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Abstract

This thesis describes the use of numerical continuation methods to analyze the behavior of

a modeled trumpet-player system, and to make comparisons between the instruments

based on parameters that are relevant to players. The acoustic impedances of four B♭

trumpets were measured, and modal parameters were derived to describe each measured

impedance. The modal impedance parameters were then incorporated into a physical

model representing the player-trumpet system. Linear stability analysis (LSA) was used to

refine the lip frequency parameter used, and then the system was studied using numerical

continuation methods to determine how the mouthpiece pressure varies with the blowing

pressure. Bifurcation diagrams of downstream mouthpiece pressure versus upstream

blowing pressure were generated using the numerical continuation software Manlab, and it

was found that all four trumpets displayed subcritical, or inverse, Hopf bifurcations at the

note onset. This means that each instrument displayed hysteresis behavior, so that the

minimum onset blowing pressure and dynamic were higher than the extinction blowing

pressure and dynamic. The location of the Hopf bifurcation point, the mouthpiece pressure

at an estimate of the players’ maximum blowing pressure, and location of the fold, where

the oscillating solution becomes extinct as the blowing pressure is reduced, were

determined for each instrument. The locations of these landmarks were used to make
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conjectures about the amount of blowing pressure needed to begin a note, the maximum

and minimum dynamics of the instrument, the dynamic range, and the amplitude of the

hysteresis for each instrument. A small-scale perceptual trial was conducted to determine

whether players could perceive these differences, and whether their observations agreed

with the conjectures made based on the results from numerical continuation.
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Abrégé

Cette thèse présente l’utilisation des méthodes de continuation numérique pour analyser le

comportement d’un modèle d’un système trompette-joueur et pour comparer les instruments

par des paramètres pertinents aux joueurs. Les impédances acoustiques de quatre trompettes

en si bémol étaient mesurées, et les paramètres modales étaient calculés pour décrire chaque

impédance mesuré. À la suite, les paramètres modales d’impédance étaient incorporés dans

un modèle physique qui représentait le système trompette-joueur. L’analyse de stabilité

linéaire (ASL) était utilisée pour ajuster les paramètres de la fréquence des lèvres, ensuite

le système était examiné avec les méthodes de continuation numérique pour déterminer

comment la pression de l’embouchure variait avec la pression du souffle. Des diagrammes

de bifurcation de la pression de l’embouchure versus la pression du souffle étaient créés

avec le logiciel Manlab, et on découvre que les quatre trompettes avaient des bifurcation

de Hopf subcritique, ou inverse, à l’attaque. Cela signifie que chaque instrument avait le

comportement d’ hystérésis, donc la pression du souffle et le volume minimum pour l’attaque

étaient plus hauts que la pression du souffle et le volume de l’extinction. L’emplacement de

la bifurcation de Hopf, la valeur de la pression de l’embouchure à la pression maximale du

souffle, et la location du pli où la solution oscillant disparâıt à la réduction de la pression

du souffle ont été calculés pour chaque instrument. L’emplacement des ces repères étaient
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utilisés pour formuler des conjectures à propos de la valeur de la pression du souffle requise

pour commencer une note, les sons minimales et maximales, la gamme des nuances, et

l’ampleur de l’hystérésis pour chaque instrument. Un essai perceptif à petite échelle était

mené pour évaluer si des joueurs pouvaient distinguer ces différences et si leurs observations

correspondaient avec les conjectures fondées sur les résultats de la continuation numérique.
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Chapter 1

Introduction

1.1 Motivation

The design of trumpets, like other brass instruments, has traditionally relied on work by

artisans and manufacturers without a basis in acoustical science. Though results and

techniques from acoustical science may help to make instrument design more efficient and

affordable, these resources have not often been implemented by manufacturers.

Various prior research has been conducted to classify acoustical parameters according

to their influence on a performer’s experience of playing an instrument. These parameters

are then used to make comparisons between measured representations of different

instruments and to make conjectures based on these comparisons about the instruments’

playing characteristics. For example, Elie et al. [2012] use acoustical parameters to classify

classical guitars according to parameters that can be influenced by the manufacturer,

Mansour et al. [2015] use bridge admittances to classify models of guitars and compare

their results with descriptions from the manufacturer, and Woodhouse [1993] classifies
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violins by parameters related to “playability,” including a parameter for the minimum bow

force required to begin a note.

One assessment criterion for wind instruments that is both relevant to players and can

be investigated through numerical methods is how the amplitude of oscillation varies with

blowing pressure, often referred to by players as the “response” of the instrument. This

encompasses threshold factors such as minimum onset pressure and extinction pressure, as

well as how the mouthpiece pressure, related to the perceived loudness of the instrument,

varies as the player increases and decreases their blowing pressure. The response to varying

levels of blowing pressure has been investigated for woodwind instruments in [Dalmont et al.,

2005] and [Colinot et al., 2019] and for brass instruments in [Velut et al., 2017] and [Campbell

and Bromage, 2005], and was investigated and used to make comparisons between different

professional trumpet models in [Fréour et al., 2020]. The purpose of this thesis is to compare

the response of different trumpets to varying levels of blowing pressure using numerical

continuation methods, as in [Fréour et al., 2020], to make inferences about the instruments

that are relevant to players. A small-scale, preliminary perceptual trial was also conducted

to determine whether players could perceive these difference and whether they agreed with

the conjectures based on the modeling.

1.2 Structure of the Thesis

This thesis begins with a review of brass-instrument modeling techniques in Chapter 2, with

a focus on the type of models and analysis used in this thesis. Next, in Chapter 3, the model

and methodology used for this thesis are described. The results of the modeling are given in

Chapter 4. After the modeling results are presented, the perceptual trial is described, and
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its results presented, in Chapter 5. Finally, conclusions are drawn and areas for future work

proposed in Chapter 6.
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Chapter 2

Brass acoustics modeling background

2.1 Brass Instrument Modeling

2.1.1 Introduction to the trumpet and its sound production

mechanism

The trumpet is a member of the brass-instrument family, which consists of instruments

whose sound production is facilitated by the musician vibrating, or “buzzing” their lips into

a mouthpiece [Campbell et al., 2021]. In the brass-instrument sound production mechanism,

the player first generates upstream pressure inside their mouth. The difference between this

upstream pressure and the downstream pressure in the mouthpiece generates an airflow that

causes the lips to vibrate, and this vibration excites the resonant modes of the instrument.

The trumpet itself consists of a cylindro-conical pipe with an exponentially flared bell that

resonates at a number of natural frequencies. The player manipulates their blowing pressure

and lip position, or “embouchure,” so that their lips oscillate inside the mouthpiece at an

appropriate frequency to excite a desired resonance mode of the instrument.
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2.1.2 Brass instrument modeling approaches

The brass-instrument sound-production mechanism consists of three main components: the

lips, which act as the generator of the oscillation, the instrument, which acts as resonator, and

the airflow between them. Various studies have investigated the dynamics of the individual

components and suggested models for the player-instrument system.

Lip modeling

The first accurate description of the lip-reed system was by von Helmholtz [1954], who

classified the direction of vibration into “striking inwards,” which describes cases such as a

clarinet reed, where the reed or lip reed is blown closed by the player’s air pressure, and

“striking outwards,” where the reed or lip reed is blown open. Later, photographic and

videographic methods were used to study the lip motion of brass players in more detail. The

first study of this kind was by Martin [1942], who took high-speed photographs of trumpet

players’ lips while playing on a transparent mouthpiece under stroboscopic light. Martin

found that lip vibration occurred both parallel to the direction of airflow, as in Helmholtz’s

striking-inwards and striking-outwards models, and perpendicular to the airflow, referred

to as transverse motion. Martin also found that the displacement of the lip orifice was

almost sinusoidal, that the lips closed very briefly once every cycle, and that higher-frequency

oscillations had a smaller amplitude of vibration. Further studies by Leno [1971] and Copley

and Strong [1996] observed similar phenomena. In a study of lip vibration for trombone

players, Copley and Strong found that the lips’ motion favoured the longitudinal direction of

vibration in the low range, and the transverse direction in the high range. This observation is

supported by modeling done by Yoshikawa [1988], Yoshikawa and Plitnik [1993], and Adachi

and Sato [1996].
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The motion of the lips in these directions has been modeled using one or more springs,

as shown in Figure 2.1 from [Adachi and Sato, 1995]. In each case, the difference between

the upstream pressure p0 within the player’s mouth and the downstream pressure p in the

mouthpiece leads to Bernoulli pressure, which causes airflow through the lips. In the striking-

inwards (a) and striking-outwards (b) models, the spring is displaced in the direction parallel

to the airflow, while in the transverse direction (c), the spring is displaced in the direction

perpendicular to the airflow.

