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Abstract

Physical modeling of musical instruments has been a growing field of research since the early

1980s. At the time, the computational costs of physical models did not allow for real-time

sound synthesis. Today, computational costs for real-time synthesis are not very prohibitive,

and it is possible to implement more complex models with enough efficiency for real-time

synthesis. Digital waveguides provide an efficient way of modeling one-dimensional wave

propagation and implementing such physical models for sound synthesis.

While physical models of well-known instruments are ubiquitous in the literature, mod-

els of some lesser known traditional instruments from different cultures around the world

are not. This thesis aims to provide a model of one of such instruments, the Colombian

gaita. In this thesis, the acoustic response of a pair of gaitas was studied and a basic phys-

ical model of a gaita was developed and implemented for real-time synthesis using digital

waveguide techniques found in the literature.

In order to determine if a cylindrical model would be an accurate representation for the

instrument, impedance measurements were made on a pair of gaitas after their heads were

removed. These measurements were then compared with the theoretical input impedance

and reflection function results obtained using a transfer matrix model with the physical

dimensions of a gaita. The results show the cylindrical approximation to be reasonable.

While the results showed a similar frequency response and reflection function, they also

showed some discrepancies in the amplitude of harmonic peaks, and the end reflection of

some open hole configurations of the model.

The digital waveguide model was developed and implemented in MATLAB in order

to compare its response with the measurements and theoretical results. The reflection

function comparison showed, as expected, some discrepancies between the model and the

measurements, particularly in the end reflection of certain open tonehole configurations.

The model was then implemented for real-time sound synthesis with a graphical user inter-

face using the JUCE framework and the Synthesis ToolKit. A time- and frequency-domain

comparison of the sound synthesized by the model and recordings of the instrument show

that while the model conveys the basic attributes of the sound of the instrument, it fails to

accurately capture some other sonic qualities that are characteristic of the instrument. The

most prominent differences between the model and the real instrument sounds are found

to be the magnitudes of the higher-frequency harmonics and the overall noise content.
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Sommaire

La modèlisation physique des instruments de musique est un domaine de recherche en

croissance depuis le début des années 1980. Á l’époque, les coûts de calcul ne permettaient

pas la synthèse de son en temps réel. Aujourd’hui, les coûts de calcul pour la synthèse en

temps réel ne sont pas trop prohibitifs,il est même possible d’implanter des modèles plus

complexes avec assez d’efficacité. Les guides d’ondes numériques constituent un moyen

efficace pour modéliser la propagation des ondes unidimensionelles ainsi que la mise en

œuvre de tels modèles physiques pour la synthèse de son.

Tandis que les modèles physiques des instruments bien connus sont omniprésents dans

la littérature, les modèles de certains instruments traditionelles moins connus provenant de

différentes cultures à travers le monde ne le sont pas. Cette thèse vise à proposer un modèle

pour l’un de ces instruments, la gaita colombienne. Dans cette thèse, la réponse acoustique

d’une paire de gaitas a été étudiée et un modèle physique élémentaire d’une gaita a été

développé et mis en œuvre en utilisant les techniques des guides d’ondes numériques que

l’on trouve dans la littérature.

Afin de déterminer si un modèle cylindrique serait une représentation adéquate pour cet

instrument, des mesures d’impédance ont été effectuées sur une paire de gaitas après que

leurs têtes aient été enlevées. Ces mesures ont ensuite été comparées avec les résultats de

l’impédance d’entrée et la fonction de réflexion théoriques obtenus en utilisant un modèle

de matrice de transfert avec les dimensions physiques d’une gaita. Les résultats montrent

que l’approximation cylindrique est raisonnable. Si les résultats ont montré une réponse de

fréquence et une fonction de réflexion similaires, ils ont également montré quelques écarts

dans l’amplitude des pics harmoniques, ainsi que le reflet de la fin de l’instrument dans

certaines configurations avec les trous de ton ouverts.

Le modèle de guides d’ondes numériques a été développé et mis en œuvre dans MATLAB

afin de comparer la réponse avec les mesures et les résultats théoriques. La comparaison de

la fonction de réflexion a montré, comme prévu, des écarts entre le modèle et les mesures,

particulièrement dans les configurations avec les trous de ton ouverts. Le modèle a en-

suite été mis en œuvre pour la synthèse en temps réel avec une interface graphique en

utilisant le cadre logiciel JUCE et le Synthesis ToolKit. Une comparaison temps-fréquence

du son synthètisé et des enregistrements de l’instrument montre que le modèle, bien qu’il

transmet les attributs de base de l’instrument, ne parvient pas à capturer avec précision
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certaines autres qualités sonores qui sont caractéristiques de l’instrument. Les différences

les plus importantes entre le son du modèle et le son de l’instrument sont les amplitudes

des harmoniques de haute fréquence et le contenu global du bruit.
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Chapter 1

Introduction

1.1 Motivation

Wind instruments are arguably the oldest pitched instruments in human history. Bone

whistles and flutes survive from paleolithic sites dated to 40,000 BC, or even earlier. The

simplest end-blown flute is a tube with an open end, for example a piece of bamboo [14].

The Colombian gaita is one of such instruments, and it is of great cultural importance

along the Caribbean coast of the country.

Despite their cultural importance, the construction and playing of gaitas has historically

been, and largely remains an oral tradition. In 2013, Ochoa [1] published a musicological

study centered around this instrument. This study included topics such as the history of

the instrument, basic aspects of the construction of the instrument, playing technique, and

transcriptions of traditional gaita tunes. An acoustic study of the instrument was presented

in 2002 by Juan Hernandez at the Pontificia Universidad Javeriana in Bogotá, Colombia,

but it is currently unavailable to the public, and it did not concern the development of a

physical model [15, 16].

Flute-like instruments have a superficially simple mechanism for sound production, yet

the physics behind it, in particular, their excitation mechanism, can be quite complex.

There has been extensive theoretical and experimental research conducted on flute-like

instruments, including analyses of the air jet mechanism [17, 18, 19], and the behavior and

characterization of the acoustic tube including the influence of toneholes, [20, 21, 22, 23, 24].

Modeling the behavior of these instruments and their underlying structures is a useful tool

for understanding the sound production mechanisms and their complexities.

2020/06/11
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Time-domain modeling of acoustic structures has been a growing field of research in

musical acoustics since the publication of the landmark paper by McIntyre et al [4]. Dig-

ital waveguide modeling is a technique for simulating one dimensional wave propagation

in discrete-time, providing an efficient way of modeling strings and acoustic tubes using

delay lines. These techniques have been documented by Smith [25, 26] and Välimäki [27],

among others. The implementation of physical models of wind instruments using digital

waveguides has also been widely researched, and some models can be found in the litera-

ture with varying degrees of complexity, such as the SlideFlute by Cook [28], models by

Välimäki [29, 30], which also approached the issues of radiation and influence of toneholes,

the saxophone model by Scavone [7], which refined the tonehole model and discussed the

implementation of register holes, and the model by Verge [12], which approached the issue

of the air jet mechanism in more detail. A model of a gaita hembra was presented in [13]

using digital waveguide techniques, based on a recorder model by Välimäki. The param-

eters of said model were derived from a frequency-domain comparison between recordings

of a real gaita and the output of the model.

The goal of this project is to implement a model of a Colombian gaita or kuisi based

on the physical properties of the instrument, using the aforementioned techniques, and

synthesize its sound in real time.

1.2 Thesis Overview

Chapter 2 presents an overview of Colombian gaitas, including their tuning, playing posi-

tions, and commonly used range. This chapter also reviews some acoustical principles of

wind instruments that will be useful in the sections to follow, including the characteriza-

tion of air columns, which are later used to compare the response of the instrument with

both the theoretical and digital waveguide models. Chapter 3 presents an explanation of

the physical modeling techniques used for the implementation of the model. It explains

individual components that will be used to put the model together, including the mod-

eling of the acoustic tube, toneholes and excitation mechanism of the model. Chapter 4

presents a comparison of the results obtained by measuring the impedance response of a

pair of gaitas after their heads were taken off, with the theoretical results obtained using

a transfer matrix model and the physical measurements of the instruments. Chapter 5

gives an overview of the implementation of the model. A comparison of the response of



1 Introduction 3

the waveguide model with the measurements and the theoretical results presented in the

previous chapter is made. It concludes with a comparison of the sound synthesized by the

model and recordings of the instrument using a spectrogram and their frequency spectrum.
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Chapter 2

Background

2.1 The Colombian Gaita

Gaitas are a traditional instrument from the Montes de Maŕıa region of Colombia, near the

Caribbean coast, and they are of great importance in the folklore and musical tradition of

the region. A gaita is a wind instrument of indigenous origins consisting of an open-ended

quasi cylindrical bore made of dry cactus (known as cardón). The mouthpiece, shown in

Fig. 2.1 is made of a mixture of beeswax and coal [1], which is heated and attached to the

tube. Figure 2.2 shows the tubes of the gaitas after their heads were removed and one of

the heads next to them. Air is blown into the instrument through a small feather, originally

made from a duck or turkey’s feather, but more recently made of plastic attached to the

wax/coal mixture. The angle and distance of the feather to the edge of the tube varies by

instrument, and is usually set by trial and error. Gaitas are made in pairs: a macho (male)

that has two holes, and a hembra (female) that has five holes. Neither the length of the

tubes, which can vary between 75 and 85 cm, nor the sizes of the holes, which are usually

close to 3/8 in, are standardized. The length of the tube has traditionally been dictated by

the arm length of the intended player. Traditionally, the distance between the instrument’s

holes has been measured using the builder’s fingers as a reference: 4 or 5 fingers from the

end of the instrument to the lowest hole, and about 3 fingers between holes [1]. Gaitas are

flute-like instruments, having a sound producing mechanisms similar to that of a recorder.

These types of instruments consist of a linear system, an acoustic resonator, coupled to a

non-linear excitation mechanism, an air-jet striking a sharp edge [31].



