefficients are of interest.

By evaluating the magnitude response at the peaks and nulls, it can be observed that
the magnitude response has a minimum of b0 − bM at the nulls and reaches a maximum of
b0 + bM at the peaks. The 3-dB width ∆ω of the comb filter is defined as the width of the
peaks at half the maximum of the magnitude squared response. This corresponds to the
point at which the power of the output signal is reduced to half of the maximum. When the
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Figure 4.2: FIR comb filter magnitude response where M = 10.

filter has unity gain, it can be found by solving the equation

|H(ω)|2 = 1

2
. (4.6)

Equivalently in decibels,

20 log(|H(ω)|) = 20 log

(
1√
2

)
= −3.01 dB. (4.7)

For a normalized magnitude response between 0 and 1, b0 = bM = 1/2 [17]. The FIR transfer
function becomes

H(z) =
1

2
(1 + z−M). (4.8)

This filter has the 3-dB width of the peaks ∆ω = π/M . This corresponds to the maximum
possible peak width, equal to the separation between peaks. While the FIR comb filter
has the advantage of having a short impulse response, the wide peaks of the FIR filter
insufficiently attenuate neighbouring frequencies.

4.1.2 IIR Comb Filter

The infinite impulse response (IIR) feedback comb filter is obtained by summing an input
signal with a delayed version of the output attenuated by a feedback gain aM . This produces
a magnitude response with the appearance of a comb where a larger gain factor produces
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sharper peaks. The feedback comb filter in Fig. 4.3 has the difference equation

y[n] = x[n] + aMy[n−M ]. (4.9)

x[n]
+

y[n]

×
aM

z−M

Figure 4.3: IIR comb filter block diagram.

The feedback comb filter has the infinite impulse response

h[n] =
∞∑
k=0

akMδ[n− kM ] (4.10)

and zero elsewhere. The corresponding transfer function is given by

HFB(z) =
1

1− aMz−M
. (4.11)

A plot of the frequency response is shown Fig. 4.4. In a similar fashion to the feedforward
comb filter, the feedback comb filter has peaks at frequencies that are multiples of 2π/M

for positive values of aM and nulls at multiples of 2π/M for negative values of aM . In other
words, changing the sign of aM results in a comb filter with peaks shifted by π/M . To extract
a harmonic signal, the peaks must coincide with the harmonics so only positive coefficients
are of interest.

The magnitude response has a minimum of 1/(1 + aM) at the nulls and a maximum of
1/(1 − aM) at the peaks, with |aM | < 1 required for stability. Unlike with the FIR comb
filter, a null magnitude of 0 is unattainable. However, the IIR comb filter has an adjustable
peak width ∆ω better suited to the separation of harmonic signals.

The ideal comb filter for harmonic separation would offer both an adjustable peak width
and a normalized magnitude response with null values of 0 corresponding to a −∞ dB
attenuation between harmonic frequencies. This filter is achieved in the form of the universal
comb filter constructed from the combination of the FIR and IIR comb filters [2].
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Figure 4.4: IIR comb filter magnitude response where M = 10.

4.1.3 Universal Comb Filter

The series combination of the feedforward (4.4) and feedback (4.11) comb filters leads to the
universal comb filter with a new response given in the frequency-domain as

HUNI = HFFHFB. (4.12)

The direct-form I difference equation and transfer function of the universal comb filter is
given by

y[n] = b0x[n] + bMx[n−M ] + aMy[n−M ], (4.13)

HUNI(z) =
b0 + bMz−M

1− aMz−M
. (4.14)

This implementation requires two delay lines. Alternatively, the canonical implementation
shown in Fig. 4.5 requires a single delay line and is described by the difference equations

xh[n] = x[n] + aMxh[n−M ]

y[n] = b0xh[n] + bMxh[n−M ].
(4.15)

In the special case where b0 = −aM and bM = 1, this filter structure reverts to a first-
order allpass filter used in Schroeder reverberators [24]. The magnitude response of the FIR,
IIR, and universal comb filters is summarized below. With the universal comb filter, the
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×
b0

x[n]
+

xh[n]
z−M

xh[n−M ]
×
bM

+
y[n]

×
aM

Figure 4.5: The canonical universal comb filter.

peak and null values along with the 3-dB bandwidth can be set to any desired value.

H(ω) |H(0)| |H
(

π
M

)
|

Feedforward b0 + bMe−jωM b0 + bM b0 − bM

Feedback 1

1− aMe−jωM

1

1− aM

1

1 + aM

Universal b0 + bMe−jωM

1− aMe−jωM

b0 + bM
1− aM

b0 − bM
1 + aM

(4.16)

4.1.4 Comb Filter Parameters

The delay of the filter M is fixed according to the fundamental frequency of interest. To
extract frequencies that are multiples of f1 the length of the delay line is set to

M =
2π

ω1

=
fs
f1

where ω1 =
2πf1
fs

. (4.17)

The comb filter has peaks at the multiples

ωk = k
2π

M
or fk = k

fs
M

, k = 0, 1, . . . ,M − 1 (4.18)

and nulls at the half-multiples

ωk =
(2k + 1)

2

2π

M
or fk =

(2k + 1)

2

fs
M

, k = 0, 1, . . . ,M − 1. (4.19)

The feedforward coefficients are chosen such that the peaks of the comb filter are nor-
malized for unity-gain with the nulls having a value of 0. Solving H(ω) = 1 for b0 when
ω = 0 gives

b0 = bM =
1− aM

2
. (4.20)

The choice of feedback coefficient places the nulls of the FIR comb filter between the peaks
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of the IIR comb filter. As such,

aM =
1− β

1 + β
, b0 = bM =

β

1 + β
, where β = tan

(
M∆ω

4

)
, (4.21)

for a desired 3-dB width ∆ω in the range 0 ≤ ∆ω ≤ π/M . This maximum ∆ω occurs
when the 3-dB peak width is equal to the separation between peaks. This limit applies the
following constraints on β and aM :

0 ≤ β ≤ 1, 0 ≤ aM ≤ 1. (4.22)

Figure 4.6 shows the comb filter magnitude response for different 3-dB widths.
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Figure 4.6: The magnitude squared and phase responses for different choices of ∆ω where
M = 10.

