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Abstract

A technique based on the transient boundary element method for the numerical simulation

of three-dimensional linear acoustic systems is presented. Using surface meshes generated

by Distmesh [1], pressure is extracted from points within the enclosed volume of the mesh

by integration of retarded potentials across the boundary. As a result, mesh junction calcu-

lations and topology-related inaccuracies within the volume are avoided. For simulations of

struck instruments, membrane motion is modeled using two-dimensional digital waveguide

techniques adapted for an unstructured triangular topology and coupled with the internal

pressure field. The method is also used to extract response characteristics of an open,

unflanged pipe and the results are compared to a one-dimensional waveguide model. Fi-

nally, possible future work using the freely available software developed for this project is

discussed.



ii

Sommaire

Une technique de simulation numérique des systèmes acoustiques linéaires tridimensionnels

basée sur la méthode d’éléments de frontière transitoires est présentée. La librairie Matlab

Distmesh [1] a été employée pour générer des maillages représentant la surface de tels ob-

jets. La pression en tout point du volume est obtenue par intégration des potentiels tout

au long du maillage. Ainsi les calculs aux noeuds du maillage de même que les inexacti-

tudes de topologies connexes dans le volume sont évités. Dans le cadre de la simulation

d’instruments percussifs, le mouvement de la membrane est modélisé au moyen de guides

d’ondes bidimensionnels particulièrement bien adaptés à une topologie triangulaire non-

structurée. L’effet de couplage dû aux pressions internes est aussi pris en compte. D’autre

part, la réponse caractéristique d’un tube droit, ouvert aux deux bouts obtenue par cette

méthode est comparée aux résultats d’une méthode basée sur les guides d’ondes monodi-

mensionnels. Enfin, de possibles applications du logiciel developpé pendant ce projet (et

librement disponible) sont présentées.
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Chapter 1

Introduction

The boundary element method (BEM) is a technique used for the numerical simulation

of field problems described by boundary integral equations. In engineering applications

from geomechanics to elastodynamics, BEM has enjoyed popularity as an alternative to

the finite element method (FEM) where the discretization of the entire region of interest

is impractical or unnecessary. The time domain variants of BEM in acoustics are based on

Kirchhoff’s method of integration, where an appropriate Green’s function is applied to the

inhomogeneous scalar wave equation to arrive at an integral solution [2]. This allows the

pressure variation in a volume to be determined completely from time delayed boundary

values and avoids the need to discretize the entire volume. The retarded potential technique

approximates the numerical solution to the classical Kirchhoff solution to the wave equation

and is used as the basis for this study [3].

Although BEM is widely utilized in industrial acoustics, including automotive and ar-

chitectural applications, it has received less attention in musical contexts. This is primarily

due to the much greater computational effort required in comparison with other physical

modeling methods optimized for realtime applications, such as digital waveguide and wave

digital techniques [4], and the functional transformation method [5]. Additionally, the im-

plementation efforts for meshing and BEM algorithms in arbitrary domains are considerable

and commercial software packages are costly. The software developed for this project is

freely available under the GNU General Public License (GPL) and is intended as an initial

framework for simulations of the generation and propagation of sound. More importantly,

it serves as a generalizable technique that is less dependent on ad hoc constructions and
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empirically tuned filters.

The objective of this study is to demonstrate that our variation of the retarded poten-

tial technique is a viable method for the simulation of three-dimensional linear acoustic

systems and that it can be modified to suit various applications. To accomplish this, the

simulation of an unflanged cylinder is presented and compared against the result of a 1D

waveguide model. By making boundary condition assumptions at the open end, it is shown

to be in general agreement with the 1D approximation. Further, a 2D digital waveguide

drum membrane model is coupled with the retarded potential technique to illustrate its ap-

plication to struck instrument simulations. These examples demonstrate the suitability of

such techniques for multimedia and virtual reality applications as computational capacity

increases.

1.1 Context and Motivation

Modeling physical objects for sound generation is becoming increasingly popular as com-

putational capacity increases. For musical applications, this is apparent in the number

of commercially available software packages that serve to emulate other instruments and

acoustic spaces. This offers composers the ability to generate realistic compositions from

a single computer. For video games and virtual reality applications, the motivation for

physically-based sound generation comes from the growing difficulty in managing and main-

taining the ever-increasing sound databases that are associated and triggered with specific

events. Since these applications are interactive, a seemingly infinite number of sounds could

be generated by the user when interacting with objects in the virtual environment.

Physical models developed for musical applications have traditionally focused on tech-

niques capable of realtime sound generation. For this purpose, waveguide theory is the most

widespread technique for computationally efficient models of musical instruments. These

structures are typically application-specific filters and are difficult to adapt to gross changes

in shape or material without a re-design of the filter structure. Furthermore, several com-

ponents of waveguide models often require measurements of the system being modeled and

thus lose relevance in predictive applications where one would be developing a prototype

or interacting with an arbitrary object.

Computational fluid dynamics (CFD) offers several alternatives for modeling acoustics

but sacrifices computational efficiency for accuracy. Finite element modeling (FEM) is a
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highly utilized numerical method often employed to solve the Navier-Stokes equations in

arbitrary domains and has come to be accepted as the de facto standard in aeroacoustics,

among other fields. BEM is also popular in predictive applications of acoustics due to its

ability to handle large volumes much more efficiently than FEM by reducing the dimen-

sions of the problem space. However, this reduction is made possible by making simplifying

assumptions of the problem space, thus limiting BEM to linear applications with homoge-

neous properties of the fluid. Its frequency domain variant is most popular in engineering

applications.

We are interested in merging concepts from the time-domain variant of BEM from the

CFD realm and physical modeling of musical instruments in order to develop a generaliz-

able framework for wave propagation simulation in future multimedia applications. These

applications include animated film, video games and virtual reality, as well as reverberation

and instrument emulation. In such scenarios, there may be an infinite number of sound

generation scenarios due to user interaction, and thus a CFD engine capable of generating

sound in arbitrary volumes is necessary. Furthermore, the target applications are concerned

with transient effects as opposed to steady state analysis, so a time-domain BEM algorithm

is chosen. Where the motion of an object would be fast enough to generate perceivable

audio, the waveguide junction method [4] is utilized due to its analogous relationship with

wire frame meshes used in computer animation.