2 Background 5

Fig. 2.1 Head of a gaita (from [1]).

Fig. 2.2 Tubes of gaitas after their heads were removed, next to one of the
heads
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2.1.1 Range and Tuning

A typical ensemble consists of 3 drums (tambor alegre, tambor llamador and tambora, a

maraca, a gaita hembra and a gaita macho). Being artisanal, hand-made instruments, the

tuning of gaitas has not been standardized. The lowest note of the instrument is usually

somewhere near G[2 and G2 [1]. Figure 2.3 illustrates the finger positions for a gaita

hembra. Not shown in the diagram is position 0, with all of the toneholes closed, which

will be considered for the measurements in this study. The fundamental notes are quite

challenging to play, as they require a very soft blow pressure and they are not used very often

[1]. Higher partials can be achieved by overblowing. Figure 2.4 shows an approximation

of the common playing range of a gaita hembra. The two lowest notes shown on the

left correspond to the fundamentals of positions 3 and 5, respectively, which are the only

fundamentals commonly used in this instrument [1].

Fig. 2.3 Finger positions of a gaita hembra (from [1]). (Closed toneholes
are shown in black)

Traditional gaitas do not play this exact set of notes. This is rather an approximation,

quite close for all positions except for position two. In position 2, the fundamental note

varies among instruments between a B[ and a B. This ambiguity makes the tuning of the

instrument vary between what would be a Western dorian and phrygian scales from position

one.
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Fig. 2.4 Approximation of the range of a gaita hembra (from [1]).

The gaita macho has 3 finger positions, as shown in Fig. 2.5. In a gaita macho, position

2 also varies in tuning, and the fundamental can be closer to a B[, depending on the

particular instrument.

Fig. 2.5 Finger positions of a gaita macho (from [1]).

Fig. 2.6 Approximation of the range of a gaita macho (from [1]).

The distance between the toneholes in a gaita hembra limits the player to be able to

cover four toneholes at a time. Usually, the last tonehole (closest to the end) will be left

open. In certain cases, the first tonehole, closest to the mouth, can be covered with a

piece of wax, allowing the player to play with all the toneholes closed. In musical contexts,

the gaita hembra is traditionally in charge of playing the melody, while the gaita macho
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doubles or reinforces certain notes played by the hembra. Usually, the gaita macho is played

keeping the tonehole closest to the mouthpiece closed all the time, using only positions 1

and 2.

2.2 Acoustics of Wind Instruments

Sound is produced in wind instruments by the oscillation of an enclosed volume of air.

Oscillations are initiated —and sustained— by a player, who blows into the instrument in

a particular way, depending on the instrument’s particular mechanism [32]. In flutes and

flute-like instruments, sound is produced by an air jet that flows across an opening at one

end of the instrument. This section aims to review acoustic principles of wind instruments,

focusing on flute-like instruments, such as the Colombian Gaita.

2.2.1 Sound Waves

Waves will propagate in any medium with mass and elasticity [31]. Gases such as air

have no elastic resistance to shear, and acoustic waves that propagate in such media are

primarily longitudinal—the displacement of the medium is parallel to the propagation of

the wave [33].

Small sources will radiate sound in all directions in a nearly spherical way [31]. It is

easier to start the study of these waves by looking at a small section of a wave at a large

distance from the source, and treat it as a plane normal to the direction of propagation.

For the purpose of this project, studying the propagation of waves in one dimension will

suffice.

The one-dimensional wave equation referring to acoustic pressure p is defined as

∂2p

∂t2
=
K

ρ

∂2p

∂x2
, (2.1)

where x is the spatial variable, t is the time variable, K is the bulk modulus and ρ is

the density of air [31]. Similarly, the one-dimensional wave equation referring to acoustic

displacement ξ is defined as
∂2ξ

∂t2
=
K

ρ

∂2ξ

∂x2
. (2.2)

The relationship between speed of propagation c and the bulk modulus K can be expressed
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as

c2 =
K

ρ
=
λpa
ρ
, (2.3)

where λ is the ratio of specific heats of air at a constant pressure and pa is the atmospheric

pressure. The wave equation relating pressure and position then becomes

∂2p

∂t2
= c2

∂2p

∂x2
. (2.4)

This substitution can also be applied to the wave equation for acoustic displacement ξ.

Solutions to equation 2.1 describe the pressure evolution of one-dimensional plane waves

propagating in air [7]. In the frequency domain, solutions to the one-dimensional wave

equation moving in one direction have the form

p =
[
Ae−jω±kx

]
, (2.5)

where k = ω/c and A is the complex amplitude of the wave traveling in one direction. Writ-

ing the acoustic velocity ∂ξ/∂t as u, the pressure and velocity traveling wave components

moving in the positive x direction are related by:

p+ = ρcu+. (2.6)

This relationship helps define the wave impedance or specific impedance in free space as

Zc =
p+

u+
= ρc. (2.7)

2.2.2 Cylindrical Bores

Wind instruments make use of an air column whose natural frequencies must be properly

aligned to set up regimes of oscillation in conjunction with the excitation mechanism.

Different notes can be played on these instruments by changing the length of the resonant

air column. This can be achieved by blowing into another pipe of different length, or

by changing the effective length of the air column by placing a set of toneholes along

the air column that can be opened and closed. Gaitas, as well as the Western family of

woodwinds, fall into the second category. The lowest note of such instruments uses a regime
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of oscillation based on the complete air column’s vibrational mode acting in conjunction

with higher modes. The higher notes of the low register are produced by opening holes one

by one along the tube, beginning with the one farthest from the mouthpiece. This opening

of the toneholes shortens the effective length of the air column, raising the frequency of the

modes [10]. It is necessary that the ratio between the first mode and the subsequent normal

modes of the instrument is independent of the length of the horn in order to maintain a

similar timbre over the full range of the bore, and it also permits overblowing, the production

of sounds based on higher order resonances [10].

Wave propagation as examined in section 2.2.1 refers to one-dimensional waves propa-

gating in arbitrary contexts. This section explores wave propagation in cylindrical bores.

The simplest system for study is an infinite cylindrical pipe with its axis parallel to the

direction of propagation of a plane wave [31].

For the purposes of this thesis, it is not necessary to pursue an in-depth analysis of

the three-dimensional wave equation. It will suffice to know that in a cylindrical tube, a

mode will only propagate if the frequency exceeds a critical value or cutoff frequency. This

cutoff frequency is 0 for the plane wave mode, so this mode will always propagate. The

next mode of propagation has a cutoff frequency within the range of human hearing, but

its excitation would require transverse circular motion, which will not be of significance in

musical instruments. Therefore, wave motion in cylindrical tubes is primarily planar along

the principal axis of the tube.

A pressure wave propagating along the primary axis of a cylindrical tube in the positive

x direction has the form

p(x, t) = pej(−kx+ωt), (2.8)

and the volume flow

U(x, t) =
Sp

ρc
ej(−kx+ωt), (2.9)

where S is the cross sectional area of the tube. The characteristic, or wave impedance of

the pipe can then be derived as

Zc =
p(x, t)

U(x, t)
=
ρc

S
. (2.10)

This discussion so far has been restricted to infinite or semi-infinite cylindrical tubes.
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For a finite cylindrical tube, waves will be partially reflected by a load impedance ZL from

the end, whether it is an open or closed pipe, defined as

p(L, t)

U(L, t)
= ZL. (2.11)

For a pipe extending from x = 0 to x = L, terminated by the load impedance ZL, the

pressure in the pipe is a superposition of two waves, moving left and right with complex

amplitudes A and B respectively [31].

The pressure wave reflectance, a frequency dependent reflection coefficient, is given by

B

A
= e−2jkL

[
ZL − Zc
ZL + Zc

]
. (2.12)

If ZL = 0 or ZL = ∞, there will be no incidence of the pressure wave into the new

medium, and the wave will be completely reflected, with a sign inversion in the first case.

Conversely, if ZL = Zc, there will be no reflection.

The impedance at x = 0 or input impedance of the tube is given by

ZIN =
p(0, t)

U(0, t)
= Zc

[
A+B

A−B

]
= Zc

[
ZL cos (kL) + jZc sin (kL)

jZL sin (kL) + Zc cos (kL)

]
.

(2.13)

The input impedance of an ideal open tube of finite length can be estimated using the low

frequency approximation ZL = 0, which reduces equation 2.13 to

ZIN = jZc tan (kL). (2.14)

In an open-ended tube with the idealized condition that the input end x = 0 is also

open, with ZIN = 0, resonances are given by

f =
nc

2L
, (2.15)

where n is an integer. The idealized open-open (open on both ends) pipe has a fundamental

frequency with a wavelength of two times its length, and higher resonances at integer
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multiples of the fundamental frequency [7]. The input impedance of an acoustic structure

provides valuable information regarding its natural modes of vibration [7]. The instrument’s

transient response, tonal stability and dynamic range depend upon the extent to which the

input impedance peaks are harmonically aligned [21].

2.2.3 Toneholes

Woodwind instruments use a series of toneholes along the acoustic tube of an instrument

to change the effective length of the resonating air column, and therefore produce different

pitches. Benade [10] defines a tonehole lattice (THL) as a potentially infinite sequence

of toneholes. He points out that the acoustical behavior of a woodwind is very strongly

influenced by the design of its system of toneholes. In his analysis, the toneholes are

represented as T-sections, consisting of a piece of the main bore with radius a and length

2s. Each T-section has at its center a side branch, a tonehole of radius b. The wall thickness

is given by t. A pipe with this closed THL can be translated into a simpler shape, with the

cross-sectional area enlarged by a factor Ec, , giving the effective cross sectional area to be

SEc = πa2
[
1 +

1

2
D(c)

]
, (2.16)

for D(c) = 1
2
(b/a)2(t/s) � 1 and the length correction of a single T-section of the THL,

given by [10]

E ≈ 2s
(√

1 +D(c) − 1
)
, (2.17)

which can be added to the length correction of the other tonehole sections to find the length

correction of the complete pipe. Open tonehole lattices also have an important role in the

cutoff frequency, which is given by [7]

fc =
c

2πs

√
D(o)

1 + 2
3
D(o)

, (2.18)

where D(o) = 1
2
(b/a)2(s/te), and te is the effective length of the tonehole. Increasing the

ratio of the tonehole and bore radii, (b/a), will raise the cutoff frequency of the open

tonehole lattice.