Figure 2.1: Spring orientation for striking inwards (a), striking outwards (b), and transverse
(c) models of lip motion, from Figure 1 in [Adachi and Sato, 1995].

Adachi and Sato [1995] propose two models for lip motion, corresponding to the striking-

outwards and transverse models. For both of these models, the motion of the upper and

lower lips are assumed to be symmetrical. Their striking-outwards model, depicted in Figure

2.2, is described by Equation 2.1,
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ml
d2θ

dt2 = −
√

mk

Q
l
dθ

dt
+ 1

2bl(p0 − p(t)) + bdplip sin(θ) − kl(θ − θ0), (2.1)

where m is the mass of the lips, θ is the lip angle at time t, k is the stiffness of the lips, l is

the length of the lips, b is the breadth of the lip orifice, d is the thickness of the lips, p0 is the

upstream blowing pressure, p(t) is the mouthpiece pressure at time t, Q is a lip quality factor,

and plip is the pressure in the lip orifice. The first term on the right-hand side represents the

damping force of the spring, the second is the external force due to the pressure difference

between the upstream and downstream pressure, the third is the Bernoulli force due to the

difference between the mouth pressure and the mouthpiece pressure, and the fourth is the

restoring force of the spring.

Figure 2.2: Diagram of lip motion in the striking-outwards model from Figure 3(b) in
[Adachi and Sato, 1995], where θ is the lip angle at time t.

Adachi and Sato’s transverse model, depicted in Figure 2.3, is described by Equation 2.2,
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m
d2y

dt2 = −
√

mk

Q

dy

dt
+ bdplip − ky, (2.2)

where y is the vertical lip displacement of the upper lip at time t, with the displacement

of the lower lip equal to −y due to symmetry, the first right-hand term represents damping

force of the spring, the second the Bernoulli pressure, and the third the spring’s restoring

force. The rest of the parameters are the same as in Equation 2.1. Similar models are used

by Fréour et al. [2020] and Rodet and Vergez [1996].

Figure 2.3: Diagram of lip motion in the transverse model from Figure 3(a) in [Adachi
and Sato, 1995], where y is the displacement from equilibrium of the upper lip at time t,
−y is the displacement of the lower lip at time t, and ye is the distance between the lips at
equilibrium, so that the distance between the lips at time t is equal to ye + 2y.

Adachi and Sato [1996] combine these two equations into one model, where either the

striking-outwards or the transverse model is favoured, according to the range in which the

performer is playing. Another two-dimensional model describing motion in these two planes

is introduced in [Di Federico and Borin, 1997]. Although the stroboscopic measurements
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by Martin [1942], experiments carried out by Yoshikawa [1995] and modeling described in

[Adachi and Sato, 1996] all suggest that trumpet players’ lip motion is in both the transverse

and outward-striking directions, and is therefore best described by a model with two degrees

of freedom, a one-dimensional model is sufficient for some applications [Velut et al., 2017].

Experimental evidence in [Yoshikawa, 1995] suggests that trumpet tones of the instrument’s

fourth resonance mode are sustained through transverse oscillation. We only study the

fourth mode in this project, and similar studies by Velut et al. [2017] and Fréour et al. [2020]

have previously used a one-dimensional transverse model, so a one-dimensional transverse

lip model is used for this research.

Airflow modeling

The airflow between the lips and into the instrument is generated by the difference in pressure

between the “upstream” region, which includes the mouth cavity and lip orifice, and the

“downstream” region inside the mouthpiece. These regions are illustrated in Figure 2.4,

from [Velut et al., 2017].

Figure 2.4: Diagram from Figure 2 in [Velut et al., 2017] showing the upstream (mouth)
and downstream (mouthpiece) regions, and the flow u(t) between them. The pressure in the
upstream region is given by pb, the pressure in the downstream region is given by p(t), and
the height of the lip opening is given by h(t).
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The airstream is assumed to be laminar in the upstream region and turbulent in the

mouthpiece. Assuming that there is an incompressible, steady flow, and that there is no

friction, Bernoulli’s equation can be applied. Combining these assumptions with the mass

conservation law, the airflow through the lips can be described using Equation 2.3 from

[Velut et al., 2017], where u(t) is the volume flow, ρ is the density of air, W is the width of

the lip channel, h(t) is the height of the lip channel, pb is the upstream blowing pressure,

and p(t) is the pressure in the mouthpiece.

u(t) =
√

2
ρ

Wh(t)
√

pb − p(t) (2.3)

The airflow between the generator and resonator of a player-instrument system for brass

instruments is generated by the difference between the “upstream” blowing pressure in the

player’s mouth, and the “downstream” pressure in the mouthpiece, and is often represented

using Bernoulli’s equation.

Modeling the resonator

The linear acoustical properties of a resonator can be characterized in terms of its input

impedance, which represents the acoustic response of an instrument over a range of

frequencies, and can be analyzed to make conjectures about the behaviour of the

instrument. In the case of the resonator of a woodwind or brass instrument system, the air

inside the air column vibrates as an acoustic system, and the impedance of the system is

defined as the ratio of acoustic pressure p to acoustic volume flow U . Given a fixed volume

flow, a high acoustical impedance for a given frequency will indicate a high acoustic

pressure response is generated, while a low impedance means that a low acoustic pressure

response is generated. Since the lip mechanism for brass instruments functions as a



2. Brass acoustics modeling background 11

pressure-controlled valve, with the system being mostly closed at the mouthpiece end, a

peak in acoustic impedance corresponds to a resonant mode of the instrument [Wolfe]. An

impedance measurement represents the instrument’s acoustic properties in the

frequency-domain, and the impedance can also be converted to an impulse response in the

time domain through the inverse Fourier transform, to be used for numerical sound

synthesis. The acoustic impedance of a system can be modeled, as in [Adachi and Sato,

1995, 1996], or measured, as in [Fréour et al., 2020].

When a measured impedance is used, the quantity can be fitted to create a representation

of the impedance that is more efficient and to smooth out irrelevant noise. Typically, the

impedance is parameterized as a sum of complex modes in terms of its poles sn and modal

coefficients, or “residues,” cn, as in Equation 2.4.

Z(ω) = Zc

N∑
n=1

( cn

jω − sn

+ c∗
n

jω − s∗
n

) (2.4)

Various fitting schemes have been proposed to extract the parameters cn and sn from a

measured acoustic impedance. One popular method is the Estimation of Signal Parameters

via Rotational Invariance Techniques (ESPRIT), intended for obtaining high-resolution,

unbiased estimates of signal parameters in the presence of noise [Roy and Kailath, 1989].

This makes it particularly effective for cases where there is strong overlap between modes

[Ablitzer, 2021], and has been used previously for creating a modal fit of a trumpet

impedance to be used in a numerical analysis scheme [Fréour et al., 2020]. Maestre et al.