1.2 Project Overview

This study implements software to demonstrate the application of time-domain BEM to

multimedia applications. The meshing algorithm used to define the surfaces of objects is

based on Distmesh [1], a set of open-source MATLAB scripts that generates unstructured

triangular meshes. Two main simulations were performed from the set of MATLAB scripts

developed to accomplish this:

• The simulation of an unflanged pipe with a closed and open end. An initial plane

wave propagates from the closed end towards the open end. This demonstrates the

accuracy of the method chosen.

• The simulation of a djembe drum in response to a centered strike on its membrane.

This demonstrates coupled simulation with mesh motion objects similar to the wire
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frame models used in animation.

Simplicity and generality were emphasized during the development of the software and

as such, should serve as a starting point for those with specific applications in mind. As

a result, the software is made freely available under the GNU GPL to encourage further

development and optimization work.

1.3 Thesis Overview

The remainder of this thesis is organized into four chapters. As mentioned previously, the

software developed for this project is available under the GNU GPL and can be obtained

from http://www.music.mcgill.ca/~deleon/research.html. After familiarizing oneself

with the theoretical and practical aspects of this work, the software implementation is an

excellent resource for those interested in three-dimensional wave propagation.

Chapter 2 covers the technical background necessary to understand the transient bound-

ary element method, the retarded potential technique, and waveguide junction modeling.

The chapter concludes by discussing related work that draws from computational fluid

dynamics for applications in music.

Chapter 3 discusses our variation of the retarded potential technique in detail. Specif-

ically, we outline several shortcomings in the retarded potential technique that motivated

the modifications to the algorithm. Additional topics covered in this chapter include an

adaptation of the waveguide junction technique for unstructured triangular topologies, the

quadrature technique used for element integration, and ray-triangle intersection used to

determine line-of-sight connectivity between mesh elements.

Chapter 4 presents the results for the pipe and djembe simulations. These exercises

highlighted several technical issues which are discussed in detail. Insight into the results and

technical issues encountered during the development of this project lead to the evaluation

and future work discussions in the fifth and final chapter.

1.4 Contributions and Limitations

The simulation of arbitrary acoustic objects with the transient boundary element method

is theoretically limited to homogeneous, linear and adiabatic volumes. These limitations
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are implied by the use of the inhomogeneous scalar wave equation. It should be noted that

the term inhomogeneous in regards to the scalar wave equation refers to its inhomogeneous

property as a differential equation and should not be confused with a physical property of

the volume.

As such, the transient boundary element method as it is implemented here should not

normally be coupled with surfaces exhibiting perforations. As discussed briefly in Chapter

3, perforated surfaces should be treated with indirect BEM solvers such as those detailed

in [6] and [7]. However, for the limited scope of this research, we chose to approximate

perforated surfaces with a zero pressure boundary condition. This allowed us to verify

that solving the three-dimensional wave equation was inline with the results of empirically

tuned solutions, but the results should not be considered rigorous. Furthermore, all BEM

methods are linear and cannot account for higher order phenomena such as turbulence.

Therefore, cases that would require such precision should consider a Navier-Stokes solver.

This research extends the physical modeling properties of digital waveguides into three

dimensions and allows sound extraction of three-dimensional modes directly from physical

variables (such as those commonly used in virtual reality simulations) which do not have

direct physical correlation with one-dimensional methods. This is at the cost of computa-

tional effort, but is much more suitable in the near-future for sub-laminar flow than the use

of a Navier-Stokes solver due to its reduction of the integration space by one dimension.

Simulations of bodies with perforations would either need to make use of empirically tuned

filters (such as those used with digital waveguides) at each mesh element belonging to a

perforation, use an indirect BEM solver, or bidirectionally couple the BEM inside the body

to a BEM model outside of the body. If inhomogeneous properties of the volume around the

perforation are to be considered, it is also possible to couple the BEM with a Navier-Stokes

solver in the region of interest.

The key technical and innovative contributions of this research are the augmentation of

the retarded potential technique with Gaussian surface integration and unstructured tri-

angular topology meshing, as well as its coupling with a dynamically moving mesh. This

allows pressure and surface mesh motion to influence each other. Additionally, the mesh

variable structure allows the user to assign unique and independent surface characteristics

to each mesh element to determine its response to both motion variables (waveguide junc-

tion method) and pressure (retarded potential technique). Furthermore, the unstructured

topology of the mesh allows one to mesh model three-dimensional objects more easily than
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with fixed meshes. Further innovation includes extending the digital waveguide junction

technique to an unstructured triangular topology with interpolation and developing linear

connectivity solutions between mesh elements.

With these limitations in mind, it is clear that the retarded potential technique is

unsuitable for realtime sound computation with present computers. However, its direct

correspondence with three-dimensional variables allows it to predict the response of a lin-

ear, homogeneous and adiabatic system much more efficiently than a Navier-Stokes solver.

Examples of present day industry use include interior cabin noise modeling for vehicles

and evaluating impulse response characteristics of diffusers and performance theatres at

different seating locations.
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Chapter 2

Background

This chapter presents the mathematical background for the numerical method implemented

in the acoustic simulations of this project. Since the goal of the software developed for this

work is to remain generally applicable for arbitrary acoustic objects, it is necessary to

understand the fundamental mathematical concepts and their physical meanings. Without

a proper understanding of the underlying mechanics of the method, and most importantly,

the approximations and assumptions made, it will be difficult to adapt and optimize the

numerical method properly to a specific simulation.

The software used in this project determines the pressure field within an acoustic body

via several repetitive iterations for each unit of time. Therefore, it is an open form solution

to an equation describing the pressure within the body as a function of location and time. In

our case, this is a partial differential equation that was found by making several simplifying

assumptions about the propagation of pressure within the acoustic body. The translation

of the continuous mathematical representation of pressure over a duration of time within a

volume into a numerical method suitable for iterative calculation on a computer is known

as the transient boundary element method.