A more detailed explanation of the characterization of toneholes in a cylindrical wood-
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wind bore, as presented in [20] and refined in [21] is given in chapter 4.

2.2.4 Characterization of the response of air columns

The response of an air column can be characterized in both the frequency and the time

domain. In the frequency domain, the input impedance Z(f) = P (f)/U(f), is the com-

plex ratio of pressure response, P (f) to an input sinusoidal volume flow U(f) into the

entryway of the instrument. The minima of the input impedance in air-jet driven wind

instruments occur at frequencies where sound production is favorable. Another frequency

domain response is the reflection coefficient R(f), defined as the complex ratio of the re-

flected pressure to an incident sinusoidal pressure into the air column [34]. The reflection

coefficient describes how much of a wave is reflected back at an impedance discontinuity,

such as a tonehole or the end of the instrument. In the time domain, air columns can be

characterized by the impulse response h(t). The impulse response is the pressure response

at the entrance of the pipe to a unit volume flow impulse. The impulse response can be

calculated indirectly as the inverse Fourier transform of the input impedance. After the

initial impulse is sent, the input of the pipe is considered as a closed end. Another time

domain characterization is the reflection function r(t), defined as the reflected pressure re-

sponse to a unit pressure impulse. After the initial impulse is sent into the entrance of the

pipe, the input of the pipe is regarded as anechoic, so the impulse is not reflected back into

the system. The reflection function decays much more rapidly than the impulse response.

The reflection function can be calculated as the inverse Fourier transform of the reflection

coefficient:

r(t) = FT−1[R(f)]. (2.19)

The impulse response is the time domain pressure response to the application of a

volume velocity unit impulse at the input. The impulse response and the input impedance

are time and frequency domain correlates:

Z(f) = FT [h(t)]. (2.20)

The impedance and reflection coefficient of a system are related by the equation:
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Z(f) = Zc
1 +R(f)

1−R(f)
. (2.21)

2.2.5 The Air Jet Mechanism

This section offers a general description of the air jet mechanism in flue pipes. A more

in-depth analysis of this mechanism would require an involved discussion of aeroacoustics

and fluid dynamics, which is out of the scope of this work.

The excitation mechanism used by flutes, recorders and organ flue-pipes is controlled by

a small jet of air that flows across —rather than directly into— an opening at one end of the

instrument [10]. When the stream of air is directed across the opening at an adequate angle

and pressure, an oscillatory flow of air will be set in motion, in and out of the instrument.

Figure 2.7 illustrates this oscillatory flow of air into an organ flue pipe. The problem

of the jet oscillation is quite complex and has been studied extensively theoretically and

experimentally [32]. The excitation mechanisms of these types of instruments can have a

fixed geometry (organ pipes, recorders) or a variable geometry (transverse flutes).

Three main elements need to be described for the modeling of the oscillation in flutes,

the jet receptivity, the jet instability and the aeroacoustic sources. In a flute, the air jet is

blown across an open end of the pipe. When acoustic oscillation occurs in the pipe, the

jet instability synchronizes on the acoustic oscillation, resulting in a “forced” oscillation

of the jet [3]. The hydrodynamic waves traveling on the jet have the same frequency

as the acoustic oscillation. The jet oscillation grows as it is carried by the flow. Two

characteristics of the jet motion are important for the oscillations of the instrument: the

propagation velocity of the perturbation waves on the jet, and the amplification of the

perturbation. These correspond to a characteristic growth factor of the instability waves

along the jet [3], and they are both dependent on the frequency. At the labium (also

known as upper lip in organ flue pipes, shown in Fig. 2.7), transverse perturbations of the

jet are convected from the flue exit, and as a result, the jet oscillates from one side of the

labium to the other. This induces a force on the labium, which is synchronized with the

jet perturbation and the acoustic oscillation. The reacting force of the labium acts as an

acoustic source that sustains the oscillation. The acoustic field in the pipe is responsible for

the initial perturbation, which is convected and amplified due to the natural jet instability.

The interaction of the perturbed jet with the labium is the aeroacoustic source that feeds
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Fig. 2.7 Excitatory mechanism in a flue pipe [2].
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energy into the pipe. As a response, the acoustic energy in the pipe is associated with the

acoustic flow through the mouth, and results in the jet perturbation at the flue exit. The

self-sustained oscillations in the instrument can be thought of as a feedback loop, as shown

in Fig. 2.8.

Fig. 2.8 Feedback loop describing self sustained oscillations in flutes [3].

In this loop, stationary oscillations can only take place when the total phase shift around

the loop is a multiple of 2π. When blowing softly in a recorder, the time delay associated

with the convection of the perturbations is about one half the period of oscillation. There-

fore, the phase shift of the pipe response needs to be the complement of one period. By

blowing harder, the jet velocity and the convection velocity increase. The phase shift due to

the convection of perturbations on the jet decreases, so the oscillation frequency increases

to match the phase condition. By blowing harder, the convection delay on the jet is even-

tually too small compared to the period of the resonance of the pipe, and the oscillation

jumps to the next resonance [3], known as overblowing.
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Chapter 3

Physical Modeling

Physical modeling synthesis looks to model and solve the physics of a system in order to

synthesize its sound [35]. Unlike other synthesis methods, physical modeling can provide

great expressive and parameter control, while being computationally efficient and requiring

little memory. Physical modeling, however, requires a different model for each instrument

or system being modeled. A musical oscillator is generally non-linear, but can be described

in separate linear and non-linear mechanisms, as described by [4] and shown in Fig. 3.1. A

non-linear element excites a linear, passive element. In the case of flue instruments, these

mechanisms correspond to an air jet and an acoustic tube, respectively. The linear element,

in turn, feeds back and influences the behaviour of the non-linear element.

Fig. 3.1 Diagram of a fairly general musical oscillator (from[4]).

Physical models are usually one of two types: lumped or distributed. Lumped models

consist of masses, springs and dampers (which can sometimes include non-linearities) and

are usually used to simulate systems like the lips of a brass player or a piano hammer.

Distributed models typically consist of transmission lines and distributed losses (which can
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include non-linear components as well). A common, efficient technique to digitally model

wave propagation in distributed systems is referred to as digital waveguide modeling [36],

which makes use of digital delay lines and other digital filters to model wave propagation

in strings, bores or acoustic spaces, among other systems. This chapter will focus on the

latter, relying heavily on previous literature on digital waveguides, particularly in [6] and

[7].

3.1 Physical Modeling using Digital Waveguides

Digital waveguides model the propagation and scattering of traveling waves in discrete-time

accurately and efficiently. This section will review the fundamentals of this method with

its applications to acoustic tubes.

3.1.1 Delay Lines

A digital delay line can be implemented by allocating a buffer of values in memory. It

will introduce a delay of M samples between the input and its output, and will have the

z-domain transfer function H(z) = z−M . A diagram of an M-sample delay line is shown

in Fig. 3.2. Integer-length delay lines can be trivially implemented, and non-integer delays

can be implemented using interpolation techniques.

Fig. 3.2 An M-sample digital delay line (from [5]).

Interpolation algorithms must compute the output sample y[n] which lies in between

two samples at time M and M + 1 [37]. There exist several interpolation techniques for

the implementation of fractional delay lines, including linear, spline, Lagrange and sinc

interpolation. Two frequently used techniques for the implementation of delay-line inter-

polation are linear interpolation and all-pass interpolation. First-order linear interpolation

is an efficient technique where the value at a fractional point between samples y[n] and
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y[n− 1] is given by:

y[n−∆] = (1−∆) ∗ y[n] + ∆ ∗ y[n− 1]

= y[n] + ∆(y[n− 1]− y[n]).
(3.1)

The following is a block diagram for the implementation of first-order linear interpola-

tion:

Fig. 3.3 Block diagram of first-order linear interpolation (from [5]).

First-order linear interpolation, also known as first-order Lagrange interpolation, be-

comes less accurate for high frequencies.

3.1.2 Modeling Wave Propagation Using Delay Lines

Delay lines can be used to simulate acoustic wave propagation. A simple delay line can be

used to simulate any traveling wave that propagates in one direction with a fixed waveshape.

The delay line length can be determined as M = d/cT , where T = 1/fs is the sampling

period, c is the speed of sound and d is the distance of the listener from the source. If

the wave attenuates at all frequencies by the same factor, the output of the delay can be

scaled [6]. In general, these losses tend to be frequency dependent, and this damping can

be commuted and implemented at discrete points in the system using a digital filter, as

shown in Fig. 3.4.

Fig. 3.4 Simulation of a damped traveling wave, with losses commuted at
the output (from [6]).

The air column of a cylindrical bore, such as a flute or a gaita, can be modeled using

the one-dimensional wave equation (Eq. 2.1, as described in Section 2.2.1). This is usually
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referred to as a one-dimensional waveguide [26]. A general solution to the wave equation

is given by y(x, t) =
(
A−jkx +Bjkx

)
ejωt. Another solution to the wave equation in terms

of traveling waves was presented by d’Alembert in 1747 as y = y+(ct− x) + y−(ct+ x) [5].

In the digital domain, it is necessary to sample the traveling wave amplitudes at intervals

of T seconds. The spatial sampling interval corresponds to the distance traveled by sound

in one temporal sampling interval. Each component of the traveling wave moves left or

right one spatial sample for each time sample [7]. By substituting sampled variables for

continuous variables

x −→ xm = mX

t −→ tn = nTs,
(3.2)

the traveling wave solution then becomes

y(xn, xm) = y+(tn − xm/c) + y−(tn + xm/c)

= y(nTs −mX/c) + y−(nTs +mX/c)

= y+[(n−m)Ts] + y−[(n+m)Ts].