[2018] propose a technique that models the acoustic impedance and sound pressure

radiation jointly as parallel digital filters. To extract modal parameters from an impedance

measurement using the ESPRIT system, the measurement must be converted to a

time-domain impulse response, which involves extrapolating the impedance measurement
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to 0 Hz, making the impedance hermitian, and applying the inverse Fourier transform. The

method in [Maestre et al., 2018] is performed in the z-domain, which is the discrete-time

equivalent of the s-domain that is used for the modeling in this thesis. Therefore, the

results from the model in [Maestre et al., 2018] would need to be transformed to the

s-domain using the bilinear transform before being used in our model. The bilinear

transform would also cause frequency warping in the transformation to the z-domain,

which would make it not ideal for the purposes of this modeling. The fitting procedure

from [Ablitzer, 2021] is applied directly to the measured input impedance, and yields the

desired parameters cn and sn without transformation, so this is the method selected for

this project.

2.2 Hysteresis behaviour

Hysteresis refers to the dependence of a system’s state on its history. In the context of brass-

instrument system dynamics, this usually refers to the phenomenon that makes it possible to

diminuendo, or reduce the playing loudness, to a softer dynamic than it is possible to begin a

note. In other words, it is possible to play more softly when reducing the playing dynamic of

a note that is already sounding than it is when starting from silence. This phenomenon has

been observed in results from previous modeling in [Fréour et al., 2020] and in observations of

lip vibration using an artificial mouth and recorded with a high-speed camera in [Campbell

and Bromage, 2005].



2. Brass acoustics modeling background 13

2.3 Linear Stability Analysis (LSA)

Linear stability analysis (LSA) refers to the process of approximating the dynamics of a

nonlinear system around an equilibrium point as a linear system, through linearization. We

use a first-order Taylor series to approximate the system’s behaviour when we make very

small perturbations to the system’s state. This type of analysis can be used to either find

out how to sustain a system’s equilibrium behaviour while slightly varying parameters, or

determine how much a parameter needs to be changed to significantly alter the behaviour of

a system [Sayama, 2015].

Rodet and Vergez [1996] proved that LSA can be used to determine the minimum blowing

pressure required to start a note, and found that their results from LSA were very close to the

results obtained through numerical simulation. LSA has since been used to determine factors

such as the onset pressure threshold value for a given note on an instrument in [Velut, 2016]

and [Velut et al., 2017], as well as the lip parameters that will minimize the onset pressure

value in [Fréour et al., 2020].

2.4 Bifurcation analysis

A bifurcation in a nonlinear system of differential equations is a point where a small change

in a parameter value leads to a qualitative change in the behaviour of the system’s solution.

A Hopf bifurcation refers to a critical point for a system where its stability changes and a

periodic solution emerges. There are two types of Hopf bifurcation. A supercritical, or direct

Hopf bifurcation is a Hopf bifurcation for which the oscillating solution that emerges from the

unstable fixed point is quickly stabilized at a low amplitude, i.e. the threshold of extinction

for the equilibrium solution is equal to the oscillation threshold. A subcritical, or indirect
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Hopf bifurcation is a Hopf bifurcation for which the oscillating solution that emerges from

the unstable fixed point immediately jumps to a large amplitude. Identifying the location

and type of Hopf biufurcation points for a musical instrument system can give information

about how the system’s behaviour changes as certain parameters are varied.

Typically, bifurcation diagrams that show the behaviour of the system around a

bifurcation point are generated by solving a nonlinear system either theoretically or

numerically, to see how one parameter of interest varies with respect to another. One

common application of bifurcation analysis is to determine the onset threshold for the

beginning of a note locating by the Hopf bifurcation, and to determine the presence and

extent of hysteresis behaviour by identifying the type of Hopf bifurcation. Dalmont et al.

[2005] use analytical methods to find and classify Hopf bifurcation points for a clarinet

model. They find the equilibrium solution that occurs when air is blown into the

instrument but no note sounds, and plot the behaviour of the system as the blowing

pressure is increased until a Hopf bifurcation occurs and the oscillating solution that

corresponds to a note sounding emerges. For their clarinet model, a subcritical Hopf

bifurcation was found for the onset of the oscillating solution at all parameter values

tested. This means that the player is able to begin a note from essentially silence, and that

there is no hysteresis behaviour when they diminuendo to end the note. The extinction

threshold for the clarinet model was also examined by creating a bifurcation diagram that

showed the blowing pressure at which the oscillating solution ended and a new equilibrium

emerged, in order to determine the dynamic range of the instrument. Colinot et al. [2019]

examined the oscillation threshold for a conical, saxophone-like instrument modeled as a

lossless conical waveguide using numerical continuation methods. They found that the

Hopf bifurcation for this model was supercritical for all values of the geometrical
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parameters for which they performed their analysis.

For conical brass instruments, the onset threshold can occur at either a subcritical or

supercritical Hopf bifurcation, though supercritical is more common. Mattéoli et al. [2021]

test the oscillation threshold of a generic brass-type instrument model at various oscillation

regimes across its range using numerical continuation methods, and find both supercritical

and subcritical Hopf bifurcations depending on the range being tested.

2.5 Numerical continuation methods

2.5.1 Introduction to numerical continuation methods

Another tool for the analysis of acoustic musical instruments that has been applied to

brass and woodwind instruments is numerical continuation, or path-following methods.

These methods are used to compute approximate solutions to nonlinear systems through

parameterization of one variable. Using numerical continuation methods, we can observe

the effect of changing one parameter on the behaviour of a system by following solution

paths.

The principle of numerical continuation is that, if a stable solution of a system is located,

there should be other stable solutions nearby if the system parameters are varied slightly.

Consider the following system from [Doedel, 2010]:

G(u, λ) = 0, u, G(·, ·) ∈ Rn, λ ∈ R (2.5)

Let x ≡ (u, λ). Then the equation can be written
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G(x) = 0, G : Rn+1 7→ Rn. (2.6)

By a theorem proven in [Doedel, 2010], if x0 ≡ (u0, λ0) is a regular solution of G(x) = 0,

then, near x0, there exists a unique one-dimensional continuum of solutions

x(s), with x(0) = x0. (2.7)

In other words, in the region near a regular solution of a system, we can follow a path

of solutions, beginning with this solution, by varying one of the system parameters. This

principle can be applied to determine the effect of varying one parameter on the overall

behaviour of a system, and has been applied towards the classification of musical instruments.

2.5.2 Use of numerical continuation methods to classify acoustic

instruments

Karkar [2012] and Fréour et al. [2020] use numerical continuation methods to create

bifurcation diagrams of system solutions for woodwind and brass instruments, respectively,

using measured acoustic impedances, and relate these bifurcation diagrams to instrument

attributes that are relevant to players. Karkar [2012] uses a numerical continuation

approach to investigate the effect of various parameter values on the oscillation threshold

for single reed instruments. The instrument is considered as a dynamical system, and the

problem is approached through continuation of periodic solutions at Hopf bifurcations.

Fréour et al. [2020] apply these techniques specifically to trumpets by first developing

modal representations of measured trumpet impedances using the high-resolution subspace

method: Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)
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[Roy and Kailath, 1989]. They then use numerical continuation to follow the paths of

periodic solutions of coupled system equations to generate bifurcation diagrams and

identify the Hopf bifurcations and other landmarks of the system for solutions

corresponding to a B♭
4 on each trumpet. The locations of these landmarks are compared

between instruments and used to define two quantities for a given instrument: the

“amplitude of the hysteresis,” related to the differences between onset and offset pressures

for the mouth and for internal acoustic pressure, and the “dynamic range,” which

represents how much the sound pressure can vary when the player uses a blowing pressure

of up to 5 kPa.

2.5.3 Manlab

Manlab is a Matlab package, developed at the Laboratoire de Mécanique et d’Acoustique in

Marseille, France, a unit of the Centre National de la Recherche Scientifique (CNRS). It uses

the asymptotic numerical method (MAN) algorithm, described in [Cochelin et al., 2007], to

solve systems of the form

R(U) = 0, (2.8)

with R a vector of n smooth equations, and U a vector of n + 1 unknowns [Lejeunes, 2011].