The corresponding quality factor is given by

Q =
ω1

∆ω
=

2π/M

∆ω
, (4.23)
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such that a narrower peak results in a higher Q. An equivalent expression for β is

β = tan

(
π

2Q

)
. (4.24)

where Q ≥ 2.

4.1.5 Impulse Response

The filtering operation results in an inherent temporal smearing of the signal that has the
effect of smoothing out sharp transitions. The amount of temporal smearing is dictated by
the filter impulse response. The universal comb filter has the causal impulse response

h[n] = b0δ[n] + bMδ[n−M ] + aMh[n−M ] (4.25)

Iterating the first few multiples of M,

h[0] = b0(1) + bM(0) + aMh[−M ] = b0,

h[M ] = b0(0) + bM(1) + aMh[0] = aMb0 + bM ,

h[2M ] = b0(0) + bM(0) + aMh[M ] = aM(aMb0 + bM),

h[3M ] = b0(0) + bM(0) + aMh[2M ] = a2M(aMb0 + bM).

In the exponentially decaying form,

h[n] =

b0, n = 0

a
n/M−1
M (aMb0 + bM), n = M, 2M, 3M, . . . ,

(4.26)

and zero elsewhere. Ignoring for the moment the n = 0 case and substituting n = tfs, the
decay rate of the impulse response can be determined by

h(tfs)

h(0)
=

a
tfs/M−1
M (aMb0 + bM)

a
0/M−1
M (aMb0 + bM)

=
a
tfs/M−1
M

a
0/M−1
M

= a
tfs/M
M (4.27)

This decay rate is the same as that of the IIR comb filter. Since M is fixed, the aM

coefficient solely defines the impulse response decay time for a given sampling frequency.
The decay time is typically represented by the t60 measure, defined as the time for the
impulse response to decay by 60 dB,

a
t60fs/M
M = 10−60/20 = 0.001. (4.28)
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Taking the logarithm of both sides and rearranging gives the decay time:

t60fs
M

log(aM) = −60

20
, (4.29)

t60 =
−3M

fs log aM
. (4.30)

Given the definition in (4.20), and the constraints of (4.22), it can be observed that the
maximum amplitude of the impulse response occurs not at n = 0 but rather n = M :

h[M ] = aMb0 + bM = aMb0 + b0, (4.31)

which is greater than h[0] = b0. This is illustrated in Fig. 4.7.

0 M

fs

t60

n

aMb0 + bM

b0h
[n
]

atfs/M−1(aMb0 + bM )

Figure 4.7: Typical impulse response of the comb filter with h[0], h[M ], and t60 annotated.
The dashed line shows the exponential decay function.

Another way to demonstrate this is by finding the causal inverse Z-transform of the
transfer function by partial fraction expansion:

HUNI(z) = b0 +
(aMb0 + bM)z−M

1− aMz−M
(4.32)

h[n] = b0δ[n] + (aMb0 + bM)
∞∑
k=0

akMδ[n− kM −M ] (4.33)

After sample M, the impulse response of a pole-zero filter with M zeros behaves like that
of an all-pole filter [18]. By considering the start of the decay at n = M , the decay time
becomes

t60 =
M

fs

(
−3

log aM
+ 1

)
, (4.34)
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increasing the previous result by M/fs. This small penalty is incurred by the addition of
the feedforward terms, with the benefit being −∞ dB attenuation at the nulls.

Using the definition in equation (4.24), the aM coefficient can be expressed as

aM =
1− tan(π/2Q)

1 + tan(π/2Q)
. (4.35)

With the addition of definition (4.17), equation (4.34) can be expressed solely in terms of f1
and Q factor:

t60 =
1

f1

 −3

log
(

1−tan(π/2Q)
1+tan(π/2Q)

) + 1

 . (4.36)

This relationship between f1, Q, and t60 is illustrated in Fig. 4.8.

80 100 120 140 160
f1 [Hz]

0.1

0.2

0.3

0.4

0.5

t 6
0

D
ec

ay
T

im
e

[s]

Q = 5

Q = 10

Q = 20

Figure 4.8: Three choices of Q are plotted with their corresponding t60 decay time for the
frequency 110 Hz. t60 values are extended for constant Q (solid line) and constant ∆ω (dashed
line).

The pluck or attack part of a guitar note is severely attenuated for a very long decay
time t60. This is made less noticeable with distortion, but the individual onsets get blurred
together when played in fast succession. At the same time, a higher Q results in a smaller
peak width and is more effective in attenuating neighbouring frequencies. This creates a
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trade-off between harmonic separation and sharp transitions. In the implementation, this is
left as a user-adjustable parameter.

4.2 Parallel Comb Filters
The mono guitar pickup signal can be modeled as the sum of harmonic signals. A bank
of parallel comb filters can separate a mono signal into separate signals for subsequent
effect processing. The separation of harmonic signals is illustrated in the comparison of the
original six-channel hexaphonic recording in Fig. 3.2, the mono recording in Fig. 3.3, and
the six channels extracted from the mono signal in Fig. 4.9. The parallel comb filters recover
each of the individual string plucks by separating each tone. When an arbitrary signal is
separated into harmonic components, distortion can be applied in a way that only produces
harmonic distortion products.

4.2.1 Simulating Sympathetic String Effects

As seen in Fig. 3.2, the hexaphonic pickup exhibits small amounts of cross-talk in which an
individual pickup will capture the vibrations of an adjacent string. The Ubertar HC-series
coils offer excellent separation. In addition to cross-talk, strings that are not directly inter-
acted with also resonate due to sympathetic vibrations. Interestingly, the parallel filter bank
exhibits a characteristic analogous to the sympathetic vibrations captured by a hexaphonic
pickup. For example, as seen in Fig. 4.9, the comb filter with fundamental frequency 82.4 Hz
has peaks that capture the partials of the B3 string (246.9 Hz) and also those of the high E4

string (329.6 Hz). In effect, it recaptures some of the sympathetic vibration signals found in
hexaphonic recordings. The effect can be excessive in some cases, causing a note to appear
more prominently in the output of comb filter of a different pitch, as seen in the plucking of
the B3 string (246.9 Hz) between 32 and 40 seconds.