(3.3)

A further simplification results in

y(tn, xm) = y+(n−m) + y−(n+m), (3.4)

an expression for physical displacement at time n and locationm, as the sum of two traveling

wave components. This is a most basic waveguide, defined by [6] as a bidirectional delay

line at some wave impedance.

3.1.3 Digital Waveguides

Each delay line will contain a sampled traveling wave, moving left or right. From the

previous equation, the term y+(n − m) can be thought of as the output of an M-sample

delay line with input y+(n), while the term y−(n+m) can be thought of as the input of an

M-sample delay line with output y−(n) [26]. The right and left-going components of the

traveling wave must be then summed to produced the physical output y(tn, xm). In this

way, a bidirectional delay line, or digital waveguide, can model any one-dimensional linear

acoustic system, such as a string or a bore. This basic waveguide structure is shown in Fig.
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3.5.

Fig. 3.5 Diagram of a digital waveguide (from [5]).

3.2 Modeling of Wind Instruments

Traditionally, acoustic tubes were characterized in the frequency domain. Good shapes for

bores and toneholes have been rationalized by considering the relationships between the

normal mode frequencies that are favorable for periodic oscillations. A characterization

in the time domain, however, proves advantageous in terms of computational expense.

Research on the non-linear excitation mechanisms of wind instruments has also advanced

the development of time-domain models [3, 18].

The time-domain response of an acoustic tube can be represented in terms of its re-

flection function, r(t) or its impulse response, h(t). The impulse response is the pressure

response at the bore entrance after a unit volume velocity impulse is introduced at the

entrance, with the boundary at the entrance subsequently assumed to be rigid (or closed).

The reflection function is the pressure response at the entrance of the tube after a unit

pressure impulse is sent out, with no reflections at the entry point.

3.2.1 Modeling of Cylindrical Bores

The two commonly used waveguide variables for acoustic tube simulation are pressure and

volume velocity, analogous to force and transverse velocity in strings.

The Ohm’s law relations for acoustic tube variables are given by:

p+(n) = Zcu
+(n) (3.5)

p−(n) = −Zcu−(n), (3.6)
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where p+ and p− are the right- and left-going pressure components, respectively, u+ and

u− are the right- and left-going volume velocity components, respectively, and Zc is the

acoustic wave impedance, given by:

Zc =
ρc

A
. (3.7)

Here, ρ is the density of air, c is the speed of sound in air and A is the cross sectional area

of the acoustic tube.

Using the one-dimensional equation for plane waves (Eq. 2.1) and the discrete-time

solution (Eq. 3.4) we can represent the lossless wave propagation along the central axis of

a cylindrical tube using the digital waveguide structure shown in Fig. 3.5.

The reflectance, observed from the entrance of the cylindrical tube of length L is given

by:

R(Ω) = e−2jkL

[
ZL(Ω)− Zc
ZL(Ω) + Zc

]
, (3.8)

where Zc is the real characteristic wave impedance of the pipe, and ZL(Ω) is the load

impedance at x = L. For ZL = 0, corresponding to zero pressure at x = L, R(Ω) =

−e−2jkL. The continuous-time reflection function is found as the inverse Fourier transform

of R(Ω), when viscothermal losses are ignored [7]. Figure 3.6 shows the implementation of

this digital waveguide structure with an arbitrary load impedance.

Fig. 3.6 Digital waveguide implementation of plane wave propagation in a

cylindrical tube (from [7]).

This waveguide structure can be simplified by limiting the observation point to the

entry of the bore. In this way, we can use one single delay line and the digital filter used

to represent the reflectance can be pushed through the lower delay line by linearity and

time-invariance [7], as shown in Fig. 3.7.
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Fig. 3.7 Digital waveguide of an ideal cylindrical tube using a single delay

line (from [7]).

The waveguide input impedance can be found by calculating the impulse response of the

system, and transforming it to the frequency domain using the Discrete Fourier Transform

(DFT), using the structure shown in Fig. 3.8.

Fig. 3.8 Digital waveguide model of a closed-open cylindrical bore (from
[7]).

Figure 3.9 shows the input impedance and impulse response of a digital waveguide

model of a cylindrical bore of length 84.79cm and radius 6.6mm, implemented using a

single non-interpolating delay line, and an approximation of the reflectance using a second

order IIR filter based on the results from Levine & Schwinger unflanged cylindrical bore

reflectance [38], designed using openpipe.m from [7].

3.2.2 Modeling of Toneholes

Various models have been proposed to characterize toneholes in the time and frequency

domains. We make use of the approach presented in [7, 8], which is summarized in the

following paragraphs. Keefe [21] describes a model for a tonehole unit where acoustic

variables are related by a transmission matrix of series and shunt impedance parameters.
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Fig. 3.9 Impulse response (top) and input impedance (bottom) of a digital
waveguide model of a cylindrical bore of radius 6.6mm and length 84.79cm.
End reflection filter approximated using openpipe.m from [7].

Keefe’s original derivation was based on a symmetric T-section. The shunt impedance Zs

results from an analysis of a pressure anti-node at the junction, where pressure is symmetric

and equal across the junction. The series impedance terms result from an analysis of a

pressure node at the tonehole junction, where volume flow is symmetric and equal across

the junction. The resulting transmission matrix is:[
P1

U1

]
=

[
1 Za/2

0 1

][
1 0

Z−1
s 1

][
1 Za/2

0 1

][
P2

U2

]
(3.9)

=

[
1 + Za

2Zs
Za(1 + Za

4Zs
)

Z−1
s 1 + Za

2Zs

][
P2

U2

]
.

This equation can be reduced based on the approximation that |Za/Zs| � 1, resulting in

the basic tonehole unit cell given by Keefe for transfer-matrix function calculations [21]:[
P1

U1

]
=

[
1 Za

Z−1
s 1

][
P2

U2

]
. (3.10)
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In order to render these relationships in the digital waveguide domain, it is necessary to

transform the plane-wave transmission matrix coordinates of pressure and volume velocity

to waveguide coordinates [7]: [
P1

U1

]
=

[
P+
1 + P−

1

Z−1
c (P+

1 − P 1
1 )

]
, (3.11)

where Zc is the characteristic impedance of the bore, equal at both sides of the tonehole.

This relates waveguide pressure variables as follows:[
P−
1

P+
2

]
=

[
R− T −

T + R+

][
P+
1

P−
2

]
. (3.12)

The structure shown in Fig. 3.10 shows the resulting continuous-time reflectance and trans-

mittance terms, which must be converted into appropriate discrete time representations.

A sequence of toneholes is then represented as shown in Fig. 3.11.

Fig. 3.10 Digital waveguide tonehole two port scattering junction (from [7]).

A two-port tonehole scattering junction has the disadvantage of having only an open

or closed characterization of the tonehole, which cannot be efficiently unified in a single

tonehole model.

A tonehole can also be modeled using a three-port scattering junction. Välimaki [27]

proposed a three-port tonehole model in which a side branch is connected to a uniform

cylindrical bore. Scavone [8] describes a three-port scattering junction characterization of

a tonehole, in which the fixed portions of the tonehole are separated from the variable
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Fig. 3.11 Digital waveguide implementation of series of two-port toneholes
(from [8]).

components. This method models the shunt impedance term of the Keefe tonehole charac-

terization. The characterization of the open/closed tonehole end can be efficiently modeled

by a simple inertance model. The impedance of the open end is given by:

Z(o)
e (s) =

ρt

Se
s, (3.13)

where Se is the cross-sectional area of the end hole, t is the effective length of the opening,

and s is the Laplace transform variable. The open-end reflectance is:

R(o)
e =

P−
e (s)

P+
e (s)

=
Z

(o)
e (s)− Zcb

Z
(o)
e (s) + Zcb

=
ts− c
ts+ c

, (3.14)

where Zcb is the characteristic impedance of the tonehole branch. An appropriate discrete-

time filter implementation can be obtained using the bilinear transform mapping from the

s-plane to the z-plane, resulting in:

R(o)
e (z) =

a− z−1

1− az−1
, (3.15)

where

a =
tα− c
tα + c

, (3.16)

and α is the bilinear transform constant which controls frequency warping [8]. A low-

frequency discrete-time fit is achieved for α = 2fs [7]. The discrete-time reflectance is a
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first order allpass filter. The closing of the tonehole can be simulated by taking the hole

radius smoothly to zero, in which case the allpass coefficient will be set to a value nearly

equal to one, which corresponds to the pressure reflection at a rigid termination. Figure

3.12 shows a diagram of the implementation of the three-port scattering junction.

Fig. 3.12 Digital waveguide implementation of a three-port tonehole scat-
tering junction (from [8]).

The scattering coefficient is defined as:

r0 =
−Zc

Zc + 2Zcth
. (3.17)

In this way, a series of toneholes can be implemented by using appropriately sized delay

lines on the sides of the scattering junctions. This part of the model covers the linear

passive element shown in Fig. 3.1.

3.2.3 Modeling of Air Jets

Modeling the non-linear excitation mechanism of flue instruments is a non-trivial task. The

underlying physics of the volume flow are complex in nature, and an exact simulation of

the fluid dynamic phenomena requires a large amount of computing power, not suitable for

real-time synthesis [12].

The non-linear element shown in Fig. 3.1 was described in [4] as:

f(t) = F (q{t− τ}), (3.18)
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where the term τ implies a time delay in the volume flow displacement, since the air has to

travel a small distance before it hits the labium of the instrument. The interaction of the

air jet with the tube can be described in terms of a non-linear function called a sigmoid

function. One such function of volume displacement, as shown in Fig. 3.13, is of the form:

F (q) = h+ k tanh(lq), (3.19)

where k is a gain term and h is an offset from the center of the labium. Here, a value of 0

for h will produce weak even harmonics, as the air would blow into the labium exactly in

the middle, and changing this parameter can introduce more even harmonics.