Manlab 4.1.5 was downloaded from [Lejeunes, 2011] and used to perform the numerical

continuation used in this thesis.
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Chapter 3

Methodology

The methodology used in this thesis involves first deriving a physical-equation model of the

trumpet-player system that uses a modal representation of a measured impedance to

characterize the resonance of each trumpet. The model is then analyzed for each trumpet

using numerical continuation methods to make inferences about characteristics such as the

minimum blowing pressure required to start a note on the instrument, its hysteresis

behaviour, and the dynamic level of the sound produced at various levels of blowing

pressure.

Examples of the Manlab files used for the numerical continuation in this thesis can be

found in [Hopkins, 2023].

3.1 Impedance representations

The acoustic impedances of four trumpets with open fingering (no valves pressed) were

measured using the CapteurZ system, described in [Le Roux, 2013]. The trumpets

measured are a Yamaha model YTR-8335RS25TH, a Vincent Bach Stradivarius model 37,
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Manufacturer Model Abbreviation
Yamaha YTR-8335RS25TH (Xeno 25th

Anniversary limited Model)
Y

Bach Stradivarius Model 37 S1
Bach Stradivarius Model 37 with modified

leadpipe by Savût Trumpets
S2

Besson Unknown (vintage student model) B

Table 3.1: Trumpets used for the project.

a Vincent Bach Stradivarius model 37 with its lead pipe modified by Savût Trumpets to

allow for an adjustable annulus gap size, and a Besson trumpet of an unknown model. The

first three trumpets are professional model instruments, and the last is a student model.

These instruments were chosen to provide an opportunity for comparison between two of

the most popular professional trumpet manufacturers, between professional and student

model instruments, and between two trumpets of the same make and model with and

without post-manufacture modifications. Though the sample size will not be large enough

to draw conclusions about any of these factors, interesting hypotheses may be made about

their influence on the results. Additionally, anecdotal evidence from trumpet players

suggest that there are perceptible differences between these instruments that make them

feel different from one another to play. Going forward, these instruments will be referred to

as Trumpets Y, S1, S2, and B, with Y being the Yamaha instrument, S1 the unmodified

Bach Stradivarius, S2 the modified Bach Stradivarius, and B the Besson. The trumpets

used for this project are summarized in Table 3.1.

The impedances of these trumpets were measured using a sine sweep from 100 to 6000

Hz, which includes the second through eighth impedance peaks for each trumpet, which

is sufficient for studying the fourth resonance of each. Modal representations of each of
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the measured impedances were then determined using code from [Ablitzer, 2022], based on

Ablitzer [2021]. The fitting procedure yields the variables ξn, ωn, An, and Bn, which can

be used to determine the poles sn and residues Cn in Equation 2.4 using Equations 3.1 and

3.2. These modal parameters are used to represent the impedance for each trumpet in the

trumpet-player system model.

sn = −ξnωn + j ∗ ωn

√
1 − ξ2

n (3.1)


ℜ(cn) = An

2

ℑ(cn) = 1
2

ξnωnAn−Bn

ωn

√
1−ξ2

n

(3.2)

3.2 Model description

The model used for this research was used in [Fréour et al., 2020] and [Velut et al., 2017],

and is based on previous models such as the transverse model in [Adachi and Sato, 1995].

It consists of equations representing three parts: the motion of the lips, the response of the

instrument, and the airflow between the two.

The lip motion is modeled as one-dimensional motion in the direction perpendicular to

the airflow, referred to as the transverse model previously. The model is also a “blown open”

model, meaning that the difference between the air pressure inside the player’s mouth and

inside the mouthpiece causes the lips to open. Though Velut et al. [2017] refer to this as

a “striking outwards” model, it is important to note that the direction of motion does not

correspond to that of the “striking outwards” model in [Adachi and Sato, 1995], but rather

the transverse direction. The lip equation is given by
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ÿ + ωl

Ql

ẏ + ω2
l (y − y0) = p0 − p(t)

µl

, (3.3)

where y is the vertical lip position at time t, ωl is the resonance frequency of the lips, Ql is

the quality factor of the lips, y0 is the lip position at rest, p0 is the blowing pressure inside

the player’s mouth, p(t) is the pressure inside the mouthpiece at time t, and µl is the lip

mass per unit surface area.

The airflow through the lips is given by Bernoulli’s equation with conservation of mass,

assuming that the flow is laminar in the mouth and turbulent in the mouthpiece. The

equation of the airflow is given by

u(t) =
√

2|p0 − p(t)|
ρ

b · sign(p0 − p(t)) · y(t)H(y(t)), (3.4)

where u(t) is the volume flow through the lip opening, ρ is the density of air in kgm−3, b is

the breadth of the lips, and H is the Heaviside function, forcing the flow to zero when the

lips are closed.

Finally, the response of the instrument is taken from the modal representation of its input

impedance. Recall that the modal representation is given by 2.4, in terms of its complex

poles sn and residues Cn. As in [Fréour et al., 2020] and [Velut et al., 2017], the complex

pressure component for a mode n is given by

Pn(ω) = Zc
Cn

jω − sn

U(ω), (3.5)

so that in the time domain, we have

ṗn(t) = ZcCnu(t) + snpn(t). (3.6)
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Silva [2009] shows that the pressure in the mouthpiece p(t) can be derived from the

pressure components as follows:

p(t) = 2
N∑

n=1
ℜ(pn(t)). (3.7)

The overall system used is then the combination of equations 3.3 and 3.6, with the

volume flow u(t) given by 3.4, and the mouthpiece pressure given by 3.7. The real and

complex pressure components are calculated separately, giving the system in 3.8, referred to

as System A in this thesis.



ÿ + ωl

Ql
ẏ + ω2

l (y − y0) = p0−p(t)
µl

,

Ṙn = ℜ(ṗn(t)) = ℜ(ZcCnu(t) + snpn(t)), ∀n ∈ [1, N ],

İn = ℑ(ṗn(t)) = ℑ(ZcCnu(t) + snpn(t)), ∀n ∈ [1, N ],

(3.8)

where N is the number of modes fitted in Section 3.1.

The lip parameter values used are the same as those used in [Fréour et al., 2020], aside

from the lip natural frequency, which is obtained through linear stability analysis in the next

section, and the lip quality factor, which was adjusted slightly and set to Q = 3.2 in order

to excite the desired resonance on all four trumpets. This value is still well within the range

found by Velut et al. [2017] in his review of lip parameter values from eight different studies.
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3.3 Linear Stability Analysis to determine lip

parameters

Before analysing System A, LSA is used to determine the best natural lip frequency with

which to excite the system. Trumpet players control their natural lip frequency using their

embouchure, and in [Fréour et al., 2020], it is assumed that players position their

embouchure in order to minimize the blowing pressure required to start a note. Though a

player may modify their embouchure based on many factors for a single note, including

dynamics, articulation, and tone quality, for this thesis, the lip resonance frequency alone

will be optimized to minimize the blowing pressure required to start a note, instead of

adjusting all factors simultaneously. This simplification is based on the assumption that

the complex and interconnected adjustments made by a player can be approximated by

modifying the natural lip frequency alone.

To use LSA, an equilibrium solution for System A is first obtained by setting all time

derivatives to zero. This equilibrium point corresponds to the state where the player is

blowing into the instrument, but not with sufficient blowing pressure to excite an oscillation.

The variables y(t) and p(t) are notated as ye and pe at equilibrium, and the nth component

of p(t) is notated as pne at equilibrium.