4.2.2 Filter Bank

Guitar fundamental frequencies range from 82.4 Hz to a little over 1 kHz with the upper
limit depending on the number of frets. A filter bank of twelve comb filters is sufficient to
separate all harmonics belonging to the musical notes of the equal-tempered chromatic scale.
The fundamental frequencies of these filters are set to the chromatic progression of the sixth
string, being the lowest octave in standard tuning. Higher octaves of a given fundamental
frequency are captured in the higher harmonic peaks. In this implementation, the filters
conform to the equal temperament tuning of the guitar fretboard. The comb filters can be
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Figure 4.9: Output signals of six comb filters with peaks aligned to the harmonics of the open
string frequencies. Input signal is the mono pickup recording. Where the peaks of the comb
filters overlap, the harmonics of the tones appear at the output of multiple comb filters.
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set for any tuning system when used on fretless instruments. With inspiration from Miwa
et al. [20], the ith harmonic of tone p is notated fi,p, with each harmonic being a multiple of
the fundamental frequency,

fi,p = if1,p, p = E,F, . . . ,D♯. (4.37)

The comb filter transfer function with peaks at the harmonics of tone p is denoted Hp(z).
The twelve parallel comb filters have delay line lengths given in Table 4.1. Without the use
oversampling, the rounding error caused by an integer sample delay, with a sample rate of
44.1 kHz, is at most 0.17%. However, with 16× oversampling, which is necessary for the
distortion processing to be discussed in Sec. 5.4, the rounding error is reduced to 0.01% in
the worst case, avoiding the need for fractional delay line methods.

Table 4.1: The twelve equal-tempered fundamental frequencies and the integer delays with a
sampling rate of 16× 44.1 kHz.

Tone p E F F♯ G G♯ A A♯ B C C♯ D D♯

f1,p [Hz] 82.4 87.3 92.5 98 103.8 110 116.5 123.5 130.8 138.6 146.8 155.6
Delay M 8562 8082 7628 7200 6796 6415 6055 5715 5394 5091 4805 4536

The magnitude response of the filter bank is shown in Fig. 4.10. Notes separated by
consonant intervals will have overlapping harmonic peaks. Here the comb filters share a
constant Q factor so that the overlaps are made visible.

The combined transfer function of the filter bank is obtained by summing the frequency
response of the parallel filters,

Hsum(z) =
∑
p

Hp(z) = HE(z) +HF(z) + · · ·+HD♯(z). (4.38)

The combined magnitude response, |Hsum(z)|, is shown in Fig. 4.11 for different Q factors
and ∆ω.

The first null of each comb filter combine to create a large single null at 55.4 Hz. With
a high Q factor, the overlapping harmonic peaks and nulls of the parallel filters create
an irregular magnitude response at high frequencies. A smaller Q factor minimizes the
irregularities but is less effective at separating the signal into harmonic components. A good
compromise exists at Q = 10 or ∆ω = 0.2π/M , where the magnitude response is nearly
linear in the range f1,E = 82.4 Hz to f1,D♯ = 155.6 Hz, and the irregularities are within 20
dB for frequencies up to 1 kHz, then within 35 dB for frequencies up to fs/2.

The parallel filters can be designed with either a constant Q factor or a constant ∆ω.
When the comb filters have constant Q the peak width increases with f1, which makes the

29



Frequency [Hz]

100
150

200
250

300
E

F
F�

G
G�

A
A�

B
C

C�
D

D� A
m

pl
itu

de
[d

B]

−40
−20

0

100 150 200 250 300
Frequency [Hz]

−20

−10

0

10

A
m

pl
itu

de
[d

B]

EFF�GG�AA� B C C� D D�

Figure 4.10: Magnitude response of the twelve parallel comb filters where ω = 0.05π/M .
Annotated are the f1,p fundamental frequencies. Overlapping peaks occur at the coincident
partials, e.g. f2,B = 246.9 Hz and f3,E = 247.2 Hz.

30



−40

−20

0

20

40
A

m
pl

itu
de

[d
B]

(a) Constant Q

Q = 5 Q = 10 Q = 20

0 200 400 600 800 1k
Frequency [Hz]

−40

−20

0

20

40

A
m

pl
itu

de
[d

B]

(b) Constant ∆ω

∆ω = 0.0031 ∆ω = 0.0016 ∆ω = 0.0008

Figure 4.11: Summed magnitude response of the parallel comb filters for different Q factors
and ∆ω. Overlapping harmonic peaks and nulls of the parallel filters result in an irregular
magnitude response at high frequencies.

summed magnitude response of the parallel comb filter bank flatter. On the other hand, as
was in seen Fig. 4.8, the impulse response decay times t60 vary widely over the frequencies
that make up the filter bank. For this reason, a constant ∆ω, which provides nearly constant
t60 across the filter bank frequencies, may be preferred. In this case, the average Q factor of
the twelve filters is given by the geometric mean,(∏

p

Qp

)1/12

=
2π

∆ωfs

(∏
p

f1,p

)1/12

. (4.39)

4.2.3 Microtonal Pitch Variations

Since the peaks of the filter bank are tuned to a chromatic scale, pitches that lie between
semitones are attenuated. The magnitude response of Fig. 4.11 provides some insight into
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the behaviour of the filter during string bending, slides, or the use of a whammy bar. These
playing techniques are all forms of glissandi — a continuous frequency increase or decrease
from one note to another. As the pitch slides across harmonic peaks, it experiences amplitude
modulations with an envelope resembling that of the magnitude response. This is yet another
tradeoff in the choice of peak width and a further motivation for making the parameter user-
adjustable.

4.3 String Detection
Some characteristics cannot be recovered from a mono signal. In standard tuning, notes with
identical pitch and octave can be played on different strings. For example, the open note
G3 is repeated on the adjacent strings on the fifth and tenth frets (Table 4.2). Without the
added complexity of fret fingering heuristics, even a sophisticated polyphonic pitch detection
algorithm could not trace the individual notes that make up a mono signal back to its
originating string.

Table 4.2: Guitar fretboard in standard tuning. The highlighted G3 notes are identical in
pitch and octave and can be played on different strings.