Fig. 3.13 Non-linear characteristic for a an air jet, as described in [4].

For the simulation of pressure, as opposed to volume flow, a sigmoid function of the

form

p+ = x3 − x, (3.20)

as shown in Fig. 3.14, has been used in [28] and [9].

Figure 3.15 illustrates the air jet excitation mechanism in a flute. In this diagram, ts

denotes the width of the air jet, and ds the physical distance the air must travel before

reaching the labium of the instrument. A delay line is used to represent this distance in the

models discussed so far. The length of this delay line, which is placed before the sigmoid

function, is not derived physically, as the speed of the disturbance of the jet is slower than

the speed of the jet itself. As mentioned in Chapter 2, certain relations between the transit
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Fig. 3.14 Non-linear characteristic for a an air jet, as implemented in [9].

time and the period of oscillation of higher partials of the tone allow these partials to enter

actively into the regime of oscillation [10]. Depending on the particular geometry of the

instrument, the player might have more than one way of modifying the transit time, such

as a shorter or longer distance ds or a larger or smaller flow velocity and thickness/width

of the air stream. In a digital waveguide model, however, we do not have control over these

physical phenomena. In order to simulate the change of transit time or flow velocity, we

can modulate the length of the delay line representing the jet, which will excite different

modes in the model.

Fig. 3.15 Air jet excitation mechanism in a flute (from [10]).

Figure 3.16 shows the diagram of the implementation of the flute included in the STK
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[11] distribution. In this model, the fundamental frequency is set by changing the length

of the delay line representing the acoustic tube.

Fig. 3.16 Digital waveguide implementation of a flute, included in the STK
[11].

Verge et. al [12] proposed another real-time simulation model for recorder-like instru-

ments that takes into account the effects on sound production by the instrument of the jet

oscillations, vortex shedding at the edge of the instrument and turbulence at the mouth.

In this model, the tube is represented by a large tube of cross section Sp = H2 and length

Lp + δp, where Lp is the length of the pipe and δp is the end correction associated with

the open pipe termination. The mouth of the instrument is represented by a smaller tube

of cross section Sm = WH where W is the distance between the flue exit and the labium.

The complicated two-dimensional geometry of the mouth of the instrument can then be

represented by an equivalent pipe segment of length δm. The one-dimensional reduction is

shown in 3.17.

The model is driven by a pressure signal pf representing the pressure in the foot of the

organ pipe or the mouth of the musician. The model uses the Bernoulli equation to relate

the pressure drop across the flue canal pf − pm with the resulting jet velocity Uj:

ρ0lc
dUj
dt

+
1

2
ρ0U

2
j = pf − pm, (3.21)

where ρ is the air density, lc is the length of the flue canal and t is time. The jet oscillation

of the model uses a modification of the semi-empirical formula by Fletcher and Thwaites

for laminar jets:

η(W,ω) =
1

iω

(
2

π

Qp

Sm

0.38Q
′
1

Sm

)
×
[
1− cosh (µW ) exp

(
−iωW
u

)]
. (3.22)
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Fig. 3.17 One-dimensional reduction used to simulate recorder-like instru-
ments in [12].

Here, W is the distance between the flue exit and the edge of the labium, µ(St) is an

amplification coefficient, u(St) is the speed of the hydrodynamic perturbation on the jet,

and St the Strouhal number. Q
′
1 is defined as:

Q
′

1 = Q1 −
1

2
bHU0. (3.23)

The full model proposed by Verge et al. [12] can be described with the following equation:

po =
r2Sp

4c20Sm

∂(po − pi)
∂t2

− ρ0r
2
m

4c0Sm

d2Qj

dt2
− δmSp
c0Sm

∂(po − pi)
∂t

+
ρδout
Sm

dQj

dt
+ ∆p− pi. (3.24)

The pressure jump term ∆p in the equation includes the different sound-producing mech-

anisms at the edge of the labium:

∆p = ∆pjd + ∆pa + ∆ptr + ∆pt, (3.25)

where ∆pjd corresponds to the jet-drive mechanism, ∆pa and ∆ptr to vortex shedding at

the edge of the labium and ∆pt to turbulence. An implementation of this recorder model,

shown in Fig. 3.18, developed by Mathias Bredholt at McGill University is available in the

latest update of the STK [11].
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Fig. 3.18 STK implementation of the model developed by Verge et al. in
[12].

3.3 Conclusion

Recalling the general definition of a musical oscillator presented in [4] and shown in Fig.

3.1, we can describe and model the gaita in terms of a linear element, the acoustic tube,

and a non-linear element, the air jet excitation mechanism. In this chapter, some physical

modeling techniques to model these elements have been reviewed. In addition, a technique

for modeling the toneholes of an acoustic tube has also been described. The model de-

veloped and implemented in this thesis, and detailed in Chapter 5, will make use of the

techniques presented in this chapter.



33

Chapter 4

Physical Measurements of a Gaita

4.1 Dimensions

Fig. 4.1 Physical measurements of the bore of a gaita hembra.

Figure 4.1 illustrates the dimensions of the instruments used in this project. As men-

tioned in Chapter 2, gaitas are traditional instruments built in an artisanal way. Because

of this, the physical dimensions will vary between instruments. Depending on the natural

shape of the cardón used, the radius of the instrument will vary as well. Cardón is usually

slightly conical, therefore the impedance measurement and comparison with theoretical

models serve to assess if the behavior of the instrument could be approximated using a

cylindrical bore model.

The distance between toneholes has variations in the order of 2 mm. The diameter of the

toneholes also have variations in the order of 0.13 mm. The input end of the instrument

has a diameter of 14.9 mm, while the opposite end of the instrument is smaller, with a

diameter of 10.9mm.
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4.2 Impedance Measurements

The input impedances of a pair of gaitas with different fingering positions was measured in

order to visualize their response and compare it to the response of the theoretical model.

The head of the instruments was removed using a heat gun to soften the wax. A first set

of measurements was taken at the Computational Acoustic Modeling Laboratory (CAML)

at McGill University, using a Capteur d’impédance system [39], developed at the Centre

de Transfert de Technologie du Mans and the Laboratoire d’Acoustique de l’Université du

Mans, and a second set of measurements were taken using the zProbe system at CAML

[40].

The zProbe system consists of an impedance head with 6 PCB 377B10 condenser mi-

crophones and 426B03 preamplifiers, a JBL 2426H compression driver, a calibration pipe

and a rack containing an RME Fireface 800 audio interface and a PCB 483C15 signal con-

ditioner. An adaptor for the gaitas was 3-D printed with the help of Song Wang at CAML.

The zProbe is used with a MATLAB program available at CAML. Figure 4.2 shows the

impedance measurement of a gaita hembra with all of the holes closed, from the first set

of measurements.

Fig. 4.2 Measured input impedance of a gaita hembra, all toneholes open.

For more information about the Capteur d’impédance and zProbe systems the reader

can refer to [39], [41], [42], and [43].
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4.3 The Transfer Matrix Model

Chapter 3 introduced the description of a tonehole unit by Keefe in [21]. In this model,

acoustic variables are related by a transmission matrix of series and shunt impedances.

This woodwind air column model can be used to analyze the properties of existing instru-

ments and to construct time-domain simulations of woodwinds [21]. Using this model and

the physical dimensions of the gaitas, the theoretical impedance and impulse response of

the instruments can be calculated. By comparing the theoretical response of the instru-

ment and the actual measurements, we can determine if a cylindrical model is a suitable

representation for the instrument.

For an arbitrary two port acoustical system, the transfer matrix for wave propagation

that maps the input volume flow u1 and pressure p1 to the output volume flow u0 and

pressure p0 is defined as: [
p0

u0

]
=

[
a b

c d

][
p1

u1

]
, (4.1)

where the matrix composed of A, B, C and D results from the cascading of the transfer

matrices for the elements of the system, in this particular case, the acoustic tube sections

and the toneholes [21].

The transfer matrix for a cylindrical tube, taking into account visco thermal losses

factor is given by [21]:

Tb(x, a) =

[
cosh Γx Zc sinh Γx

Z−1
c sinh Γx cosh Γx

]
, (4.2)

where x is the length of the acoustic tube of radius a and Γ is the complex propagation

constant.

The transfer matrices for open and closed toneholes, as already discussed in Chapter 3,

given |Za/Zs| � 1, are given by equations 4.3 and 4.4 respectively.

T
(o)
h =

[
1 Z

(o)
a

1/Z
(o)
s 1

]
(4.3)
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T
(c)
h =

[
1 Z

(c)
a

1/Z
(c)
s 1

]
. (4.4)

In order to calculate the theoretical response for a given geometry, the model takes

into account several physical parameters. In terms of the bore, these parameters are the

radius of the bore at both ends and total length. In terms of each tonehole, the parameters

are distance from the input end, radius, tonehole height, protrusion from the bore, and, if

padding exists, its radius and height. For the gaitas, the padding parameters can be left

out. As the toneholes in gaitas are drilled into the instrument, the protrusion parameter is

set to 0, and the tonehole height parameter is set equal to the thickness of the wall of the

instrument. Three matrices are used in the MATLAB script: the first for the bore data,

the second for the tonehole data and the third for the tonehole states. From these matrices

we can calculate the characteristic impedance of each tonehole and each bore section, given

by equation 3.7. Having the previous data, we can calculate the input impedance of the

system by working our way back from load impedance at the end of the instrument.

For the open end, we calculate the radiation impedance. The radiation impedance is

related to the reflection coefficient by

Zr = Zc
1 +R

1−R
. (4.5)

In an unflanged pipe, the modulus of the reflection coefficient |R0| can be approximated as

|R0| =
1 + αka+ β(ka)2

1 + αka+ (1
2

+ β(ka)2
, (4.6)

with α = 0.2 and β = −0.084 for ka < 3.5 [44]. The reflection coefficient is then given by

R = −|R0|e−2jkδ̃, (4.7)

where δ̃ is the frequency dependent length correction of the pipe. [45] propose the following

equation for the length correction δ̃0

δ̃0 = δ0

[
1 + 0.044(ka)2

1 + 0.19(ka)2
− 0.02 sin2 (2ka)

]
, (4.8)

with δ0 = 0.6133a for ka < 1.5 [45]. Having calculated the radiation impedance, we can
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calculate the load impedance ZL at the end of the tube, and move back to calculate the

transmission matrices of the toneholes and tube sections, given by Eqs. 4.2, 4.3 and 4.4.