The transient boundary element method calculates the time domain solution to the

inhomogeneous scalar wave equation. At any point in a volume, the solution is determined

from the past values along the volume’s boundary. In other words, the solution to the

inhomogeneous scalar wave equation is an integral function of the retarded potentials across

the bounding surface.

The integral solution to the inhomogeneous scalar wave equation originates in electro-
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magnetics and is known as the Kirchhoff method of integration. By making simplifying

assumptions of the volume containing the point of observation, an appropriate Green’s

function is applied to the inhomogeneous scalar wave equation to arrive at the Kirchhoff

formula. Mitzner [3] developed a numerical approach to the classical Kirchhoff equation

known as the retarded potential technique without using matrix inversions. It was used

primarily to predict transient scattering of acoustic waves from arbitrary hard surfaces.

The software implementation of this study couples a modified retarded potential tech-

nique with a bounding unstructured triangular mesh generated by Distmesh. In situations

where the mesh is in motion, its movement is governed by two-dimensional digital waveguide

meshes propagating velocity waves. This coupling of mesh motion with pressure propaga-

tion allows us to simulate struck drum membranes and provides the capability to visualize

the motion of the membrane in three dimensions. An overview of the necessary background

for understanding our modifications are contained in the following subsections, with inter-

ested readers encouraged to further pursue references [2], [3], [8], and [7] as starting points

regarding BEM and [4] regarding digital waveguides.

2.1 The Kirchhoff Equation

The following derivation of the Kirchhoff equation can be found in its entirety in Elec-

tromagnetic Theory by Julius Adams Stratton [2]. To describe linear acoustics within a

homogeneous volume of air contained in a volume, we start from the inhomogeneous scalar

wave equation with density source function q

∇2ψ(r, t)− 1

c2
∂2ψ(r, t)

∂t2
= −q(r, t) (2.1)

where ψ is the pressure field, r is the distance to the fixed point of observation, t is time, and

c is the speed of sound in the medium. Secondly, we make the assumption of an arbitrary,

spherically symmetric solution

φ(r, t) =
1

r
f
(
t+

r

c

)
(2.2)

as implied by the homogeneous wave equation

∇2φ(r, t)− 1

c2
∂2φ(r, t)

∂t2
= 0. (2.3)
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The method for reducing the dimensions of the problem for a twice-differentiable, con-

tinuous pressure field ψ at position ro and time to follows by substituting ∇2ψ(r, t) =

−q(r, t) +−(1)/(c2)(∂2ψ(r, t))/(∂t2) and ∇2φ(r, t) = (1)/(c2)(∂2φ(r, t))/(∂t2) into the sec-

ond Green’s identity ∫
V

(φ∇2ψ − ψ∇2φ)dV =

∫
S

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dS (2.4)

to arrive at

−
∫
V

φqdV +
1

c2

∫
V

(φ
∂2ψ

∂t2
− ψ

∂2φ

∂t2
)dv =

∫
S

(φ
∂ψ

∂n
− ψ

∂φ

∂n
)dS. (2.5)

Given the previous assumption of a spherically symmetric solution, we choose the function

f
(
t+

r

c

)
=

1√
2π

e
−(t+ r

c )2

2δ2

δ
(2.6)

with the special property of vanishing everywhere except at t = −r/c. After substitution,

this allows all terms to disappear upon integration over the entire duration of time

∫ ∫
S

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dSdt = −

∫ ∫
V

(
f(t+

r

c

) q
r
dV dt (2.7)

+
1

c2

∫ ∫
V

(
f(t+ r

c
)

r
− ψ

r

∂2

∂t2
f
(
t+

r

c

))
dV dt (2.8)

−
∫
V

q(x, y, z,−−r
c

)dV (2.9)

The remaining φ terms on the left-hand side of the equation are eliminated by bounding

the singularity at r = 0 caused by φ = (1/r)f(t+ r/c). To accomplish this, we bound the

surface S inside by surface S1 with an inner radius of r1

0 =

∫
V

1

r
q(x, y, z,

−r
c

)dV +

∫ ∫
S

(φ
∂ψ

∂n
− ψ

∂φ

∂n
)dSdt+

∫ ∫
S1

(φ
∂ψ

∂n
− ψ

∂φ

∂n
)dSdt (2.10)

As r1 of S1 approaches 0, the sampling property of f (t+ r/c) simplifies the surface integral

term upon integration over time
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∫ ∫
S1

(
φ
∂ψ

∂n
− ψ

∂φ

∂n

)
dSdt = −4πψ(x′, y′, z′, 0). (2.11)

Finally, we isolate for the pressure field ψ and substitute φ = (1/r)f(t + r/c) into the

remaining time integral and arrive at the Kirchhoff equation at time t = 0

ψ(x′, y′, z′, 0) =
1

4π

∫
V

1

r
q

(
x, y, z,

−r
c

)
dV +

1

4π

∫
S

(
1

r

∂ψ

∂n
− ∂

∂n

1

r
ψ +

1

cr

∂r

∂n

∂ψ

∂t

)
t=−r

c

dS.

(2.12)

Recognizing that the right-hand side of the above equation consists entirely of terms at

t = −r/c, the equation can be rewritten for an arbitrary time t′

ψ(x′, y′, z′, t′) =
1

4π

∫
V

1

r
q
(
x, y, z, t′ − r

c

)
dV+

1

4π

∫
S

(
1

r

∂ψ

∂n
− ∂

∂n

1

r
ψ +

1

cr

∂r

∂n

∂ψ

∂t

)
t=t′− r

c

dS

(2.13)

The first term on the right-hand side represents the source excitation, while the second

term on the right-hand side contributes to ψ at the observation position and time as a

function of past values of ψ along the bounding surface. Therefore, we are able to obtain

our solution by making simplifying assumptions of the inner volume and ensuring the wave

equation is satisfied at the boundaries. This is known as a direct boundary element method,

since ψ can only be determined in either the inner or outer volume of a closed surface S,

and cannot be known in both volumes simultaneously.