Open 1 2 3 4 5 6 7 8 9 10 11 12
E4 F4 F♯

4 G4 G♯
4 A4 A♯

4 B4 C5 C♯
5 D5 D♯

5 E5

B3 C4 C♯
4 D4 D♯

4 E4 F4 F♯
4 G4 G♯

4 A4 A♯
4 B4

G3 G♯
3 A3 A♯

3 B3 C4 C♯
4 D4 D♯

4 E4 F4 F♯
4 G4

D3 D♯
3 E3 F3 F♯

3 G3 G♯
3 A3 A♯

3 B3 C4 C♯
4 D4

A2 A♯
2 B2 C3 C♯

3 D3 D♯
3 E3 F3 F♯

3 G3 G♯
3 A3

E2 F2 F♯
2 G2 G♯

2 A2 A♯
2 B2 C3 C♯

3 D3 D♯
3 E3
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Chapter 5

Distortion Emulation

The simulated hexaphonic distortion effect requires an efficient digital emulation of a non-
linear distortion circuit which will run in twelve parallel instances. The distortion used in
the evaluation of the proposed hexaphonic distortion simulation is a static approximation
of the Distorter R VIII fuzz distortion circuit. Baptista designed the Distorter R VIII
specifically for hexaphonic distortion in the Regulus guitars. As luck would have it, Baptista
published detailed building instructions for the circuit in the Brazilian electronics magazine
Nova Eletrônica.

This chapter describes the process of building the analog distortion circuit which serves
as the reference hardware unit. It then describes a static non-linear function which emulates
the diode clipper portion of the circuit. A comparison between the model and the SPICE
simulation of the circuit will reveal opportunities for improvements to the model. Lastly,
details of the oversampling implementation for alias suppression are provided.

5.1 Reference Hardware
In analog emulation, the “golden unit” is the original reference hardware. Given the deteri-
orating nature of electronics, obtaining a working and good-sounding historical unit of the
1970s is difficult at best. Instead, a replica faithfully reproducing the design from part two
of the Nova Eletrônica article “Distorcedor R VIII” [29] was built. Great care was taken to
match the design to exacting detail, using electronic components of the era such as Mullard
“tropical fish” capacitors and TO-18 metal can package transistors. The resistors, although
new, are metal film resistors with 1% tolerance for accurate operation. The guitars built by
Baptista contained six of these distortion circuits. Small-scale production of a printed circuit
board is labor intensive and vintage components are costly. This single distortion circuit
will serve as the reference hardware that will be modeled digitally in multiple instances.

33



5.1.1 Circuit Schematic and Operation

Fuzz distortion is achieved by brutally amplifying the electric guitar signal by injecting the
signal into a bipolar junction transistor (BJT) driven above its linear operation range. This
also clips the signal, producing a flattening of the top of the waveform. Following this, two
diodes arranged in parallel but in opposite direction clip the top and bottom of the signal
into a more symmetrical waveform. With reference to the schematic in Fig. 5.1, the basic
operation of the device is described as such (translated from Brazilian Portuguese):

When connected, the signal goes to switch S1, which puts C3 in series with the
signal or shorted, this signal going, filtered or not, by C3 to the base of Q1, via
C1. Q1 amplifies the signal and delivers it to Q2, already partially distorted.
This signal is further amplified by Q2, which distorts it even more, being then
delivered to D1 and D2 that complete the service, drastically clipping the signal
already quite distorted by Q1 and Q2. After D1 and D2, the signal is as it will
be delivered at the output of the distorter, leaving R7, the potentiometer, the
volume dosage or the amplitude of the signal that will reach the output jack.

Capacitor C3 acts as a low-cut filter, reducing intermodulation:

In our distorter, R VIII, this capacitor can be switched on and off by you, using a
switch, giving you the deepest and most wrapped sound (but never too wrapped!)
Or the highest and purest sound.

5.1.2 Printed Circuit Board

The printed circuit board (PCB) layout was redrawn from an illustration in the article.
Circuit board dimensions were not provided and had to be inferred from the component
lead spacing. Four copies of the layout fit on a 3′′ × 5′′ FR-4 copper-clad board. A 4-up
transparency print was used to expose the light-sensitive surface of the board, which once
developed, created a pattern in the photo-resist [30]. The etched PCB is shown in Fig. 5.2.
After etching and drilling, the four boards were cut to a final size of 1.50′′ × 1.86′′. Two of
the boards were populated with components, with two left over for future assemblies.

5.1.3 Assembly

The article only includes three pictures of the distortion unit. The dimensions of the utility
enclosure had to be inferred from these pictures. A prototype panel was assembled using
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Figure 5.1: Distorter R VIII circuit schematic.

corrugated plastic to verify the spacing requirements of the panel mounted switches, jacks
and potentiometers. Once hardware locations were determined, a computer-aided design
(CAD) model of the assembly was used to determine the various lengths of wiring. This
ensured that the total length of wiring did not exceed the amount specified in the original
list of components as any excess wiring will contribute to noise in the circuit. To further
minimize noise, the wiring was completed with shielded instrument cable as suggested in
the article. Even with this precaution, the Distorter R VIII is a very sensitive device and
will easily pick up radio signals if a cable is left disconnected. The CAD model drawing in
Appendix A also served as the drill hole template. The finished unit is shown in Fig. 5.3.

5.1.4 Testing

The basic operation of the unit was verified with a function generator and oscilloscope.
Consistent with the circuit’s description, as shown in Fig. 5.4, with 64 mV at the input, the
signal is clipped at the top of the wave.

The effect of the input filter capacitor is demonstrated for a pluck of the G3 (196 Hz)
string as captured by the middle mono pickup. Figure 5.5 shows the waveform and magnitude
spectrum of the distorted signal. With the switch in the off position, capacitor C3 is shorted
and the input signal is fed directly to the distortion circuit. With the filter switch in the on
position, the input signal goes through capacitor C3. The series capacitor blocks DC and
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Figure 5.2: The etched board being drilled prior to being cut into four Distorter R VIII
circuits.

Figure 5.3: Hardware unit interior.
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Figure 5.4: Oscilloscope capture of the output signal (CH1) of the distortion unit with a 10
kHz sinusoidal input signal (CH2).
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Figure 5.5: Difference in distortion waveform and magnitude spectrum with the input filter
capacitor shorted (off) or in series (on).
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acts as a low-cut filter with the measured cut-off frequency fc = 4.4 kHz and a slope of 20 dB
per decade. As evidenced by the magnitude spectrum plots, the purpose of the input filter is
to reduce intermodulation distortion. It does this by attenuating low-frequency harmonics,
thereby attenuating the sum and difference products generated by the lower harmonics.
While the DC component of the input signal is attenuated by the filter, the subsequent
distortion reintroduces energy at the zeroth harmonic (0 Hz). This explains the higher DC
component magnitude seen in the magnitude spectrum plot.