0 = −ω2
l ye − pe

µl
+ ω2

l y0 + p0
µl

0 = snpne + ZcCn

√
2
ρ
bye

√
p0 − pe

ue =
√

2
ρ
bye

√
p0 − pe

(3.9)

Next, the Jacobian matrix of System A is computed. Following the derivation from

[Velut, 2016], let C = √
p0 − pe and recall the modal representation of Z(ω) given in 2.4.
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Considering the relationship between p(t) and pn(t), the real parts of both sides of the third

system equation and can be summed and multiplied by two, the value of Z(ω = 0) can be

substituted, which gives Equation 3.10:



ye = y0 + C2

µlω
2
l

ue =
√

2
ρ
byeC

pe = Z(ω = 0)ue.

(3.10)

Equation 3.10 can be combined into one line, as in 3.11.

bZ(ω = 0)
µlω2

l

√
2
ρ

C3 + C2 + by0Z(ω = 0)
√

2
ρ

C − p0 = 0 (3.11)

Now that the equilibrium solution has been determined, the solution to System A can be

approximated in nearby regions using a Taylor series approximation for functions of many

variables. A first-degree version of this approximation is given by

F (X) = F (Xe) + J(Xe) ∗ (X − Xe), (3.12)

where Xe is an equilibrium point of System A, J(Xe) is the Jacobian matrix of System A,

and X is a point near the equilibrium, with one or more of the system parameters changed

by a small amount. The Jacobian matrix of System A is defined as

J(X) =


∂f1
∂x1

. . . ∂f1
∂xn

... . . . ...
∂fn

∂x1
. . . ∂fn

∂xn

 (3.13)

See [Velut, 2016] for a full derivation and statement of the Jacobian matrix for System
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A. The solution to Ẋ = F (X), with F (X) as defined in 3.12 is given by

X(t) − X(e) =
N∑

i=1
Uie

λit, (3.14)

where λi are the eigenvalues of the matrix J(X), and Ui are the corresponding

eigenvectors. If any of the eigenvalues has a positive real part, the solution will tend to

infinity as time increases, and therefore be unstable [Sayama, 2015]. The point where this

solution becomes unstable corresponds to a Hopf bifurcation point, from which the

oscillating solution corresponding to a periodic sounding tone emerges.

To find the lip frequency value ωl for which the blowing pressure p0 required to start

the note is minimized, an array of possible ωl values around the expected frequency region

required to excite the fourth resonance on the trumpet are chosen, and for each one, the

eigenvalues of the Jacobian matrix for increasing values of p0 are calculated. For each ωl

value, as soon as the matrix has a positive eigenvalue, the p0 value is recorded. Once the

threshold p0 values have been found for all chosen values of ωl, the minimum recorded

p0 threshold value is found, and the corresponding ωl value is selected as the natural lip

frequency for the instrument. A plot of the p0 value at the minimum onset threshold vs.

flip = ωl

2π
is given in 3.1.
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Figure 3.1: Plot of minimum onset pressure vs. lip frequency for Trumpet S1. The
minimum, marked with a red circle, shows the value chosen for flip for this instrument.

A summary of the ωl values, with the corresponding lip frequency and p0 threshold values,

is in Table 3.2.

3.4 Numerical continuation

We use numerical continuation to follow the behaviour of the solution as one parameter is

varied. The Manlab software allows us to plot the value of one system parameter against
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Trumpet ωl = 2πflip flip (Hz) p0 threshold value (Pa)
Trumpet Y 2424.3 385.84 2088.0
Trumpet S1 2409.3 383.45 2613.4
Trumpet S2 2429.8 386.71 2165.7
Trumpet B 2304.8 366.82 4626.9

Table 3.2: Summary of LSA results.

another for a given system solution to see the effect of varying one parameter. For this

project, we vary the player’s blowing pressure p0 and plot it against the pressure inside the

mouthpiece, p.

Before we use Manlab for numerical continuation, we must modify System A so that the

vector equation is written as a polynomial with quadratic nonlinearity, of the form

R(U) = L0 + L(U) + Q(U, U) = 0, (3.15)

where L0 is a constant vector, L is a linear operator with respect to U , and Q is a bilinear

operator with respect to U [Karkar et al., 2011]. For this research, a quadratic form of

System A is used, derived by Fréour et al. [2020]. This new system, referred to in this thesis

as System B, uses dimensionless variables derived from its system variables, which are given

in Equation 3.16.
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

x = y
y0

,

PM = µlω
2
l y0,

λ = p0
PM

,

p̃ = p
PM

,

R̃k = Rk

PM
,

Ĩk = Ik

PM
,

ũ = u Zc

PM
,

ṽ = v√
2PM /ρ

,

ξ = Zcby0
√

2
ρPM

,

t̃ = tℑ(s1),

ω̃l = ωl

ℑ(s1) ,

C̃n = Cn

ℑ(s1) ,

s̃n = sn

ℑ(s1)

(3.16)

System B has four main variables in quadratic form, given in Equation 3.17, and five

auxiliary variables, with corresponding equations given in Equation 3.18:



˜̇Rk = ℜ(C̃k)ũ + ℜ(s̃k)R̃k − ℑ(s̃k)Ĩk,

˜̇Ik = ℑ(C̃)ũ + ℑ(s̃k)Ĩk,

˜̇x = ω̃lz̃,

˜̇z = ω̃l(1 − x − 1
Ql

z̃ + λ − p̃).

(3.17)
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

0 = 2 ∑N
k=1 R̃k − p̃,

0 = x2 + ϵx − s2,

0 = λ − p̃ − ṽw,

0 = ṽ2 + ϵv − w2,

0 = ξ (s+x)
2 ṽ − ũ

(3.18)

Equations 3.17 and 3.18 form System B, the system that is implemented in Manlab.

3.4.1 Numerical continuation in Manlab

Manlab is first used to locate the bifurcation detected using LSA in Section 3.3. The software

is run with all time derivatives set to zero, with initial conditions corresponding to the

equilibrium solution where the player’s lips are at rest and their lips are not vibrating. The

Manlab GUI is then used to increase the dimensionless blowing pressure parameter λ slowly

until the solution becomes unstable, indicating that a Hopf bifurcation has been reached.

An example is shown in Figure 3.2, with the stable solution in solid, the unstable solution a

dotted line, and the Hopf bifurcation marked with a star.

Once the bifurcation has been located, the state of System B is exported at the bifurcation

point using the Manlab GUI and used as input to System B in a new continuation file, now

with the time derivatives included. This represents the periodic solution of System B that

emerges once the lips begin to oscillate and a sound is produced. The file is run to begin

continuation with Manlab’s correction feature disabled so that the solution does not correct

to the equilibrium solution, then the full continuation diagram is computed to show the

behaviour of the downstream pressure parameter p̃ as the blowing pressure λ is varied across
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the relevant range of values.

Once continuation plots have been generated for the oscillating solution, the points of

interest are identified for analysis. The first point identified is the minimum-blowing-pressure

oscillation threshold, which is the blowing pressure value at which the equilibrium solution

becomes unstable when the blowing pressure is increased gradually. The amplitude of the

mouthpiece pressure at this point is also notated. Next, the location of the fold is determined,

or the point at which the oscillating solution loses stability when the blowing pressure is

gradually decreased. Finally, the amplitude of the mouthpiece pressure at a blowing pressure

of 5 kPa is located, representing an estimate of the mouthpiece pressure produced given the

maximum blowing pressure possible for a player. The dynamic range, or the difference in

mouthpiece pressure between the 5 kPa reference and the fold, and the amplitude of the

hysteresis, or the difference in blowing pressure between the minimum-pressure onset and

the fold, are both calculated from these results. These locations can be linked to qualitative

traits about each trumpet, and qualified as more or less desirable. It could be expected that

the instrument that is most desirable for a player is the instrument that requires the least

blowing pressure to start a note, has the lowest minimum dynamic and the highest maximum

dynamic, and has the lowest hysteresis amplitude, though discussion with players would be

needed to confirm this hypothesis.
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Figure 3.2: Continuation diagram from Manlab of dimenesionless downstream pressure p̃

vs. dimensionless upstream pressure λ, showing the equilibrium solution’s transition from
stable (solid line) to unstable (dotted line) at the Hopf bifurcation point (starred).
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Chapter 4

Results and analysis

Continuation plots were generated for all of the trumpets, as described in Section 3.4.1. The

parameters were transformed from their dimensionless form to the upstream and downstream

pressure parameters, p and p0, respectively. Figure 4.1 shows the continuation diagrams for

all four trumpets, with the points of interest marked.
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Figure 4.1: Continuation plot for the oscillating solutions for the four trumpets. The
Hopf bifurcation points are marked with circles, the amplitude of p at the Hopf points with
squares, the folds with a stars, and the values of p at the 5 kPa reference value with triangles.
The stable sections of the solutions are plotted with solid lines, and the unstable with dashed
lines.