2.2 The Retarded Potential Technique

Mitzner [3] derives the discrete approximation to the classical Kirchhoff equation by dividing

the bounding surface S into K elements and approximating the time derivative term with a

three-point backward difference formula [9]. To obtain the collocation scheme for a transient

scattered field, we first simplify the source excitation to ψo and combine the first two terms

inside the surface integral from the quotient rule

1

r

∂ψ

∂n
− ∂

∂n

1

r
ψ =

(
∂ψ

∂n

∂r

∂n

)(
1

r2

)
(2.14)
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and factor to obtain the expression for the Kirchhoff equation in K discrete zones

ψ = ψo +
1

4π

∑
K

∫
SK

(
1

r2

∂r

∂n

(
∂ψ

∂n
+
r

c

∂ψ

∂t

))
dS. (2.15)

When the point of observation is directly on the surface S, the surface area of the

infinitesimal sphere bounding this point of observation is halved. This is the result of the

sphere being split into halves by the surface upon which the point of observation resides,

and therefore restricting the point to observe the half of the sphere that is above the surface

only. Thus, the influence of the retarded potentials in Equation 2.15 is doubled as shown

in Equation 2.16:

1

2
ψ = ψo +

1

4π

∑
K

∫
SK

(
1

r2

∂r

∂n

(
∂ψ

∂n
+
r

c

∂ψ

∂t

))
dS. (2.16)

As an example, a collocation point at the inner corner of a perfect box would require a

factor of 1/8 by the same argument.

Mitzner’s retarded potential approach is based on subdividing the SK elements until

they are small enough such that the second factor in the integrand can be approximated

by

∂ψK
∂n

+
rK
c

∂ψK
∂t

≈ ψK

(
t− rK

c

)
+ tK

∂ψK
(
t− r

c

)
∂t

(2.17)

and is therefore pulled out of the integrand.

The remaining integral
∫
SK

(1/rK
2)(∂rK/∂n)dS is the negative of the solid angle Ω

subtended by SK as observed at a distance rK . As a result, the scattered field from

collocation point j located on a smooth, continuous surface is

1

2
ψj − ψoj ≈ −

1

4π
Ω

(
ψK

(
t− rK

c

)
+ tK

∂ψK
(
t− r

c

)
∂t

)
. (2.18)

For both ψK terms on the right-hand side of the equation, we can linearly interpolate

between time steps for τ a non-integer multiple of r/c

ψK

(
to +mτ − rK

c

)
= (1− γ)ψK(m− n) + γψK(m− n− 1), (2.19)
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∂ψK
(
to +mτ − rK

c

)
∂t

= (1− γ)
∂ψK(m− n)

∂t
+
∂γψK(m− n− 1)

∂t
. (2.20)

Furthermore, the differentiation in time term ∂ψK

∂t
can be approximated with the previously

mentioned three-point backward difference formula C0 = 3/2, C1 = 2, C2 = 1/2 as shown

below

∂ψK
∂t

≈ 1

τ

(
3

2
ψK(m− 0)− 2ψK(m− 1) +

1

2
ψK(m− 2)

)
. (2.21)

By substituting equations 2.19, 2.20, and 2.21 into equation 2.18, we can generalize the

equation for the scattered value from surface element j at time m with influence coefficient

βij, which accounts for the influence of the k-th element on element j at a time delay of i

units as shown below

2πψmj = 4πψmoj −
K∑
k=1

I∑
i=1

βkijψ
(m−i)
k . (2.22)

2.3 Waveguide Junction Meshes

Mesh motion for membrane modeling is based on velocity wave propagation in N -junction

loaded digital waveguides as described in [10]. This provides our software the capability to

simulate dynamic drums that have been struck anywhere on the surface, and also the ability

to visualize the motion in three dimensions. The number of digital waveguide elements, N ,

intersecting at each junction in an unstructured mesh varies, so the number of neighboring

nodes must be pre-computed. The scattering relations for the junction velocity at junction

j are shown below:

Vj = V +
i + V −

i (2.23)

Vj = 2

(
Rj +

N∑
i=1

Ri

)−1 N∑
i=1

RiV
+
i (2.24)

where V +
i is the incoming velocity wave, V −

i is the outgoing velocity wave, Ri is the wave

impedance of the medium and Rj is the load impedance of the i-th digital waveguide on the
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j-th junction [4]. In order to provide control over the tuning of the membrane as the mesh

granularity changes at different sampling rates, the motion of the junctions can be tuned

by an interpolation ratio. From the velocity of the mesh junctions, the normal pressure

gradients for each surface element are established and pressure variation is injected into

the retarded potential system as a Neumann boundary condition. In a similar manner, the

retarded potential system is coupled to the digital waveguide junction through the total

junction force

N∑
i=1

Fi(s) = Fj(s) = Vj(s)Rj(s). (2.25)

Each collocation point along the boundary is associated with an area A determined by its

Gauss-Legendre weight and the element area, thus providing the feedback force Ffdbk = ψA

that can be scaled appropriately. It should also be noted that when using unstructured

meshes, a uniform distance option in Distmesh is used to force the mesh generation algo-

rithm to maintain a relatively uniform distribution of junctions throughout the mesh.

2.4 Related Work

The theoretical foundation for this study as briefly described in the first two sections of this

chapter originates from electromagnetics, as detailed by Stratton [2]. The numerical method

based on the classical formulation of the Kirchhoff equation in the context of scattered

acoustic waves was first demonstrated by Mitzner [3]. Friedman [8] and Shaw [11] similarly

demonstrated scattered acoustic waves from arbitrary objects, but with additional residual

terms to account for discontinuous wavefronts.

More recently, Kawai and Terai [6] formulated an indirect transient boundary element

method suitable for scattering from thin plates. The frequency-domain version of the

boundary element method was used to model a resonating guitar body, achieving good

correlation with measured results [7]. In the same work, a FEM model of a timpani drum

was coupled with a BEM model of the surrounding air and was shown to achieve good

correlation with measured results. Additional work in realtime applications has seen FEM

and BEM being used to pre-compute filters for use in animated shorts [12].
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Chapter 3

Design and Implementation

This chapter describes the MATLAB toolbox developed for this study. In general, the tool-

box implements Mitzner’s retarded potential technique with added modifications and im-

provements in a number of areas, including direction dependence, object obstruction, solid

angle calculation, element integration, and object representation via meshing. The mesh-

ing algorithm is based on the GPL toolbox Distmesh [1], also with added functionality.