5.2 Static Approximation of the Diode Clipper
Real-time processing of the simulated distortion requires that the distortion process be suf-
ficiently computationally efficient to process twelve channels in parallel. The Distorter R
VIII circuit can be modeled as a preamplifier followed by a static waveshaping function
which approximates the diode clipper. The static waveshaping technique was chosen for
its computational simplicity and predictable behaviour. The clipping distortion used in the
evaluation of the simulated hexaphonic distortion consists of a preamplifier gain followed by
an exponential function [2] and is given by

f(x) = sgn(x)(1− e−|gx|), (5.1)

where g is the distortion gain. The sign function acts as a comparator, driving the signal to
positive and negative extremes. This generates high-order harmonics at high amplitudes.

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.

(5.2)

The exponential function provides a slight improvement over the hard clipping sign function
by rounding out the discontinuity, thereby reducing the amplitude of the high-order har-
monics. However, as seen in the characteristic curve of the function in Fig. 5.6, as the gain
increases, the non-linearity once again approaches a hard clip [11]. This characteristic curve
is an approximation of the diode clipper non-linearity seen in the Distorter R VIII circuit
that symmetrically clips the top and bottom of the input waveform.
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Figure 5.6: Static characteristic curve of the symmetrical exponential distortion in equation
(5.1) for different preamplifier gain levels g.

5.3 Comparison with SPICE Simulation
The Distorter R VIII circuit was also simulated using SPICE (Simulation Program with
Integrated Circuit Emphasis) to obtain an accurate model of the distortion in which memory
elements are considered. Figure 5.7 shows the same 1760 Hz sine tone distorted by the
LTspice model of the Distorter R VIII and the exponential function. Immediately apparent
is the asymmetry of the waveform in the LTspice transient analysis. The signal is more
clipped at the top than at the bottom. The importance of this characteristic is revealed
in the magnitude spectrum, where the asymmetrical clipping produces both even-order and
odd-order harmonics. This is in contrast to the odd symmetry of f(x) which produces a
magnitude spectrum that has only odd-order harmonics.

A more subtle distinction is in the envelope of this spectrum. In the exponential distor-
tion, the spectral peaks are inversely proportional to the frequency,

env(|H(f)|) ∝ 1

f
. (5.3)

On the other hand, the LTspice model distortion has more variability in the peaks, producing
a ragged spectral envelope, contributing to its characteristic tonalities. The exponential
function distortion has predictable harmonic products and is thus favourable to the analysis
and evaluation of the simulated hexaphonic distortion. However, the exponential function
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Figure 5.7: Distorted 1760 Hz sine tone waveform and magnitude spectrum of the LTspice
model and the exponential distortion.

distortion lacks the analog-sounding qualities desired in distortion effects.
The differences between the distortion implementations are even more pronounced when

complex signals are considered. The combination of harmonic and inharmonic intermodu-
lation products create a dense spectrum with greatly varying characteristics depending on
the input signal.

Accurate emulation of the Distorter R VIII distortion circuit can not be accomplished
with static waveshaping techniques. The capacitors in the circuit are memory elements that
require solving non-linear ordinary differential equations (ODE). In addition, the bipolar
junction transistors (BJT) in this circuit are far from ideal amplifiers. Circuit simulation
programs such as LTspice perform transient analysis using non-linear mathematical transis-
tor models such as the Ebers-Moll model [31] and iterative methods to solve node voltage
equations over a specified set of time steps.

LTspice can output .wav audio files at any desired sample rate and can use .wav files
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as input voltage sources. While the LTspice model presented here produces very accurate
audio output, the non-linear transient analysis can not be done in real-time. However, circuit
simulation techniques have been adapted and developed for the precise purpose of digitally
emulating analog audio circuits [10, 11]. Future work will concentrate on implementing a
proper real-time emulation of the Distorter R VIII circuit.

5.4 Oversampling
A well documented artifact of digital distortion is aliasing, whereby the harmonics produced
by the non-linear effect extend beyond the Nyquist limit and wrap around to harmonically
unrelated frequencies [2]. To accurately evaluate the spectral characteristics of the effect,
the distortion must not introduce any aliased frequencies that would confound the analysis
— with particular attention given to the intermodulation products. Alias-free distortion
is achieved by the use of sixteen-times oversampling using the popular r8brain-free-src
library to achieve alias-free distortion [32].

5.4.1 Argument for Sixteen-times Oversampling

The oversampling factor was chosen by observing the maximum alias magnitude of a dis-
torted 1760 Hz sine tone. The magnitude spectrum of a distorted signal rolls off at higher
frequencies and higher fundamental frequencies will produce larger aliasing products [11].
Given that the highest fundamental frequency of a 24-fret guitar is E6 = 1318.5 Hz, the next
whole number tone A6 = 1760 Hz provides a convenient worst-case assessment.

The distortion products that exceed f ′
s/2 extend into the bandlimiting filter and will be

folded back onto the base band:
f ′
s

2
= Nfs −

fs
2
, (5.4)

where N is the oversampling factor and fs = 44.1 kHz. Since the exponential distortion
produces only odd-order harmonics the first aliased distortion product exceeding f ′

s/2 has
frequency given by

fk = f1(2k + 1), k =

⌈
1

2

(
f ′
s/2

f1
− 1

)⌉
. (5.5)

When folded onto the base band it becomes

f ′
k = Nfs − fk (5.6)

and is the spectral alias with the largest magnitude. Table 5.1 shows the measured magnitude
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of the f ′
k aliased frequency component for increasing oversampling rates. Sixteen-times

oversampling was judged sufficient since alias components below −75 dB will likely be masked
by the distorted guitar signal.

Table 5.1: Aliasing distortions for different oversampling rates for a normalized 1760 Hz sine
tone amplified by 40 dB and clipped.

N Alias component fk [Hz] Folded f ′
k [Hz] Magnitude [dB]

1 22 880 21 220 −22.44
2 68 640 19 560 −33.05
4 156 640 19 760 −44.05
8 332 640 20 160 −58.72
16 684 640 20 960 −75.95
32 1 392 160 19 040 −94.03

5.4.2 Implementation

Two instances of the r8b::CDSPResampler24 class are initialized with the parameters given
in Table 5.2.