The complex propagation constant in Eq. 4.2 is given by [46]:

Γ =
ω

c
+ (1 + j)α, (4.9)

where

α = 2.96× 10−5
√
f/a. (4.10)

[45]

Next, we can calculate the impedance of the last tonehole, using Eq. 4.3 or 4.4 depending

on the state of the hole. The series and shunt impedances for open and closed states are

given by [23]

Z(o)
s = Zcδ

2(jkt(o)s + ξ)

Z(c)
s = −jZcδ2 cot kt(c)s

Z(o)
a = −jZcδ2kt(o)a

Z(c)
a = −jZcδ2kt(c)a , (4.11)

where Zc is the characteristic impedance of the tonehole, δ is the ratio of the radius of the

tonehole (b) to the radius of the main bore (a). ts and ta are equivalent lengths, m and ξ

is the specific resistance, characterizing radiaton losses when the tonehole is open [23]. A

low frequency approximation for ξ is given in [47] as ξ = (kb)2/4. To evaluate Z
(o)
s , [47]

propose:

Z(o)
s = jZc{kti + tan[k(t+ tm + tr)]}, (4.12)

where t is the physical height of the tonehole, ti is the inner length correction, tm is the

matching volume length correction, and tr is the radiation length correction. The inner

length correction and matching volume length corrections are given by [24] as

ti = (0.84− 1.4δ2 + 0.75δ2.7)b (4.13)

tm =
bδ

8

(
1 + 0.207δ3

)
. (4.14)
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The radiation length correction tr is obtained from the radiation impedance of the hole [23]

tr = arctan [Zr/(jZc)] /k, (4.15)

a model of an unflanged pipe in the low frequency approximation is adequate [23]

Zr = Zc
[
0.25(kb)2 + jk0.61b

]
. (4.16)

Fit formulas for the series length correction were proposed by [23] as

t(o)a = bδ2(−0.35 + 0.06 tanh {2.7t/b}) (4.17)

t(c)a = bδ2(−0.12− 0.17 tanh {2.4t/b}). (4.18)

After calculating the coefficients for the tonehole transfer matrix, we work our way back

to calculate the previous tonehole and bore section coefficients. The transfer matrices can

be then cascaded as [
P0

U0

]
=

[
A B

C D

][
PL

UL

]
, (4.19)

where [
A B

C D

]
=

n∏
i=1

[
ai bi

ci di

]
. (4.20)

The input impedance of the acoustic system can be calculated as follows:

Zin =
B + AZL
D + CZL

. (4.21)

These calculations were made using MATLAB scripts by Gary Scavone available at the

Computational Acoustic Modeling Laboratory.

4.4 Comparison of measurements

4.4.1 Gaita Hembra

The measurements were made on six different tonehole state configurations, which corre-

spond to the fingerings used on the instrument, starting from having all toneholes closed,

and opening one hole on every subsequent measurement starting from the farthest from



4 Physical Measurements of a Gaita 39

the input end. The second set of measurements, using the zProbe system were used in this

section.

For a gaita hembra with all toneholes closed, the impedance response is closely related

to the theoretical model. The peaks of the impedance response are quite close in frequency.

Most peaks are aligned in the range +-4 Hz, with some differences in amplitude. The

difference in amplitude is more significant in the fundamental, with a difference of 4 dB.

Other peaks show a difference of +-1 dB. The reflection from the end of the bore differs by

.05 ms.

Fig. 4.3 Comparison between the theoretical input impedance of the Trans-
fer Matrix Model and the measurements of a gaita hembra with all toneholes
closed.

Fig. 4.4 Comparison between the theoretical reflection function of the
Transfer Matrix Model and the measurements of a gaita hembra with all tone-
holes closed.

For the gaita hembra with four toneholes closed we also observe a close correspondence

between the impedance of the theoretical model and the measurements. The first resonance
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is 4dB higher in the theoretical model and decays slightly faster than the measurements.

The frequencies of the modes of the theoretical model are shifted a few Hz compared with

the measurements, though this is likely due to differences in the measured and modeled

temperatures.

Fig. 4.5 Comparison between the theoretical input impedance of the Trans-
fer Matrix Model and the measurements of a gaita hembra with 4 toneholes
closed.

Fig. 4.6 Comparison between the theoretical reflection function of the
Transfer Matrix Model and the measurements of a gaita hembra with 4 tone-
holes closed.

The case of three toneholes closed still shows a close correspondence with the theoretical

model. We still see an amplitude difference in the fundamental peak. The theoretical model

also shows peaks of slightly higher frequency than the measurements in the range 2-3 kHz.

The reflection function also shows a close correspondence to the theoretical model.

The case with two toneholes closed is similar to the previous case, with three toneholes

closed. The impedance measurements show a strong correspondence to the theoretical
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Fig. 4.7 Comparison between the theoretical input impedance of the Trans-
fer Matrix Model and the measurements of a gaita hembra with three toneholes
closed.

Fig. 4.8 Comparison between the theoretical reflection function of the
Transfer Matrix Model and the measurements of a gaita hembra with three
toneholes closed.
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model, with some differences in the amplitude of the peaks, mostly in the fundamental. The

modes of the theoretical model are slightly higher in frequency above 1.5kHz. The reflection

shows the same behavior as the previous cases. The end reflection of the measurements is

slightly stronger than the theoretical model.

Fig. 4.9 Comparison between the theoretical input impedance of the Trans-
fer Matrix Model and the measurements of a gaita hembra with two toneholes
closed.

Fig. 4.10 Comparison between the theoretical reflection function of the
Transfer Matrix Model and the measurements of a gaita hembra with two
toneholes closed.

The case of a gaita hembra with one tonehole closed shows once again a similar behavior

to the previous configuration. The impedance measurements show a strong correspondence.

The fundamental of the theoretical model is 4dB higher than the measurements, and the

modes above 1.5kHz are slightly higher in frequency. The reflection function shows a similar

behavior than in previous cases.

The case with all toneholes open shows a strong correspondence in the impedance, with
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Fig. 4.11 Comparison between the theoretical input impedance of the
Transfer Matrix Model and the measurements of a gaita hembra with one
tonehole closed.

Fig. 4.12 Comparison between the theoretical reflection function of the
Transfer Matrix Model and the measurements of a gaita hembra with one
tonehole closed.
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some difference in the amplitude of the peaks, as well as a strong correspondence in the

reflection function. The first impedance peak shows an amplitude difference of 5dB. The

reflection from the first open hole is aligned for both at 3ms, and subsequent reflections

also correspond.

Fig. 4.13 Comparison between the theoretical input impedance of the
Transfer Matrix Model and the measurements of a gaita hembra with all tone-
holes open.

Fig. 4.14 Comparison between the theoretical reflection function of the
Transfer Matrix Model and the measurements of a gaita hembra with all tone-
holes open.

In general, the impedance of the transfer matrix model corresponds to the measured

impedance of the instrument, with small differences in frequency. The amplitude of the

first peak of the model is 4-5dB higher than the measurements in all the measurements,

and the amplitude of the resonances tends to decay faster and more steadily in the transfer

matrix model. Resonances in the model are slightly higher than the measurements in the

range above 2kHz. The reflection function shows strong correspondence with the theoretical
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model. Some slight differences in the end reflection can be observed.

4.4.2 Gaita Macho

Three tonehole state configurations were measured for the gaita macho. Results were

expected to be quite similar, as in theory, the only difference between the two instruments

is the number of toneholes. The first case is the gaita macho with both toneholes closed.

The impedance measurements show some significant discrepancies in amplitude of most

peaks, except for the first one, and a strong correspondence in frequency. The reflection

function shows a strong correspondence, with the reflection from the open end differing by

0.05ms.

Fig. 4.15 Comparison between the theoretical input impedance of the

Transfer Matrix Model and the measurements of a gaita macho with both

toneholes closed.

Fig. 4.16 Comparison between the theoretical reflection function of the

Transfer Matrix Model and the measurements of a gaita macho with both

toneholes closed.
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The next case is the gaita macho with one tonehole closed, where the impedance mea-

surements show a similar behavior to the previous case: there is a strong correspondence

in frequency, with some discrepancies in amplitude, although not as significant as in the

previous case. The reflection function also shows a strong correspondence, with the reflec-

tion from the open tonehole differing by 0.025ms. The measured reflection function of the

instrument shows a stronger reflection from the open end than the theoretical model.

Fig. 4.17 Comparison between the theoretical input impedance of the

Transfer Matrix Model and the measurements of a gaita macho with one tone-

hole closed.

Fig. 4.18 Comparison between the theoretical reflection function of the

Transfer Matrix Model and the measurements of a gaita macho with one tone-

hole closed.

The last case is the gaita macho with both toneholes open. This configuration of
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tonehole states shows a difference of 7dB in the amplitude of the first peak. Subsequent

peaks correspond with the model in terms of amplitude. Resonant peaks over 1kHz are 20-

50Hz higher in frequency in the theoretical model. The reflection function shows a strong

correspondence, with the reflection from the first open hole differing by 0.05ms. Once

again, the measurements show a stronger reflection from the open end than the theoretical

model.

Fig. 4.19 Comparison between the theoretical input impedance of the

Transfer Matrix Model and the measurements of a gaita macho with both

toneholes open.

Fig. 4.20 Comparison between the theoretical reflection function of the

Transfer Matrix Model and the measurements of a gaita macho with both

toneholes open.