Furthermore, it will be made clear that the majority of this work was conducted to sup-

port a generalized framework, so that it could be easily understood and adopted for a

single, optimized application. It should be kept in mind, though, that the direct boundary

element method, in addition to its simplifying homogeneous assumptions of the problem

space, requires the user to define the bounding surface, and thus assumptions must be made

concerning the scattering coefficients of the surface along with its other characteristics . In

general, perforated surfaces should be treated with indirect BEM solvers such as those de-

tailed in [6] and [7]. These works, among other relatively recent advances, are discussed in

the future work section in Chapter 5.

3.1 Mesh Generation

Distmesh was developed by Per-Olof Persson and Gilbert Strang from the Department

of Mathematics at MIT. It produces unstructured triangular meshes in two-dimensions

and unstructured tetrahedral meshes in three-dimensions, but is also capable of generating

general N -simplex meshes in N -space, where an N -simplex is the N -dimensional analogue

of a triangle. The unstructured designation means that the simplex elements are formed
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without strict topological limitations such as element size or number of neighbours. In

this sense, it presents some unique difficulties when used as the basis for a waveguide

membrane, as discussed later in this chapter. However, Distmesh provides the option

to force the algorithm to make efforts to preserve uniform distance between nodes. This

uniform option was used for all Distmesh related discussion in this work.

The geometry of each mesh is based on a user-defined signed distance function, which

is negative inside the mesh region and positive outside. By intersection, differencing, and

union of distance functions, complex geometries can be created. It is necessary that the user

of our boundary element software first include the Distmesh folder, which is included with

its distribution, into MATLAB’s internal search path variable. Alternatively, the Distmesh

software can be downloaded separately from the web address for Distmesh [13]. An example

of a tetrahedral mesh used to model a sphere in three dimensions is shown in Figure 3.1,

where the distance function for this case would simply be
√

(x2 − r) + (y2 − r) + (z2 − r),

with x, y, and z being the Cartesian mesh node coordinates and r being the radius of the

sphere.

3.1.1 Generating Surface Meshes

Distmesh uses a tetrahedral topology throughout the volume for three-dimensional meshes.

Using the Distmesh function distmeshnd, we generate two vectors p and t, which are

the Cartesian mesh node coordinates and adjacency matrix, respectively. The adjacency

matrix is a list of pointers into p in groupings of N + 1 for an N -dimensional mesh, where

each grouping represents the vertices of the simplex elements. For a tetrahedral mesh, the

adjacency matrix t would consist of pointers in groups of four, with each group representing

a unique tetrahedron in three-dimensional Euclidean space.

It is necessary to remove the internal nodes to generate a surface mesh for the boundary

element method since it requires only the bounding surface of the modelled object. To ac-

complish this, an algorithm was developed to count the occurrences of the four triangular

faces of each tetrahedral element of the mesh within the adjacency matrix. Internal triangu-

lar faces are shared between adjacent tetrahedrons, and therefore occur twice. Conversely,

the triangular elements facing outwards are associated with only one tetrahedron. These

triangular elements are preserved and all others purged. After removing the inner node

coordinates from p, the adjacency matrix t is re-aligned to the new coordinate indices in
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Fig. 3.1 Half of a sphere generated with Distmesh in 3D using tetrahedral
mesh elements

p and reduces to a list of 3-element, triangular groupings. This functionality is performed

in the function vol2surf. Finally, a new graphing function simpplotsurf based on the

Distmesh function simpplot was developed in order to display the surface. An example of

vol2surf being applied to the tetrahedral mesh in Figure 3.1 is shown in Figure 3.2.

3.1.2 Orienting Surface Normals

In order to make several key surface calculations such as vector reflection and Gaussian

element integration, the normals of each triangular element must be computed and oriented

inwards as shown in Figure 3.3. The unstructured topology does not orient the node indices

in the adjacency matrix in a fixed manner to easily permit orientation, and it was important
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Fig. 3.2 Half of a sphere surface generated with Distmesh in 3D using tetra-
hedral mesh elements, after being processed by vol2surf

to maintain generality and to allow for complex geometries, including meshes with folds. As

a result, Jordan’s curve theorem is applied before any perforation of the mesh by associating

an odd number of surface intersections with the infinitely extended inward normal [14]. This

follows from the theorem, which states that any continuous simple closed curve in the plane

separates the plane into two disjoint regions, the inside and the outside.

The number of intersections was determined by extending the normal infinitely from the

center of the triangle and applying an intersection algorithm [15] with all other triangular

elements contained in the mesh. For this purpose, the distance t for the normal N(t) =

O + tD and the barycentric coordinates (u, v) of its possible intersection with triangle T
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with vertices V1, V2, and V3 are determined below:

N(t) = T (u, v) (3.1)

= (1− u− v)V0 + uV1 + vV2. (3.2)

By applying Cramer’s rule to 3.2, we can determine t, u, and v according to Equation 3.5:

E1 = V1 − V0 (3.3)

E2 = V2 − V0 (3.4)

 t

u

v

 =
1

(D × E2) · E1

 ((O − V0)× E1) · E2

(D × E2) · (O − V0)

((O − V0)× E1) ·D

 . (3.5)

This functionality is implemented in the function intersecttriangle, which includes han-

dlers for several degenerate cases. This includes handling intersections with vertices and

shared edges. The encapsulating function for determining surface normals is contained in

the function normmeshnd.

3.1.3 Characterizing Surfaces

For simulations involving objects such as unflanged open-end pipes and hand drums, tri-

angular elements of the surface mesh need to be removed at the location of the desired

perforations. The technique to accomplish this with a triangular surface mesh is similar

to the tetrahedral-to-surface mesh conversion method, where the nodes belonging to the

perforation are removed from p, with t modified accordingly afterwards. The nodes to

be removed are specified by a user-defined signed distance function. It should be noted

that nodes designated as removed in the perforation operation by function vol2surf are

retained in our implementation of the retarded potential technique and are set to invert

incoming pressure waves. This sets the boundary condition at the opening as pressure

p = 0, which is a low-frequency approximation.