Table 5.2: Resampler parameters.

Source Destination Max input
sample rate sample rate buffer length

Resampler 1 1 16 1024
Resampler 2 16 1 16× 1024

The sampling rates are specified as a ratio rather than fixed sampling rates to ensure
power-of-two optimizations and to avoid fractional interpolation. Successive input buffers are
passed to the resampler process function, which returns a pointer to the resampled data. The
upsampling is performed using four stages of 2× oversampling. The first stage uses a steep
reconstruction filter, implemented using the overlap-save method of block convolution. This
method requires fewer complex multiplications than direct convolution of the lowpass FIR
filter [33]. The three subsequent stages use more efficient half-band small sparse symmetric
FIR filters. At this point, the upsampled audio is processed by the simulated hexaphonic
distortion effect, including the parallel comb filter structure, and saved to a temporary buffer.
The temporary buffer is passed to the second resampler in which the upsampling process is
reversed: three half-band 2× downsamplers followed by a steep reconstruction filter with a
2% transition band.
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Chapter 6

Results

This chapter provides an evaluation of the hexaphonic distortion simulation in the context
of intermodulation distortion reduction and computational performance. Harmonic entropy,
which was introduced briefly in the previous chapter, gets a detailed description. Following
this is a description of the various software tools developed for this thesis.

6.1 Simulated Distortion Evaluation
To evaluate the simulated hexaphonic distortion effect, the intermodulation products of a
distorted hexaphonic recording are compared to the intermodulation products of a distorted
mono recording. The type of pickup and pickup position used on an electric guitar will result
in very different tones. This makes comparisons between the real hexaphonic distortion and
the simulated effect when applied to a mono pickup difficult. For this reason, the subsequent
analyses and comparisons make use of a mono signal created by averaging the individual
signals of the hexaphonic pickup.

The algorithm process begins with upsampling the mono input signal. The upsampled
signal is then separated into twelve harmonic signals by the parallel comb filter bank. Each
individual signal is distorted using the exponential distortion given in equation (5.1). Once
distorted, the signals are mixed down with the final output downsampled to the original
sampling frequency.

6.1.1 Harmonic Entropy

Erlich’s model of harmonic entropy provides a measure of interval tonality by comparing
the interval to simple integer ratios. It also provides a general prediction of the amount of
intermodulation distortion that a particular note pair is expected to produce. The Farey
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sequence Fn produces reduced fractions with denominators less than or equal to n. An
important property of the Farey sequence is that simple fractions like 1/2 and 1/3 are spaced
further apart than those of higher integers like 1/5 and 1/6. The closer a note interval i is
to an element of the series, fj, the more consonant it will sound. The region defined by the
mediant (not to be confused with the median) below and the mediant above fj is wide for
simple ratios and small for complex ratios. Integrating a normal distribution over this region
gives the probability pj(i) that an interval, i will be perceived as the ratio fj. The harmonic
entropy of the random variable i is

HE(i) = −
∑
j

pj(i) log(pj(i)). (6.1)

When an interval is close to a simple fraction, the probability density function is con-
centrated on that fraction, resulting in a small harmonic entropy value. When it is far from
a simple fraction, the probability density function is spread over multiple fractions, thus in-
creasing its harmonic entropy. As a result, the harmonic entropy gives a measure of tonality
over a continuous range of intervals as shown in Fig. 6.1.
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Figure 6.1: Harmonic entropy for intervals over the range of an octave. F50, σ = 0.007.

To best demonstrate the ability of the effect to reduce intermodulation, recordings of
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the individual plucks of the open strings and the first fret are combined to create pairs
of varying intervals. These pairwise combinations of notes include every simple interval in
the chromatic scale. Table 6.1 lists the note pairs, the intervals, i, and the corresponding
harmonic entropy, HE(i).

Table 6.1: Note pair intervals used in distortion comparisons.

Note pair i [cents] HE(i) Note pair i [cents] HE(i)
E4–B3 500 1.873 E4–C4 400 2.823
E4–G3 900 2.979 E4–G♯

3 800 2.965
E4–D3 1400 (200) 2.480 E4–D♯

3 1300 (100) 2.892
E4–A2 1900 (700) 0.073 E4–A♯

2 1800 (600) 2.783
E4–E2 2400 (1200) 0.021 E4–F2 2300 (1100) 2.945
B3–G3 400 2.823 B3–G♯

3 300 2.911
B3–D3 900 2.979 B3–D♯

3 800 2.965
B3–A2 1400 (200) 2.480 B3–A♯

2 1300 (100) 2.892
B3–E2 1900 (700) 0.073 B3–F2 1800 (600) 2.783
G3–D3 500 1.873 G3–D♯

3 400 2.823
G3–A2 1000 2.931 G3–A♯

2 900 2.979
G3–E2 1500 (300) 2.900 G3–F2 1400 (200) 2.480
D3–A2 500 1.873 D3–A♯

2 400 2.823
D3–E2 1000 2.931 D3–F2 900 2.979
A2–E2 500 1.873 A2–F2 400 2.823

6.2 Comparison of Distortion Structures
In Fig. 6.2, the mono signal is distorted by the clipping function, f(x). In the simulated
distortion structure of Fig. 6.3, the same mono signal is separated into harmonic signals by
the parallel comb filter bank prior to distortion. The comb filters are set to constant peak
width of ∆ω = 0.0015/16 corresponding to an average Q of 10.75. In hexaphonic distortion,
the clipping function is applied to each string separately, as shown in Fig. 6.4. In each case,
the distortion gain is 100.0 or 40 dB and the post-distortion output signal is normalized to
the root mean square (RMS) value of −12 dB. N× oversampling is employed throughout to
reduce aliasing in the digital implementation of distortion.

x[n]
↑ N f(x) ↓ N

y[n]

Figure 6.2: The mono distortion structure.
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x[n]
↑ N HE(z) f(x) + ↓ N

y[n]

HF(z) f(x) +

... ...

HD♯(z) f(x)

Figure 6.3: The simulated distortion structure.

x1[n] ↑ N f(x) + ↓ N
y[n]

x2[n] ↑ N f(x) +

... ...

x6[n] ↑ N f(x)

Figure 6.4: The hexaphonic distortion structure.