For each instrument, the continuation diagram shows a subcritical Hopf bifurcation

point, which means that there is an immediate jump to a large amplitude when the

solution emerges. The Hopf bifurcation point, marked with a circle, represents the point at

which the equilibrium solution loses stability and the periodic oscillating solution emerges.
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This is the point at which, if the player were slowly increasing their blowing pressure from

zero, a note would begin to sound. The square marks the p value to which the oscillating

solution jumps when it becomes stable, i.e., the downstream pressure level at which the

note would begin when started at the minimum oscillation threshold, which is related to

the loudness of the sound at its onset.

The continuation diagrams for all of the instruments display hysteresis behaviour. When

the solution is continued backwards, decreasing the p0 value past the Hopf point, it remains

stable beyond the Hopf point so the solution is stable for values of p0 and p lower than the

values at the Hopf point, up to the location of the fold, where the solution becomes unstable.

The location of the fold is correlated to the point at which the note stops sounding when a

player performs a gradual diminuendo beyond their minimum onset pressure.

Finally, when the blowing pressure is continued in the positive direction, the diagram

shows how the downstream pressure behaves as the blowing pressure increases. A reference

point is marked for p when p0 = 5 kPa for all of the instruments, which is related to the

loudness of the sound produced at a reasonable estimate of a player’s maximum blowing

pressure.

The locations of these points of interest are shown for comparison in Table 4.1.
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Trumpet Hopf

bifurcation

point

(p0, p)

(Pa)

Fold (p0, p)

(Pa)

p value at

p0 = 5 kPa

(Pa)

Amplitude

of hysteresis

(distance in

p0 between

fold and

bifurcation

Dynamic

range

(difference

in p between

fold and 5

kPa reference

Y (2087.5,

5803.7)

(1624.0,

4053.9)

14818.4 463.5 10 764.5

S1 (2610.6,

7320.9)

(1859.8,

4653.8)

14696.6 750.8 10 042.8

S2 (2168.3,

6097.0)

(1629.7,

4095.9)

14912.0 538.6 10 816.1

B (4621.1,

13558.7)

(2361.4,

6072.4)

14749.0 2259.7 8676.6

Table 4.1: Summary of results of numerical continuation.

The locations of these points of interest can be compared for the different instruments,

and conjectures can be made about how the instruments will respond when played by a

performer.

First, the location of the Hopf bifurcation can be compared for each instrument. The p0

value is lowest for Trumpet Y, followed by Trumpets S2, S1, and B. The values are very close

together for Trumpets Y and S2, and S1 is fairly close as well, but the p0 value for Trumpet

B is more than 2 kPa above the value for Trumpet S2. Comparing the p values at the Hopf



4. Results and analysis 36

bifurcation point gives a very similar result: the note begins at the lowest amplitude for

Trumpet Y, followed closely by Trumpet S2 and then Trumpet S1, and then Trumpet B at a

much higher value. This implies that, if a player used the minimum required onset pressure,

they could start playing a B♭
4 with the least amount of blowing pressure and at the quietest

dynamic on Trumpet Y, followed closely by Trumpet S2 at a slightly higher blowing pressure

and onset dynamic, then Trumpet S1 a little bit higher for both values, and then Trumpet B,

with a much higher blowing pressure and a much louder dynamic. The location of the Hopf

bifurcation value for Trumpet B in particular occurs at approximately double the values for

the other trumpets, and is very close to the maximum blowing pressure of 5 kPa. As a result,

the amplitude of p for the the minimum-pressure-onset note is very close to the maximum

amplitude of p for the instrument. This is not consistent with any observations from players

or from observing the trial described in Chapter 5, which may mean that the lip parameters

chosen are not realistic for Trumpet B.

Next, the location of the fold, where the solution becomes unstable when we continue

the solution backwards from the Hopf point, can be observed. This represents the point

where the note is extinguished when the player diminuendos to silence. The p value at this

point corresponds to the quietest dynamic that can be played on the instrument with the

lip parameters as chosen. The same pattern that was noticed for the Hopf point emerges:

Trumpet Y has the lowest p and p0 values at the fold, followed very closely by Trumpet S2

and then Trumpet S1, and Trumpet B has the largest values for both parameters, though the

difference is not as large as for the Hopf point. This implies that Trumpet Y can diminuendo

to the quietest dynamic and its sound is extinguished at the lowest blowing pressure of the

four instruments, with Trumpets S2 and S1 close behind, and that the note is extinguished at

the highest blowing pressure and at the least quiet extinction dynamic on Trumpet B. This is
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related to the amplitude of the hysteresis, which described the difference in blowing pressure

between the Hopf point and the fold, or the amount that the blowing pressure can be reduced

beyond the Hopf point before the note is extinguished. For the hysteresis amplitude, the

same pattern observed for the Hopf point and the fold emerges: Trumpet Y has the smallest

hysteresis amplitude, followed by Trumpet S2, then Trumpet S1, and Trumpet B, with a

much larger gap between the hysteresis amplitudes of Trumpet S1 and Trumpet B than for

any of the gaps between the values for the first three instruments, implying that for the three

professional model trumpets, their minimum volume is relatively close to their onset volume,

and that for Trumpet B, the only student-model instrument, the gap is much larger.

Finally, the p value at maximum blowing pressure and dynamic range of the instruments

can be examined. The p values at p0 = 5 kPa blowing pressure are all very similar. The

value for Trumpet B is the lowest, followed by Trumpet Y, then Trumpet S2, then Trumpet

S1, but the differences are all very close, implying that all four trumpets have very similar

maximum dynamics. Since the maximum dynamics are similar, the dynamic range correlates

closely with the location of the fold. Trumpet B has the smallest dynamic range, followed

by Trumpets S1, Y, and S2. Once again, the difference is largest between Trumpet B and

the rest of the trumpets.
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Chapter 5

Perceptual trial

5.1 Perceptual trial methodology

After the numerical analysis was completed, a small-scale perceptual trial was conducted to

see if the features found through modeling could be easily distinguished by experienced

trumpet players.1 Five trumpet players were recruited to participate in the study: four

upper-year undergraduate trumpet performance students and one doctoral trumpet

performance student. The experiment was conducted in lab A-818 at the Centre for

Interdisciplinary Research in Music Media and Technology (CIRMMT), a room free of any

strong resonances with surface area of 27m2 and a reverberation time of approximately

0.18s. Throughout the experiment, the participants wore sunglasses, with the lights of the

room dimmed so that they could see the instruments enough to pick them up and play

them, but they could not tell them apart visually. The first- and third-valve slides were

removed from each instrument, participants were instructed to not move the valves, and
1This perceptual trial was carried out under an approved ethics certificate, with Research Ethics Board

file number 430-0415.
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they were told to only play a concert B♭
4 so that they could not make assumptions about

the instruments based on any factor outside of the scope of the perceptual study, such as

the ease of moving the valves and slides or the consistency of tuning across the range of the

instrument.

The performers sat in the same position throughout the experiment, with a table in

front of them holding the four trumpets. The players were asked to perform five tasks, and

for each, they were allowed to pick up the instruments themselves and play the required

exercises, repeating the exercises and switching back and forth between the instruments as

needed. After playing each exercise, each player placed the instruments in order on the table

according to their response.