In general, all surface properties are localized to the elements of interest by implementing

user-defined signed distance functions. This includes mechanical impedance for waveguide
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Fig. 3.3 Half of a sphere surface generated with Distmesh in 3D using tetra-
hedral mesh elements and displaying inward oriented surface normals, after
being processed by vol2surf and normmeshnd

simulation, scattering coefficients for the vectorized retarded potential scheme, and the

placement of initializing pressure origins, such as plane wave excitation in a closed-open

cylinder experiment. These surface characteristics are described in more detail in section

3.2.

3.2 The Vectorized Retarded Potential Technique

In this section, the differences between Mitzner’s retarded potential technique and our own

implementation are outlined.
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3.2.1 Element Integration

Whereas Mitzner zones the surface elements by using co-ordinate curves, we elect to inte-

grate across the elements using four-point Gauss-Legendre cubature [16]. This allows us to

express a definite integral as a weighted sum of four function values within each triangular

element

∫ 1

−1

f(x)dx ≈
4∑
i=1

wif(xi). (3.6)

In our case, the Gaussian weights are used to determine solid angle values which in turn

are a key component of the influence coefficient, as discussed in section 2.2.

3.2.2 Solid Angle Calculation

With weighted Gaussian points for each triangular surface element, we can divide the exact

solid angle calculation for the entire triangle among the Gaussian points when computing

the influence coefficients. This is accomplished by using the Gaussian weights to divide

the solid angle determined by the method described in [17], which is an exact solid angle

calculation for planar triangles. In contrast, Mitzner approximates the solid angle used

in equation 2.22. The exact formula used to determine the solid angle in the vectorized

retarded potential technique is given by:

Ω = 2 arctan



det

 a

b

c


abc+ (a · b)c+ (a · c)b+ (b · c)a


, (3.7)

where a, b, and c are vectors from the observation point to the vertices of the triangle.

3.2.3 Connectivity

The boundary element method assumes the volume to be homogeneous and therefore does

not model diffraction. When computing the influence coefficients β in equation 2.22, the
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previously mentioned intersecttriangle routine is used to determine line-of-sight con-

nectivity between surface elements. This is especially important with complex geometries,

where there would be no direct interaction between elements at either end of a complex ob-

ject such as a twisted tube. Note that connectivity, along with the other components used

to compute the influence coefficients, should be re-computed each time step for situations

where the bounding surface or objects within would be in motion.

3.2.4 Vector Fields

Along with connectivity, Mitzner’s formulation of the retarded potential technique makes no

consideration for the origin of the presure wave or the orientation of the surface. Therefore,

the original implementation would scatter a surface value to all other surface elements

SK regardless of their location or the angle of incidence of which the exciting pressure

made contact with the surface. To resolve this problem, a scattering coefficient is used

to determine the maximum deviation angle from which a reflected vector can intersect

with another surface element. The reflected vector is calculated by equating the angle

of incidence between the incident vector and the inward-oriented normal of SK with the

reflected angle.

The collocation scheme for a vector field is much more memory intensive and requires

a number of unique vectors to be stored at each surface element SK . For a mesh consisting

of N elements, there can be vectors originating from up to N − 1 other elements in the

mesh which are required to be stored at each time step. The space for these vectors are

dynamically allocated during the simulation. Over several time steps, the number of unique

vectors stored in each element will increase dramatically since each element will transmit

vectors of different magnitudes to several other elements in a one-to-many fashion. To avoid

memory leak issues, the list of vectors for each surface element SK are optimized such that

vectors pointing in the same direction are merged. Therefore, for a mesh consisting of N

triangular elements, each element may be required to store as many as N−1 unique vectors

for each time step.

3.2.5 Observation Mesh

With Mitzner’s formulation, the observation point is a single point in space
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2πψmj = 4πψmoj −
K∑
k=1

I∑
i=1

βkijψ
(m−i)
k . (3.8)

However, the main observation variable, pressure p = F/A, is associated with surface

areas, where F is force and A is area.

As a consequence, we choose to take an alternate approach based on listening meshes

such as the one shown in Figure 3.4. This allows for results that are averaged over a larger,

more relevant surface. A separate function makept uses the two-dimensional Distmesh

function distmesh2d to create a circular observation mesh at a user-specified location and

orientation.

Fig. 3.4 Listening mesh oriented with normal vector (x,y,z) = [0 0 1] and
elevated to 20 mm height

The main simulation implementing the vectorized retarded potential technique takes

place in the function tbem. The listening mesh is transparent and does not propagate or

reflect pressure waves.
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3.2.6 Waveguide Junctions With Distmesh

Mesh motion for membrane modeling is based on velocity wave propagation in N -junction

loaded waveguides and coupled with the internal pressure field generated by the vectorized

retarded potential technique, as previously described in Section 2.3. We present several

figures showing the time evolution of a center-struck circular drum membrane using the

waveguide junction technique as shown in Figure 3.5.

3.3 Software Description

Appendix A provides a brief list and description of the software modules developed as part

of the MATLAB toolbox for this study. For further details such as input and output argument

requirements, type help [functionname] in the command line of MATLAB after navigating

to the directory containing the source code.
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Fig. 3.5 Drum membrane modeled with a waveguide junction mesh adapted
to an unstructured triangular topology, from top to bottom: timestep n=1,
30, and 60
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Chapter 4

Results and Discussion

This chapter presents the results obtained for this study and discusses in detail various

technical issues of particular importance. Specifically, the experiments performed with the

vectorized retarded potential technique are:

• The simulation of an unflanged pipe with a closed and open end. An initial plane

wave propagates from the closed end towards the open end. This demonstrates the

accuracy of the method chosen.

• The simulation of a djembe drum in response to centered strike on its membrane.

This demonstrates coupled simulation with mesh motion objects similar to the wire

frame models used in animation.

It was found that the TBEM simulation of the unflanged pipe was in general agreement

with the lossy waveguide model. No actual losses were implemented in the vectorized

retarded potential simulation though some losses are inherent in the numerical technique.