The reflection function of all three tonehole state configurations of the gaita macho

show a strong correspondence between the theoretical model and the measurements taken

from the instrument. The impedance measurements, however, show a significant difference
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in the amplitude of the frequency peaks, particularly the first one, which is likely due to a

slight leak when connecting the gaita to the measurement probe. The reflection function

shows a strong correspondence with the theoretical model.

4.5 Conclusion

After comparing the results of the transfer matrix model with the measurements taken

from a pair of instruments, a cylindrical model seems like a reasonable approximation,

in spite of the slightly conical geometry of the instrument. The radius of the toneholes

and the modeled speed of sound were modified slightly in the theoretical model in order

to better approximate the response of the measurements. The impedance and reflection

function of both instruments seem to be closely related to the theoretical response, with

some differences mainly in the amplitude of the resonances. The configurations with all

toneholes closed seem to be better aligned with the theoretical response. In configurations

with at least one tonehole open, the reflection from the open end of the instruments is

stronger than that of the theoretical model, which suggests that a refinement to the end

reflection filter might be needed.
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Chapter 5

Implementation of the Gaita Model

The implementation of the gaita model was done in two steps. First, it was written in

MATLAB for visualizing the impedance and reflection function data, testing and debug-

ging. Once the MATLAB model was running, the model was implemented in real-time

using JUCE [48] and the Synthesis ToolkKit [9]. Figure 5.1 shows a block diagram of the

implementation of a gaita with two toneholes. The implementation with five toneholes

follows the same principle, with additional delay lines and three-port scattering junctions.

Fig. 5.1 Diagram of the implementation of the model with two toneholes,
using the polynomial excitation model.

This model makes use of the components previously discussed in Chapter 3. The linear

element of the model is composed of n + 1 integer delay lines, connected by n three-port

scattering junctions, where n is the number of toneholes implemented in the model. The

three-port scattering junction is simplified to use a single delay line per tube section, as

shown in Fig. 5.2. The length of each delay section, a, b, etc. is determined by di = 2L
cT

,

where L is the length of the section, c is the speed of sound and T is the sampling period.
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The effective length of the air column thus depends on the tonehole states: it is the distance

from the input end of the acoustic tube to the first open hole. If no holes are open, the

length of the air column is equal to the length of the acoustic tube.

Fig. 5.2 Simplified three-port scattering junction using a single delay line
per tube section.

The air jet mechanism uses the simple mechanism shown and explained in Section 3.2.4

and shown in Fig. 3.14 using a variable interpolating delay line. The length of this delay

line, l, is a fraction of the air column delay, varying from 0.08 and 0.56 times the air column

delay length. The model keeps track of the states of the toneholes in order to set the length

of the jet delay line appropriately.

A first-order IIR filter was used to implement the reflection filter for simplicity of the

model. Figure 5.3 shows the magnitude and phase response of three alternative filters:

a filter designed using openpipe.m from [7], for an unflanged cylindrical pipe of radius

7.45mm, using a sample rate of 44.1 kHz, the filter proposed in [13] for a model of a gaita

hembra, and a filter based on the STK flute model. A DC block filter is used after the

non-linearity to remove the DC component that builds up from signal circulating in the

delay line loop [6]. The pressure input of the model is shaped using an ADSR envelope.

Noise and vibrato are also added to the input of the instrument.

5.1 MATLAB Implementation

The MATLAB implementation of the gaita model was used to visualize the impedance

response and reflection function of the linear element of the digital waveguide model and

compare the results to the measurements and the transfer matrix model discussed in Chap-
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ter 4. The end reflection filter used was the filter designed using openpipe.m, shown in Fig.

5.3.

Fig. 5.3 Frequency and phase response of end reflection filters, from top to

bottom: filter designed using openpipe.m from [7], filter proposed in [13] for a

gaita model, filter based on STK Flute.

Figure 5.4 shows the measurements of the reflection function of the gaita hembra, along

with the corresponding transmission matrix and digital waveguide model results in all state
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configurations.
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Fig. 5.4 Comparison of the reflection function of the digital waveguide

model of the gaita hembra in all tonehole state configurations from all closed

(top) to all open (bottom).

Figure 5.5 show the same comparison in the case of a gaita macho. The results for the

gaita hembra show that the reflection function of the digital waveguide model has a strong

correspondence with the theoretical model and the measurements from the instrument.

Some discrepancies can be observed after the end reflection, which may be caused by the
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use of integer delay lines in the model. The results from the gaita macho show that the

measurements have a stronger reflection from the open end, particularly in the configuration

with both toneholes open.
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Fig. 5.5 Comparison of the reflection function of the digital waveguide model

of the gaita macho in all tonehole state configurations from all closed (top) to

all open (bottom).

5.2 Real-Time Implementation

While MATLAB offers a great tool for prototyping, debugging and visualizing data, it

becomes limiting when there is a need to test and update different parameters and compute

the output in real time. A real-time implementation was created for this purpose using the

JUCE framework and the STK.

5.2.1 The JUCE Framework

JUCE is a partially open source, cross-platform C++ application framework [48] used for

the development of multimedia applications, including VST, Audio Units and AAX audio

plugins, as well as standalone applications. Educational and personal licenses for JUCE are

free. JUCE offers a variety of modules to handle GUI elements, audio, MIDI, and more.

The Projucer application, included with the download of JUCE, is used to include all the

necessary modules into the project and link external libraries. It exports the project to

the native IDE of the system with all the necessary preprocessor definitions and compiler

flags. This implementation used JUCE 5.4.5 and Xcode 7.3.1. JUCE modules were used

to create a GUI with buttons, sliders and check box controls. JUCE also handles the audio

engine of the application.
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5.2.2 The STK

The Synthesis ToolKit is a set of open source C++ classes for audio signal processing and

algorithmic synthesis [9]. The STK classes make it easy to implement a model such as the

one presented in this project, as it includes classes for all of the particular elements of the

model, including delay lines, filters, envelopes and generators. It also includes examples of

physical models and programs that can be used as a starting point for the implementation

of new programs. A few example instrument models included in the STK were useful in

the development of this model, including Flute, BlowHole and Recorder.

5.3 The application

The application consists of a simple GUI with slider controls for the parameters of the

physical model, as shown in Fig. 5.6. Controls for the application are shown in Table 5.1.

The application is available for download from this link.

5.4 Comparison

In order to compare the model and the real instrument, some recordings of a gaita were

made, in different tonehole state configurations playing the first harmonic of the position.

The recordings were made using an AKG C214 condenser microphone through a Universal

Audio 4-710d preamplifier, using a close microphone technique in a room without acoustic

treatment. These recordings are compared with the output of the application. Configura-

tions with four toneholes closed and all toneholes open are shown. The noise gain and the

jet ratio were adjusted to best match the note tunings. The spectrogram was computed

using a 1024 sample FFT with 512 samples of overlap.

The comparison of the frequency spectra and the spectograms of different configurations

of tonehole states shows some commonalities. One general and noticeable difference be-

tween the model and the real instrument is in their spectral envelopes. The model produces

a fundamental note with several distinct harmonic peaks. Figure 5.7 shows the largest dis-

crepancy: while the recording of the first position of the gaita hembra shows only five or

six distinct peaks and no significant peaks higher than 3 kHz, the model shows distinct

peaks going up around 8kHz.

https://mcgill-my.sharepoint.com/:u:/g/personal/camilo_gomez3_mail_mcgill_ca/EdXIxhojoJFLkP8v8JmPZqoBvxrOYFbYOwklUPoCJaPm-Q?e=9Cq9Ee
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On-screen keyboard On-screen MIDI Keyboard
Note On/Off Start and end a note
Excitation model se-
lection menu

Drop-down menu to choose between the polynomial excita-
tion model (STK Flute) and the recorder model by Verge
et al. (STK Recorder)

Gain Output gain of the application
Blow Pressure Blow pressure value when using the recorder model (un-

available for the flute excitation model)
Vibrato Frequency Frequency of the sine wave controlling the vibrato of the

model
Vibrato gain Amplitude of the sine wave controlling the vibrato of the

model
Noise gain Amplitude of the noise component at the input of the

model
Breath Cutoff Cutoff frequency of the turbulence filter in the recorder

model (unavailable for the flute excitation model)
Jet Ratio Changes the length of the jet delay line in proportion to

the effective length of the air column, given the tonehole
state configuration (unavailable in the recorder excitation
model)

Hole State of the tonehole: A checked box is a closed tonehole.
An empty box is an open tonehole.

Softness Softness parameter for the recorder model, explained in
[12] (Unavailable in the flute excitation model)

Table 5.1 Parameters available for the real-time control of the model.
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Fig. 5.6 Screenshot of the gaita application.

The model also shows a significant presence of the overtones of the fundamental note of

the instrument in each position, and while the recordings of the instrument do show some

peaks corresponding to these overtones, their amplitude relative to the overtones of the

note played is significantly lower.

From the visualization and the audio of the recordings, an obvious characteristic of the

instrument is its noise. In general, the instrument has a significant noise component. While

the model does integrate noise and allows the user to control the gain of the noise, it is

clear that the spectro-temporal characteristic of the noise component of the instrument are

different from those of the model. The noise component of the model is created using the

Noise.h class in the STK and is subject to some low-pass filtering. The decay of this noise

component is linear, while the frequency spectra of the recordings show a certain degree of

randomness in the decay of the noise. Looking at the spectrograms, we can see that the

model has more energy in the high range of the frequency spectrum than the instrument.
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Fig. 5.7 Frequency magnitude response and spectrogram of the model and
recording of a gaita hembra with four toneholes closed.
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Fig. 5.8 Frequency magnitude response and spectrogram of the model and
recording of a gaita hembra with all toneholes open.
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We can also notice a difference in the temporal aspect of the high frequency energy. In

the model, the whole frequency spectrum has the same envelope. In the recordings, the

high-frequency components of the sound show a slightly longer attack and decay times than

the lower portion of the frequency spectrum.