The tasks and questions asked of the players were as follows. Each question is designed

to allow for qualitative comparison between the players’ responses and the modeling results.

1. For each instrument, play an air attack as softly and gradually as possible,

starting with a blowing pressure too low to cause a note to sound, and increasing

the blowing pressure until the note (B♭
4) sounds. Place the instruments in order

from the least blowing pressure required to begin a note to the most.

This task is to assess the player’s perception of each instrument’s minimum onset pressure,

which corresponds to the p0 value at the bifurcation.

2. For each instrument, perform the same type of air attack as indicated in

Task 1, but when the note begins to sound, immediately diminuendo as much

as possible until the note is extinguished. Place the trumpets in order from the

instrument on which you could diminuendo the least to the one on which you

could diminuendo the most.

This task assesses the player’s perception of the difference between the onset pressure
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and the minimum blowing pressure at which the note can sound (i.e. the blowing pressure

at which the note stops sounding as the player gradually decreases their blowing pressure),

which corresponds to the amplitude of the hysteresis for each instrument.

3. Once again beginning with a soft air attack, crescendo gradually to your

maximum volume. Place the instruments in order from the instrument that

requires the least blowing pressure to play at your loudest dynamic to the one

that requires the most.

This question does not correspond directly to one of the quantities observed, but is related

to the mouthpiece pressure p value at high values of blowing pressure p0. In this question

and the subsequent ones, volume refers to the perceived loudness. The term ”volume“ is

used instead of ”pressure“ or “loudness,” even though it corresponds to the amplitude of the

mouthpiece pressure, to make the question clear to the performers, who are more familiar

with this terminology. This question was included to provide more information about the

instrument’s response at high blowing pressure and loud dynamics, as it is impossible for

players to quantify their exact blowing pressure, which varies from player to player and

across repetitions.

4. Repeat the same exercise as in Task 1, but now place the instruments in

order from the instrument on which your minimum onset volume is the softest

to the one on which the minimum onset volume is the least soft.

This question assesses the minimum onset loudness instead of minimum onset blowing

pressure for each instrument, and corresponds to the value of p at the bifurcation.

5. Repeat the same exercise as in Task 3, but now place the instruments in

order from the one on which your maximum volume was the least loud to the

one on which your maximum volume was the most loud.
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This question is to assess the maximum loudness achieved by the player at their maximum

blowing pressure, to be compared with the modeled quantity of mouthpiece pressure p at the

5 kPa reference value for p0, though the player’s actual blowing pressure is not controlled or

measured.

5.2 Perceptual trial results and analysis

Analysis of variance (ANOVA) testing was carried out on the results for each task, after

confirming the assumptions of ANOVA testing using a Durbin Watson test, a Shapiro test,

and a Levene test. For all questions, it was found that the trumpet used was not a significant

or near-significant factor for determining the ranking, so the test results were not statistically

significant for any of the tasks. The results of the trial are summarized below for discussion,

and players’ comments about the instruments and tests are also discussed.

For each question, the ranking given to each instrument by each participant, the mean

ranking and standard deviation for each instrument, and the result we would expect based

on the modeling results in Table 4.1 where applicable are summarized.

The results for Task 1 of the perceptual trial are in Table 5.1.
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Participant Trumpet Y

ranking

Trumpet S1

ranking

Trumpet S2

ranking

Trumpet B

ranking

1 1 2 3 4

2 4 3 2 1

3 2 3 1 4

4 1 4 2 3

5 3 4 2 1

Mean 2.2 3.2 2 2.6

Standard

deviation

1.3 0.84 0.71 1.52

Expected from

modeling

1 3 2 4

Table 5.1: Results for Task 1 of the perceptual trial. Each instrument is ranked by each
player in order from the least blowing pressure required to begin a note (1) to the most (4).

The average rankings for the instruments are all between 2 and 3.2, which are all very

moderate rankings, and the rankings do not seem to correlate with the expected rankings

from the modeling. There is also a lot of variation between the players’ rankings for each

instrument, implying that the players did not agree amongst themselves.

We find similar observations for the second, third, fourth, and fifth tasks, shown in Tables

5.2, 5.3, 5.4, and 5.5. All of the trumpets have moderate mean scores, and their rankings do

not agree with the expected scores from the modeling.
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Participant Trumpet Y

ranking

Trumpet S1

ranking

Trumpet S2

ranking

Trumpet B

ranking

1 4 3 2 1

2 2 1 4 3

3 1 2 4 3

4 4 3 2 1

5 1 4 3 2

Mean 2.4 2.6 3 2

Standard

deviation

1 1.14 1.52 1

Expected from

modeling

1 3 2 4

Table 5.2: Results for Task 2 of the perceptual trial. Each instrument is ranked by each
player in order from the instrument on which they could diminuendo the least (1) to the
instrument on which they could diminuendo the most (4) after a minimum-pressure onset.
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Participant Trumpet Y

ranking

Trumpet S1

ranking

Trumpet S2

ranking

Trumpet B

ranking

1 2 1 3 4

2 4 2 3 1

3 2 1 3 4

4 2 4 1 3

5 2 1 4 3

Mean 2.4 1.8 2.8 3

Standard

deviation

0.89 1.3 1.1 1.22

Table 5.3: Results for Task 3 of the perceptual trial. Each instrument is ranked by each
player in order from the instrument on which they needed the least blowing pressure (1) to
the instrument on which they needed the most blowing pressure (4) to play at their maximum
dynamic.

Note that for Task 3, there is no expected ranking with which to compare the results

because the question does not directly correlate to any of the values found through numerical

continuation.
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Participant Trumpet Y

ranking

Trumpet S1

ranking

Trumpet S2

ranking

Trumpet B

ranking

1 1 3 2 4

2 3 4 2 1

3 3 1 1 4

4 3 2 1 4

5 3 2 4 1

Mean 2.6 2.4 2.2 2.8

Standard

deviation

0.89 1.14 1.1 1.64

Expected from

modeling

1 3 2 4

Table 5.4: Results for Task 4 of the perceptual trial. Each instrument is ranked by each
player in order from the instrument whose minimum onset attack was the most quiet (1) to
the least quiet (4).
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Participant Trumpet Y

ranking

Trumpet S1

ranking

Trumpet S2

ranking

Trumpet B

ranking

1 2 4 3 1

2 2 3 1 4

3 3 4 2 1

4 4 1 3 2

5 3 4 2 1

Mean 2.8 3.2 2.2 1.8

Standard

deviation

0.84 1.3 0.84 1.3

Expected from

modeling

3 1 4 2

Table 5.5: Results for Task 5 of the perceptual trial. Each instrument is ranked by each
player in order from the instrument on which the note produced sounded the least loud (1)
to the most loud (4) when playing at their maximum blowing pressure.

5.3 Discussion and limitations

There are large limitations inherent to this type of perceptual testing, because players are

not able to use a measured or controlled level of blowing pressure, and it is very difficult for

them to make accurate judgements about their own dynamic levels and blowing pressure.

In general, players were able to detect qualitative differences between the trumpets, but

they did not always identify these differences in the same way. For example, all players
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commented that Trumpet B, the only student-model instrument, felt much different to play

than the other instruments; however, the players were usually divided about which extreme

end of the spectrum to place it on. Aside from Task 2, for which players gave Trumpet B

more moderate ratings in general, players almost always ranked Trumpet B as either 1 or 4,

but the ranking was not consistent between players for each task. The result of this is that

it received the most extreme rankings, but the mean ranking was still moderate for all tasks.

This implies that players were aware that Trumpet B was different from the other trumpets,

but were not able to discern the way in which it was different.