Furthermore, it is believed that the transfer of energy from the 1D propagating plane wave

to higher-order radial modes contributed to the low-pass filtered effect.

4.1 Unflanged Cylindrical Pipe Simulation

A cylindrical pipe of 80 mm length and 18 mm radius was simulated with an observation

point at its center. The input end was rigidly terminated (an infinite impedance) and an

ideal open-end boundary condition was applied at the other end, as shown in Figure 4.1. A
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circular observation mesh was placed in the middle of the pipe. A plane wave was initialized

at the closed end. An ideal, open-end boundary condition was used (zero pressure) and the

cylindrical walls were assumed to be infinitely rigid.

Fig. 4.1 Front and back perspectives of half of an open-closed unflanged
pipe with length of 80 mm and radius of 18 mm, created with Distmesh, inner
view includes inward oriented surface normals

The time response and frequency response at the mid-point observation circular mesh

is shown in Figures 4.2 and 4.3 and compared with a 1D waveguide model as described in

[18]. The results are in general agreement although there are obvious discrepancies between

the responses and the number of dimensions modeled. While both models implement an

ideal zero-pressure boundary condition at the open end, an indirect BEM method should

be implemented for a more rigorous model of thin boundaries and perforated surfaces. Also

note that the 1D waveguide response includes filters to model attenuation and phase delay

due to viscous and thermal losses along the sidewalls that are not accounted for in the

3D simulation [18]. While the TBEM results are not intended to exhibit these losses, it
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is inherently lossy due to leakage resulting from the implementation of a minimal vector

magnitude constraint in the intersecttriange routine. For extremely small vectors, it

was found that precision errors would occur in the routine and cause false intersections or

result in no intersections. Since the algorithm is iterative, these losses are cumulative and

are non-negligible. There is a tuneable constant EPSILON in the routine tbem which can be

decreased to approach ideal lossless computation, but as this becomes extremely small it

significantly slows the simulation and increases the memory requirements due to the large

number of vectors which would not be truncated. It is also believed that the higher-mode

interference causes a smoothing effect as the pulses propagate longitudinally, radially, and

so forth. In effect, this is a lowpass filter since high frequency energy is transferred to other

modes. A more thorough investigation of this effect is suggested in section 5.2 of this work.

Fig. 4.2 Normalized pressure versus time taken at the midpoint of the simu-
lation of an open-closed unflanged pipe with length 80 mm and radius 18 mm.
TBEM results (solid) and waveguide results (dashed)

Another approximation present in the TBEM routine is attributed to Gaussian integra-
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Fig. 4.3 Magnitude (dB) of pressure in the frequency domain taken at the
midpoint of the simulation of an open-closed unflanged pipe with length 80
mm and radius 18 mm. TBEM results (solid) and waveguide results (dashed)

tion and its relation to the spatial sampling distance. For boundary elements to communi-

cate in time, their distance must remain greater than c/fs, where c is the speed of sound

and fs is the sampling frequency. When this is violated between weighted Gaussian points,

the distance was rounded to the nearest valid value. This partially accounts for the slight

timing differences in the time simulation (Figure 4.2) and the slight high frequency peak

differences in the frequency domain results (Figure 4.3). Finally, differences between the

waveguide and TBEM simulations can also be attributed to the fact that a pipe generated

with Distmesh will exhibit geometric non-idealities and affect the results. These geometric

imperfections are due to the fact that the mesh generated with Distmesh only approximates

the actual shape of a cylinder with triangular elements.
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4.2 Djembe Drum

A djembe drum of height 400 mm with a membrane diameter of 210 mm was modeled

in a fully coupled simulation. The mesh models are shown in Figures 4.5 and 4.6. The

initial excitation was modeled as a raised cosine distribution of velocity at the membrane

waveguide junctions. Once again, a rigid boundary condition was set along the surface

of the drum with an ideal open-end boundary condition at the bottom hole. The first 14

ms of the simulation results are shown in Figure 4.4. This simulation demonstrates the

applicability of BEM-based methods for physically-based sound generation in animation

games.

Fig. 4.4 Initial 14 ms of the pressure within a fully-coupled djembe drum
simulation after a centered strike of the membrane, taken 10 mm above the
bottom exit hole center
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Fig. 4.5 Half of djembe drum mesh model created with Distmesh, outer
view

4.3 Discussion

One of the drawbacks with implementing Gaussian quadrature on a pointwise basis is that

the distance between Gaussian points must remain greater than c/Fs, where c is the speed

of sound and fs is the sampling rate. In the case that the exception to this rule is not

handled, the vectors belonging to a source element would partially be written into the

delay structure of the tbem routine at the current time-step. In a physical sense, this

corresponds to a generation of energy and leads to unstable simulations.

One work-around for this situation is to locate troublesome Gaussian point locations

and manually place or integrate them as exceptions. Another option is to completely

disregard the propagation between the violating elements, but this would cause energy

leaks resulting in an excessive damping of the results when simulating a lossless system.

Since these occurrences were generally rare and took place primarily in sharp corners, we
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Fig. 4.6 Half of djembe drum mesh model created with Distmesh, inner
view includes inward oriented surface normals

elected to take the simple solution of rounding the spatial sampling distance to unity in

order to avoid instability. However, this inaccuracy in potential retardation can cause

slight discrepancies in observed resonant modes upon discrete Fourier transform analysis

in comparison with waveguide models.

The simulation stores a list of unique vectors at each Gaussian point. It is extremely

important to sort and merge this vector list into a unique list of vectors since their growth

can outpace the rate of the time-step zeroing of past elements and lead to memory leaks.

As discussed earlier, the memory leak can occur when the vectors transmitted between

mesh elements at each time step are dynamically allocated and are not merged according

to the orientation of the vectors.
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Chapter 5

Conclusions and Future Work

This chapter summarizes the work presented and makes suggestions for future work. Over-

all, the simulations were successful but will require much more optimization in terms of

computational complexity to be feasible in the immediate future.