The discrepancies between the modeled and recorded sounds shown above are not sur-

prising, as the output from the model corresponds to a pressure pickup located inside the

air column of the instrument. In order to more fairly compare the results, the internal

pressure was highpass filtered using the filter shown in Fig. 5.9 to simulate the effect of

sound radiation from a tonehole lattice. At the same time, the presence of much more

high-frequency content in modeled results of Figs. 5.7 and 5.8 indicated that the open-end

filter needed to be revised, with a lower lowpass filter cutoff frequency. Thus, the open-end

filter was changed to the characteristic also shown in Fig. 5.9.

Fig. 5.9 Magnitude and phase response of the end reflection and radiation
filters of the model.

Figures 5.10 and 5.11 show the frequency magnitude response and spectrogram com-

parisons of the model of the gaita hembra with four toneholes closed and all toneholes open



5 Implementation of the Gaita Model 62

playing the second harmonic. These results show improvement in the relationship between

the magnitude of the harmonic peaks, particularly in the case of four toneholes open.

Fig. 5.10 Frequency magnitude response and spectrogram of the model us-
ing the modified filter and recording of a gaita hembra with four toneholes
closed.

Figure 5.12 shows the frequency magnitude response of a recording of the model using

the recorder excitation mechanism. The frequency magnitude does not seem to correspond

very well to that of the recording of the instrument. The recorder model is much more

sensitive to adjustments in the parameters, and a careful adjustment may yield improve

results.
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Fig. 5.11 Frequency magnitude response and spectrogram of the model us-
ing the modified filter and recording of a gaita hembra with all toneholes open.

Fig. 5.12 Frequency magnitude response and of the model a gaita hembra,
using the recorder model with four toneholes closed.
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Chapter 6

Conclusion

This project intended to develop and implement a physical model of a gaita, a traditional

Colombian wind instrument. Basic acoustic principles were reviewed, as well as acoustical

aspects of wind instruments in order to understand the behavior of the instrument. Digital

waveguide modeling techniques were reviewed and explained in order to implement and

test the model. The development of the model was informed by physical measurements of

the impedance response of the acoustic tube of a pair of instruments, after their heads were

removed, and the measurements were compared with theoretical models for cylindrical

tubes with toneholes and measurements of the digital waveguide implementation. The

linear element of the digital waveguide model developed seems to be a close approximation

to the response of the acoustic tube of the real instrument, but the synthesized sound

fails to accurately model some characteristics of the instrument, in particular those related

to noise in the sound. The model was implemented for real-time synthesis using JUCE

and the STK, and includes a user-friendly graphical interface, offering control of different

parameters. Recordings of the instrument were made in order to compare the frequency

response and spectrograms of the recordings and the synthesized sound.

6.1 Limitations and further work

Due to the artisanal nature of the instrument, it is quite possible that the response of

different instruments made by different instrument makers have significant differences in

their response. The analysis in this study is therefore limited to the particular pair of gaitas

used. A more in-depth study would perform measurements on several different instruments
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and average the response for a more general model.

The model is fairly simple and the implementation fails to accurately reproduce some of

the characteristics of the gaita. The relative amplitudes of the harmonic components of the

instrument are not an accurate representation of the instrument. The model outputs the

pressure at the mouthpiece, and although the end reflection filter induces some losses, losses

due to radiation from the end and from the toneholes are not fully taken into account. In

order to improve on this, the radiation filter, with a cutoff frequency corresponding to that

of the instrument’s tonehole lattice was added to the output of the instrument. The results

after the filter was added showed some improvement in some cases, but a more accurate

model for radiation losses could further improve the results.

The noise component of the instruments is a characteristic feature of its sound, and the

model fails to capture the noise profile of the instrument. The recorder excitation model

could potentially improve on the noise profile with a careful adjustment of the parameters

of the model. The model is also at an experimental stage, where the user can modify

parameters in real-time, but it is not a playable instrument. In order to render the model

into a playable instrument, a careful adjustment of certain parameters is needed. The

application can save and load the state of the parameters, which can be helpful to create

a mapping of the parameters to MIDI notes.

Some ideas for the refinement of the model can also include the implementation of a

separate noise component that captures the spectral envelope of the instrument’s noise

more accurately. The placement of the toneholes along the acoustic tube could be a user

controlled parameter in order to adjust the tuning of the instrument.
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Appendix A

Gaita Code

GaitaH : : GaitaH ( int nToneholes , int∗ delayLengths , StkFloat ∗ toneho l eRad i i )

{

nToneholes = nToneholes ;

t oneho l eRad i i = toneho l eRad i i ;

int i ;

r a d i u s = 0 . 00 745 ;

v i b r a t o . setFrequency ( 5 .925 ) ;

f i l t e r . s e t C o e f f i c i e n t s ( 0 . 3375 , 0 .3375 , −0.3249)

n o i s e F i l t e r . s e t C o e f f i c i e n t s ( 0 .161328 , 0 . , −0.161328 , −1.555063 , 0 . 6 2 0 4 0 5 ) ;

r a d i a t i o n F i l t e r . s e t C o e f f i c i e n t s ( 0 .8897 , −1.7794 , 0 .8897 , −1.7672 , 0 . 7 9 1 6 ) ;

dcBlock . se tBlockZero ( ) ;

ad s r . setAl lTimes ( 0 . 005 , 0 . 01 , 0 . 8 , 0 .010 ) ;

e n d R e f l e c t i o n = 0 . 5 ;

j e t R e f l e c t i o n = 0 . 5 ;

no i seGain = 0 . 1 5 ; // Breath p r e s s u r e random component

v ibratoGain = 0 . 0 5 ; // Breath p e r i o d i c v i b r a t o component

j e t R a t i o = 0 . 3 2 ;

boreDelay = ( DelayL ∗) new DelayL [ nToneholes +1] ;

airColumnLengths = ( int ∗) new int [ nToneholes +1] ;

airColumnLengths [ 0 ] = 0 ;
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for ( int i = 0 ; i <= nToneholes ; i++)

{
boreDelay [ i ] . se tDelay ( delayLengths [ i ] )

airColumnLengths [ i ] += delayLengths [ i ] ;

}

airColumnLengths [ 0 ] = boreDelay [ 0 ] . getDelay ( ) ;

for ( i = 1 ; i <= nToneholes ; i++)

{
airColumnLengths [ i ] = airColumnLengths [ i −1]

+ boreDelay [ i ] . getDelay ( ) ;

}

t o n e h o l e s = ( Tonehole ∗) new Tonehole [ nToneholes ] ;

s c a t t e r = ( StkFloat ∗) new StkFloat [ nToneholes ] ;

char thState [ ] = ”CLOSED” ;

for ( i = 0 ; i < nToneholes ; i++)

{
t o n e h o l e s [ i ] . setRadius ( toneho l eRad i i [ i ] ) ;

t o n e h o l e s [ i ] . setRate ( 0 . 0 1 ) ;

s c a t t e r [ i ] = −pow( toneho l eRad i i [ i ] , 2)

/ ( pow( toneho l eRad i i [ i ] , 2) + 2

∗ pow( this−>rad ius , 2) ) ;

t o n e h o l e s [ i ] . s e t S t a t e ( thState ) ;

}

this−>s e tJetDe lay ( j e t R a t i o ) ;

this−>c l e a r ( ) ;

}

StkFloat GaitaH : : t i c k ( unsigned int )

{
unsigned int i ;

StkFloat p r e s s u r e D i f f ;

StkFloat breathPres sure ;

StkFloat samples [ 3 ] , temp ;
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// C a l c u l a t e the b r e a t h p r e s s u r e ( enve lope + noise + v i b r a t o )

breathPres sure = maxPressure ∗ ads r . t i c k ( ) ;

breathPres sure += breathPres sure ∗
( no i seGain ∗ n o i s e . t i c k ( ) +

vibratoGain ∗ v i b r a t o . t i c k ( ) ) ;

// C a l c u l a t e the d i f f e r e n t i a l p r e s s u r e

// = mouthpiece p r e s s u r e s − j e t

temp = boreDelay [ 0 ] . lastOut ( ) ;

p r e s s u r e D i f f = breathPres sure − ( j e t R e f l e c t i o n ∗ temp ) ;

p r e s s u r e D i f f = j e tD e l a y . t i c k ( p r e s s u r e D i f f ) ;

p r e s s u r e D i f f = dcBlock . t i c k

( j e t T a b l e . t i c k ( p r e s s u r e D i f f ) )

+ ( e n d R e f l e c t i o n ∗ temp ) ;

samples [ 0 ] = p r e s s u r e D i f f ;

p mouth = samples [ 0 ] ;

// Do three−por t j u n c t i o n s c a t t e r i n g f o r t o n e h o l e s

for ( i =0; i<nToneholes ; i++) {
samples [ 1 ] = boreDelay [ i +1] . lastOut ( ) ;

samples [ 2 ] = t o n e h o l e s [ i ] . lastOut ( ) ;

temp = s c a t t e r [ i ] ∗
( samples [ 0 ] + samples [ 1 ] − 2 ∗ samples [ 2 ] ) ;

t o n e h o l e s [ i ] . t i c k ( samples [ 0 ] + samples [ 1 ]

− samples [ 2 ] + temp ) ;

boreDelay [ i ] . t i c k ( samples [ 1 ] + temp ) ;

samples [ 0 ] += temp ;

}

// Do open−end f i l t e r i n g

boreDelay [ nJunct ions ] . t i c k ( f i l t e r . t i c k ( samples [ 0 ] ) ∗ −0.95 ) ;

p mouth += 1.5 ∗ boreDelay [ 0 ] . lastOut ( ) ;

lastFrame [ 0 ] = 0 .3 ∗ r a d i a t i o n F i l t e r . t i c k ( p mouth ) ∗ outputGain ;

lastFrame [ 0 ] += ads r . lastOut ( ) ∗ 0 .025 ∗ o u t p u t F i l t e r . t i c k ( n o i s e . t i c k ( ) ) ;

return lastFrame [ 0 ] ;

}
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