Players also commented throughout the experiment that the professional model

instruments, Trumpets Y, S1, and S2, were very similar to one another. There may have

also been some influence of how similar each instrument was to the instrument that each

player was used to playing, with a similar effect for how similar the mouthpiece was to

their usual mouthpiece. Participants 2 and 3 usually play a Bach Stradivarius model 43

instrument, Participant 5 plays a Bach model 37, the same model as Trumpets S1 and S2

(though Trumpet S2 has been modified), and Participants 1 and 4 play on Yamaha

instruments that are not the same model as the one used in this experiment. None of the

participants were used to playing a Bach 1.5c mouthpiece, though it is a common

mouthpiece model and size. Participant 5, the only player who regularly plays one of the

trumpet models used for this experiment, stated that they preferred Trumpet S1 in general

and that they also thought it was most similar to the one they were used to playing.

Players also tended to make comments referring to trumpets as “the best” or “the worst”

for a given task, even though these values were not assigned in the description of the task.

This implies that the players’ personal preference was a factor in their rankings, and that

their rankings may have been influenced by an instrument’s level of similarity to their own
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personal instrument.
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Chapter 6

Discussion and Conclusions

In this thesis, four trumpets of varying makes and calibres have been compared using

numerical continuation methods. Results were produced similar to those found in Fréour

et al. [2020], and a small-scale perceptual trial was conducted to attempt to determine

whether the conjectures made based on results from numerical continuation are perceptible

to players. It was found that there were significant differences between the numerical

continuation results for the trumpets, and that they showed a clear pattern. In general, the

results for the three professional model instruments, Trumpets Y, S1, and S2, were much

closer to each other than to Trumpet B. The results for these instruments were generally

more favourable for players; they had a lower onset pressure and dynamic, a lower

hysteresis amplitude, a lower extinction dynamic, and a larger dynamic range, though the

maximum volume was comparable for all four trumpets. For the values related to the Hopf

bifurcation, the fold, and the amplitude of the hysteresis, Trumpet Y had the most

favourable results, followed by Trumpets S2, S1, and B. For the p value at maximum

blowing pressure and the dynamic range, the most favourable results were for Trumpet S2,
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followed by Trumpets Y, S1, and B, though the results were closer together for these

factors. It can be concluded that the student-model Besson trumpet showed much less

favourable results than the three professional model trumpets, particularly for factors

related to the low range of its dynamics. The three professional model instruments were

closer to one another, but in general, Trumpet Y showed more desirable results for the low

range of dynamics, and Trumpet S2 was more favourable for the louder dynamics, though

Trumpets Y and S2 were very close together for all factors.

The perceptual trial was designed to determine whether players could recognize

differences between the instruments that correlated with the results from numerical

continuation. It was found that there was not a consensus between the players about their

rankings for any of the tasks, and that the rankings did not seem to align with the results

from the modeling. The most notable observation from the rankings was that players

tended to rank Trumpet B as either a 1 or a 4, the two extreme ends of the scale. This

implies that the players were able to perceive the difference between the instruments, but

not to consistently determine the direction of the difference. This was confirmed by the

players’ verbal comments that Trumpet B was much different from the other instruments.

Most of the players stated that they disliked Trumpet B, but Player 2 preferred it,

implying that the players’ preferences for the factors studied may not be universal.

6.1 Limitations and future work

One limitation of the research in this thesis is that only one set of lip parameters was tested

for each instrument. It was noted in Chapter 4 that the location of the Hopf bifurcation

point for Trumpet B seems unreasonable. Velut et al. [2017] found that the optimal lip
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frequency value was highly dependent on the choice of lip quality factor Ql, and a similar

phenomenon was observed when different Ql values were tested to decide what value to use

for this thesis. The Ql value that was used for this thesis was chosen in order to make sure

that the desired resonance was excited for each instrument, but the choice was not refined

further. It is possible that the results are highly dependent on the lip parameters chosen,

though results from testing with varied lip parameters in [Fréour et al., 2020] suggest that

the patterns observed between instruments depend more on the measured impedance than

on the lip parameters. Testing with varied lip parameters could help determine how sensitive

the results are to changes in the lip parameters. It is also important to note that the LSA

approach used in this thesis does not consider the effect of changing other lip parameters.

For a more thorough analysis of the lip parameters, multiple parameters could be varied

simultaneously in order to determine the optimal combination of parameters. This may

allow us to determine whether the unusually high oscillation threshold value for Trumpet B

was due to the choice of lip parameters.

We also used a simplified, one-dimension lip model for this thesis, though stroboscopic

lip measurements in works such as [Copley and Strong, 1996] have suggested that the lips

actually vibrate on two axes. Further research could therefore include analysis using a two-

dimensional lip model, such as the one used in [Adachi and Sato, 1996], in order to determine

whether using a lip model that allows for motion in more directions changes these results

considerably.

The methodology used in this thesis could be used to make objective comparisons between

existing trumpet models, for use in the design and marketing of instruments. Further work

in this area could also involve investigating the correlation between numerical continuation

results and observable differences in the instruments’ impedances. Modeled impedances
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could also be created and modified, using modeling techniques such as transmission matrix

modeling, in order to observe how making small changes to the instruments’ geometry affects

the results from numerical continuation.

In the perceptual experiment, there was a lack of objectivity even though the players

could not tell what instrument they were playing visually or tactilely, since they could

often recognize which instrument was which just from playing the exercises. They were also

influenced by how similar an instrument was to their own instrument, and were not able

to control or assess their playing sufficiently to make objective judgements. The players

were also not used to making judgements of this type, and expressed that some factors were

difficult to discern, or conflated the qualities they were judging with other factors, such as

the level of “resistance” they felt from the instrument. Some players also referred to the

instruments as “better” or “worse” than one another for a task, assigning judgements of

quality that were not indicated in the directions. Some of these issues could be resolved

by having a larger-scale experiment, as some of the biases would likely even out with more

participants, but in order to resolve more of the difficulties with perception and control, it

may be helpful to combine the perceptual study with another type of measurement apparatus,

or to perform a different type of experiment altogether. The same type of trial could be used

in conjunction with a decibel meter to determine the loudness of the sounds produced, and a

device to measure the mouth pressure as in [Fletcher and Tarnopolsky, 1998]. These results

could also be tested by running time-domain simulations with the model to see if the results

are as expected, as in [Velut et al., 2017], or by setting up an artificial player system with

controllable blowing pressure and lip parameters, and measurable output, as in [Petiot et al.,

2003].
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simple. PhD thesis, Université de Provence Aix-Marseille I, 2009.

Lionel Velut. Contrôle par le musicien des régimes d’oscillation des instruments de la famille

des cuivres. PhD thesis, Aix-Marseille Université, 2016.
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Appendix A

Plots of modal impedance fits

The impedance curves generated using the fitted modal parameters are plotted along with

the measured impedances for all four trumpets in Figures A.1, A.2, A.3, and A.4. The

residuals for each fit are plotted below in black. In each plot, the modal fit closely follows

the measured impedance, though some peaks are slightly higher or lower, and the fitted curve

stops being close to the measured one close to the peak between 800 and 1000 Hz because

only the first seven peaks in the data were fitted. This region of the data encompasses the

majority of the range played on the trumpet, and is sufficient for studying the trumpet’s

fourth resonance, between 400 and 500 Hz. The first impedance peak around 150 Hz, which

is for the pedal tone of the instrument, is outside of the relevant range for this research and

is not included in the measured data.
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Figure A.1: Impedance plot for Trumpet Y, including the measured impedance in blue,
the fitted impedance in red, and the residuals in black.
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Figure A.2: Impedance plot for Trumpet S1, including the measured impedance in blue,
the fitted impedance in red, and the residuals in black.
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Figure A.3: Impedance plot for Trumpet S2, including the measured impedance in blue,
the fitted impedance in red, and the residuals in black.
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Figure A.4: Impedance plot for Trumpet B, including the measured impedance in blue,
the fitted impedance in red, and the residuals in black.
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