5.1 Summary and Conclusions

A variation of the retarded potential technique was presented and merged with the meshing

capability of Distmesh and demonstrated to be a generalizable framework for a number of

simulations. It is extensible to suit applications for prototyping, measurement, instrument

synthesis and immersive sound where inhomogeneous qualities of the volume can be ne-

glected. Therefore, it should only be utilized where accurate modeling of diffraction is not

necessary.

Several improvements to the retarded potential method proposed by Mitzner [3] were

implemented, including an improvement to the solid angle calculation and a vectorization

of the propagation variables to support direction dependence. This allows one to solve for

integral solutions of scalar fields such as pressure. Furthermore, the generality of the mesh

model was kept at the forefront as line-of-sight connectivity is determined during each time

step in support of the influence coefficient calculations.

An cylinder experiment was conducted and compared with the one-dimensional waveg-

uide model in order to verify the accuracy of the vectorized retarded potential technique.

Results show show promise for further development of the technique for pipe simulations.

In order to demonstrate the generality and applicability of the vectorized retarded poten-
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tial technique in animated multimedia applications, a fully coupled simulation of a djembe

drum strike was studied. While too computationally intensive for realtime applications, it

is hoped that the GNU GPL availability and inevitable increase in computational capacity

will further the interest in transient BEM in musical applications.

5.2 Future Work

The Green’s function, as shown in Equation 2.4, employed to derive the Kirchhoff integral

solution to the inhomogeneous wave equation, constrains the pressure to be continuous and

twice differentiable in the volume. Other formulations of the transient BEM add additional

residual terms to account for discontinuous wavefronts and should be considered for more

rigorous predictive applications [8], [11]. A discontinuous wavefront occurs when the limit

of the function describing the wavefront does not satisfy the Cauchy definition of continuity.

A step function is an example of a discontinuous function.

Also, the retarded potential technique is a direct BEM method, and thus it is not

strictly correct to simulate perforated bodies or slender membranes with it. A more rigorous

approach is to apply the indirect boundary element method that integrates the pressure

jump across the boundary [7], [6].

Additional refinements can also be made in the numerical method of element integration.

While Gauss-Legendre cubature is effective, error increases as the distance between the

observation point and the boundary element decreases due to the (1/r) weak singularity

expression in the kernel of the integral. Other methods have been explored in the context

of transient acoustic scattering to account for these problems and would be useful as an

addition [6]. It should be noted that in the current implementation of the vectorized

retarded potential technique, distances less than the spatial sampling distance c
Fs

(where c

is the speed of sound and fs is the sampling rate) would lead to instabilities. Therefore,

these distances are rounded up to a unity spatial sampling distance.

It is also possible to simulate loss at surface perforations and to incorporate losses at

the sidewalls of an object in order to obtain a more realistic simulation of an acoustic body.

The primarily difficulty with this approach is that such losses are not directly inherent

in the underlying mathematical model of the vectorized retarded potential technique, and

therefore would require tuned constants or an augmentation to the fundamental equations.

Finally, it should be noted that for virtual reality simulations where the listening or
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collocation points would move, the influence coefficients of the retarded potential technique

would have to be dynamically updated for each time step.
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Appendix A

Software Modules

• animate

Displays motion of mesh each time step.

• anglebetween

Calculates the angle between two vectors in Cartesian space.

• boundedges3d

Determines the boundary edges of a surface mesh.

• dcube

Distance function for a cube.

• demotbem

Demonstration module containing the setup calls to the make* functions to create

various meshes, listening points, etc.

• distmesndlim

A version of distmeshnd that will force convergence after a certain number of it-

erations. This is useful when using functions such as dcube or implementing very

complicated distance functions.

• findnbours

Finds the neighbours of a node in a surface mesh. Used to determine the adjacency

matrix for velocity wave propagation in waveguide junctions.
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• findreflection

Determines the reflection vector from a specified surface element under the assumption

that the angle of incidence always equals the angle of reflectance.

• findrim

Locates the boundary nodes and edges of a membrane as specified by the mechanical

impedance setting in the function makemesh.

• findscatter

Determines connectivity based on current stored vector in the source element based

on scatter coefficient and intersecttriangle function.

• findscatter listen

Similar to findscatter, but for the listening mesh.

• fixmeshsurf

The same as fixmesh as developed in the Distmesh toolbox, but adapted for surface

meshes.

• gaussquad

Calculates the gaussian points for a triangular element after rotating to the XY plane

using Rx, Ry, and Rz functions.

• getgauss

Wrapper function for gaussquad.

• graphnorm

Displays a surface mesh with calculated surface normals as red lines.

• impmeshnd

Uses a distance function to set the mechanical impedance of a section of a surface

mesh.

• intersecttriangle

Determines line-of-sight connectivity between mesh elements.
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• isconnect

Wrapper function for intersecttriangle and performs some checking for degenerate

intersection cases.

• makeadj

Finds adjacency matrix for velocity wave propagation in waveguide junction imple-

mentation of vibrating membranes.

• makeg

Creates the global structure variable.

• makemesh

Creates the surface mesh and all related structure fields for use in the tbem routine.

• makept

Creates the listening mesh and related structure fields for the simulation.

• mergevectors

Determines vectors in a list that are oriented in the same direction and merges them

together in order to minimize memory requirements during the tbem routine.

• meshmotion

Adds motion vectors to the nodal positions of a membrane in motion for display.

• normmeshnd

Locates and calculates the normals of a given triangular surface mesh.

• projectvector

Calculates the projection distance of a vector in a particular direction.

• Rx

Rotation of an image about the x-axis

• Ry

Rotation of an image about the y-axis

• Rz

Rotation of an image about the z-axis
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• sculptmeshnd

Uses signed distance function to remove nodes from a given surface mesh and re-aligns

the adjacency matrix.

• setuptbem

Precalculation for the tbem routine, such as inter-nodal distances and solid angle.

• sharedge

Determines which nodes in a surface mesh are sharing an edge. Used in locating

boundary edges.

• simpplotsurf

Modification of the Distmesh function simpplot in order to display surface meshes

rather than tetrahedral volumes.

• solidangletri

Determines which nodes in a surface mesh are sharing an edge. Used in locating

boundary edges.

• strike

Calculates the initial displacement vectors.
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