6.3 Magnitude Response Comparison
Two note pairs are examined by comparing the magnitude response of the different distortion
outputs. Consider the minor seventh interval consisting of the tones G3 (196 Hz) and A2 (110
Hz) played on the open strings. Shown in Fig. 6.5a, when mono distortion is applied to the
averaged hexaphonic signal, the three largest intermodulation products have the following
sum and difference frequencies:

f1,G + f1,A = 196 + 110 = 306 Hz,
f1,G + f2,A = 196 + 2 · 110 = 416 Hz,
f1,G + f4,A = 196 + 4 · 110 = 636 Hz.

The difference between the peak amplitude at 110 Hz and each of these intermodulation
components is summarized in Table 6.2. On average, the comb filtering method in the
simulated distortion attenuates the intermodulation products seen in the mono distortion by
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Figure 6.5: Magnitude spectrum of each distortion output for the note pairs (a) G3–A2 and
(b) E4–C4. The dashed lines show the three largest intermodulation components. Symmetrical
soft clipping with gain 100.0. Signals are normalized to −12 dB RMS post-distortion.
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11.6 dB, while hexaphonic distortion achieves 34.4 dB. This suggests the algorithm is about
a third as effective at reducing intermodulation distortion in this particular note pair when
compared to hexaphonic distortion.

Table 6.2: Comparison of intermodulation product magnitudes for note pair G3–A2

Intermodulation component [Hz] 306 416 636
Mono distortion [dB] −18.3 −18.3 −19.8
Simulated distortion [dB] −26.0 −31.2 −34.1
Hexaphonic distortion [dB] −50.7 −54.4 −54.6

The tones E4 (329.6 Hz) and C4 (261.6 Hz) belonging to the C chord, produce very distinct
intermodulation products when distorted in mono, as seen in Fig. 6.5b. The intermodulation
product are sum and difference products:

f1,E − f1,C = 329.6− 261.6 = 68 Hz,
f2,E − f2,C = 2 · 329.6− 2 · 261.6 = 136 Hz,
f3,E − f3,C = 3 · 329.6− 3 · 261.6 = 204 Hz . . .

In mono distortion, the energy of the intermodulation distortions is concentrated at the
peaks. The use of comb filters in the simulated distortion attenuates the intermodulation
components by distributing the energy over the broader spectrum. In doing so, the harmonic
distortion is made more prominent.

6.4 Spectrogram Comparison
Figures 6.6 and 6.7 show spectrograms for each distorted pairwise note combinations for
frequencies up to 1 kHz. In the hexaphonic distortion, the two note pairs recorded from
the hexaphonic pickup are distorted separately and the resulting spectrogram shows almost
no intermodulation distortion. This translates to clear distinct notes. The double octave
interval E4–E2 in Fig. 6.6 has a small harmonic entropy value and shows no intermodulation
products in any of the distortion outputs. Conversely, the interval G3–A2 has few coincident
partials and thus, a large harmonic entropy value. The resulting spectrogram of the mono
distortion output is very dense. In the simulated distortion, the intermodulation products
are partly attenuated.

None of the intervals in Fig. 6.7 have small harmonic entropy value. As expected, each of
the note pairs produce intermodulation distortion in the mono distortion output and again,
distorting each band of the filter bank separately helps reduce the intermodulation products.
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(c) Hexaphonic distortion

Figure 6.6: Distortion spectrograms for pairwise combinations of open strings notes. Each
signal is normalized to −12 dB RMS post-distortion.
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Figure 6.7: Distortion spectrograms for pairwise combinations of open and first fret notes.
Each signal is normalized to −12 dB RMS post-distortion.
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The analyzed sound files were made available online as part of the paper submission to
the International Conference on Digital Audio Effects 2020 (DAFx-20) [34].

6.5 Algorithm Performance
The parallel comb filtering and distortion process illustrated in Fig. 6.3 begins by upsampling
the mono signal by a factor of sixteen. The signal is then processed by twelve parallel
comb filters and a non-linear distortion function. The resulting twelve channels of audio
are averaged to obtain a mono sum. This structure employs only two resampling steps,
with the tradeoff being that the comb filters also process oversampled audio. Consequently,
the delay line buffers are proportionally increased by the oversampling factor. The memory
requirements are therefore significantly increased. This is deemed a worthwhile compromise
since memory is plentiful in modern computers.

The filter bank and distortion structures were implemented using the Synthesis ToolKit
in C++ (STK) [35]. The parallel comb filters utilize twelve STK non-interpolating Delay
objects in the canonical structure of Fig. 4.5. A loop performs sample-based processing of
each resampler buffer. While it was initially assumed that the oversampling process would
be the largest computational expense, runtime measurements reveal otherwise. A C++ class
for the purpose of performance measurement was built using STK conventions. The class
provides a convenient method for placing markers at different sections of the runtime loop
with a string label. Once execution completes, a print function outputs the elapsed time
of each labeled section of code. Since there is an inherent computational expense in the
timing functions, the results are best understood by comparing the relative expense of each
process. This is summarized in Table 6.3. The largest expense are the twelve parallel comb
filters and the exponential function-based distortion. While the individual comb filtering
operations are cheap, computing twelve parallel comb filters at sixteen times the sample rate
quickly adds up. The upsampling and downsampling processes are comparatively cheap.
The r8brain-free-src library implements optimizations for power-of-two resampling ratios
in which case the largest limiting factor is the FFT function [32]. The results also show
that the implementation can in fact run in real-time, utilizing 1.324 s/8 s = 0.17 real-time
blocks. Further optimizations of the parallel filtering blocks could be achieved using single-
instruction multiple-data (SIMD) capabilities of modern processors.
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Table 6.3: Computational expense averaged over three runs. Clang optimization level -Os
(fastest, smallest). Running on a 1.6 GHz Intel Core i5.

8 s of 24-bit audio at 44.1 kHz, 16× oversampling
Process Time [s] Weight [%]
File Read 0.030 2.28
Upsample 0.042 3.14
Parallel Filters 16× 12× 0.00311 = 0.598 45.14
Distortion 16× 12× 0.00265 = 0.510 38.54
Mix 16× 12× 0.00024 = 0.046 3.47
Downsample 0.045 3.38
File Write 0.054 4.05
Total 1.324 100.00

6.6 Tools
The Synthesis ToolKit has support for multi-channel processing and audio files that make
it ideal when working with hexaphonic signals. With the exception of combeq the following
tools were all implemented using the STK. They were developed as command-line utilities for
ease of use and batch processing. All the figures used in the thesis were created in the open
source Python library, Matplotlib. Development also made substantial use of the NumPy
and SciPy packages.

combeq

A Python script combining a parameterized comb filter and plotting functions to aid in the
design and analysis of the individual comb filters.

harmonicfilter

Implements a bank of parallel comb filters. The output of each filter is saved to individual
channels of a .wav file.

amerge

The amerge tool was created to combine the multitrack hexaphonic recordings to six-channel
.wav files. It can also perform a summed-to-mono conversion by multi-channel averaging. It
detects the input format and uses the same output format.

52



expdist

Utility that performs multi-channel distortion with oversampling based on an exponential
function. This was used to create the mono and hexaphonic distortion reference signals used
to sonically evaluate the simulated effect.

hexsim

The main hexaphonic distortion simulation effect, it takes a mono input signal and performs
upsampling followed by parallel comb filtering and distortion prior to downsampling back to
the original sampling frequency.

pairwise

This utility takes two six-channel hexaphonic recordings of string plucks and creates pairwise
combinations of notes output to two channels. It detects note onsets and lines them up to
generate simultaneous plucks.
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Chapter 7

Conclusion and Future Work

This chapter provides a preview of the remaining challenges involved in building a physical
model of the Distorter R VIII. It also discusses vectorization as an approach to improving the
computational performance of the hexaphonic distortion simulation algorithm before finally
concluding the thesis.

7.1 Circuit Emulation Preview
In Chapter 5, the diode clipper non-linearity was implemented as a static characteristic curve.
As a preview of the physical modelling implementation, the diode is described in terms of
its physical parameters. A commonly used and suitably accurate model of the diode is the
Shockley diode equation [11]:

Id = Is

(
e

Vd
nVT − 1

)
(7.1)

It describes the characteristic relationship between the voltage across the diode Vd and
the current through the diode Id under forward and reverse bias. The physical parameters
for the 1N914 silicon diode are:

• the reverse bias saturation Is = 2.52 nA
• the ideality factor n = 1.752

• the thermal voltage evaluated at 25◦C VT = kT
q
= 25.69 mV

In the last expression, k is the Boltzmann constant, T is the temperature in Kelvins, and q

is the elementary charge.
The similar equations that make up the Ebers-Moll model describe the BJT as a voltage-

controlled current source. Using these equations and modified nodal analysis, the circuit
can be represented as a system of non-linear differential-algebraic equations consisting of
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memoryless elements (resistors), energy storage elements (capacitors), non-linear elements
(transistors and diodes), and independent voltage sources. This system of equations is solved
using numerical methods, with the backward Euler and Trapezoidal rule methods being most
common approaches. The resulting non-linear equation is evaluated using Newton iteration
yielding the node voltages for each specified time step. Applying an audio signal to the
input node will generate a distorted signal at the output node. Various optimizations are
then applied to the model to the point where the signal can be processed in real-time.

7.2 Vectorized Operations
In Chapter 6, it was suggested that the hexaphonic distortion simulation algorithm could be
further optimized through the use of SIMD instructions. These are available on most CPU
architectures, including Intel x86 in the form of the trademark MMX, Streaming SIMD
Extensions (SSE), and the Advanced Vector Extensions (AVX). The ARM instruction set
features the Neon SIMD architecture extension.

Using the ARM assembly language as an example, adding four pairs of registers typically
requires four instructions:

ADD R0, R0, R4
ADD R1, R1, R5
ADD R2, R2, R6
ADD R3, R3, R7

where the destination register is followed by the operands. Neon SIMD can combine the
operations into a single instruction and performs the operation simultaneously:

ADD V10.4S, V8.4S, V9.4S

The four values are packed into two pairs of 4-element registers, V8 and V9, and the result
is stored in the vector register V10. The operand suffix .4S indicates four 32-bit words.
Since digital signal processing algorithms rely on numerous repeated operations, SIMD can
provide significant performance improvements.

There are numerous approaches to vectorization. Optimizing compilers like LLVM fea-
ture automatic vectorization of loops — transforming sequential operations into vector oper-
ations. However, vectorization will fail if the loop control flow is not understood by analyzer.
Optimization diagnostics reveal that the parallel processing of the twelve comb filters and
distortion is not automatically vectorized.
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Guaranteed use of SIMD vectorized operations can be achieved through specialized math
libraries, explicit use of intrinsic functions for the specific architecture, or using SIMD in-
structions in hand-coded assembler.

7.3 Summary
Despite the many advantages hexaphonic distortion has over traditional mono distortion,
hexaphonic hardware is too expensive for the average guitarist and thus hexaphonic distor-
tion has never been widely adopted. The simulated hexaphonic distortion effect described
in this thesis attempts to reproduce the characteristics of hexaphonic distortion for use with
ordinary electric guitars with mono pickups. A parallel comb filter structure has been shown
to separate a mono guitar signal into predominantly harmonic signals akin to that of a hexa-
phonic pickup signal. In addition, the overlapping spectral peaks of the comb filters simulate
the sympathetic vibrations captured by hexaphonic pickups. Individually distorting the har-
monically separated signals results in clear, sustained, and harmonically rich distortion with
fewer intermodulation products. The algorithm therefore provides guitarists with greater
flexibility in their choice of chords when using distortion. The proposed structure may be
used in real-time with any sufficiently optimized distortion algorithm. Physical modeling
approaches present the most accurate distortion circuit emulations but are computationally
expensive. Given the increased cost requirement of twelve separate distortion processes,
the need for an efficient circuit emulation of the Distorter R VIII presents an interesting
challenge for the future.
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Appendix A

Drawings

The following pages include the Nova Eletrônica No. 3023 printed circuit board layout re-
produced from the “Distorcedor R VIII” article [1] and by a drawing of the interior drill hole
locations for the utility enclosure. The enclosure dimensions of 8′′ × 4′′ × 2′′ and the hole
locations were determined from the pictures shown in the article.
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