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Acoustic characterization of the resonator in the Chinese
transverse flute (dizi)

Xinmeng Luan,1,a) Song Wang,1 Gary Scavone,1 and Zijin Li2
1Computational Acoustic Modeling Laboratory, Center for Interdisciplinary Research in Music Media and Technology, Schulich School
of Music, McGill University, Montreal, Quebec, Canada
2Department of Music AI, Central Conservatory of Music, Beijing, China

ABSTRACT:
The dizi is a traditional Chinese transverse flute and is most distinguished from the western flute by the presence of a

hole covered by a wrinkled membrane. In this study, the linear acoustical behavior of the dizi resonator is analyzed
through a detailed acoustical model that incorporates drilled toneholes, back end-holes, a membrane hole, and an

upstream embouchure hole. The input admittance of the dizi is measured and modeled using the transfer matrix

method (TMM) and transfer matrix method with external interactions (TMMI). In comparison to measurements, the

TMMI is shown to more accurately model the dizi than the TMM. This analysis reveals that attaching the membrane

shifts admittance peaks to lower frequencies, reduces their magnitude, and influences tuning and harmonicity for dif-

ferent peaks and fingerings. The study further shows that the upstream branch, which includes the embouchure hole,

complicates the evaluation of the tonehole lattice cutoff frequency, suggesting that it may not need to be considered

for flute instruments. Cutoff frequencies exhibit distinct groupings across fingerings, influenced by the different tone-

hole lattices in the dizi: the finger-hole lattice and end-hole lattice.VC 2025 Acoustical Society of America.
https://doi.org/10.1121/10.0036742

(Received 26 August 2024; revised 1 May 2025; accepted 2 May 2025; published online 20 May 2025)

[Editor: Vasileios Chatziioannou] Pages: 3836–3847

I. INTRODUCTION

The dizi (笛子), a traditional Chinese transverse flute

crafted primarily from bamboo, is most distinguished from

the western flute by the presence of a hole covered by a

wrinkled membrane. The wrinkled membrane is known to

contribute to the unique sound brightness of the dizi. The
general shape of the dizi, shown in Fig. 1, is similar to that

of the western flute, featuring a primarily cylindrical bore

and a series of toneholes along its length. The membrane

hole is located between the embouchure hole and six down-

stream finger-holes. Four extra, non-fingered end-holes are

located near the bottom of the bore as follows: two axially

distributed front end-holes, like the other toneholes along

the front side, as well as two radially distributed back end-

holes. Similar configurations of end-holes can also be found

on the Xiao, a Chinese longitudinal flute. An internal cork,

not visible externally, is located a short distance above the

embouchure hole. Thus, the acoustically relevant section of

the instrument is from the cork to the downstream end. The

upstream portion from the cork to the end identified as the

“flute head” in Fig. 1 is not modeled in this study. It is worth

noting that the membrane is a unique component of the dizi,
crafted from a thin film sourced from reed or bamboo stems,

which makes it particularly delicate and fragile. The mem-

brane’s lifespan is short, typically lasting only a few months

at most. There are various aspects that need to be taken into

account when selecting a suitable membrane, such as the

type of the dizi, playing techniques, and music style, as it

significantly affects the instrument’s timbre. Before playing

the dizi, the musician needs to manually create wrinkles on

the membrane and attach it to the membrane hole, as shown

in Fig. 1. Furthermore, the method of attaching the mem-

brane, its natural texture, and the formation of wrinkles

make a difference in tonal quality.

The fingering technique of the dizi includes half-holing,
which involves partially covering a finger-hole, typically

about 1/3 to 1/4 of its area. Proper tuning with this technique

requires precise finger positioning and ear training.

Additionally, cross-fingerings are used for certain notes, par-

ticularly in fast musical passages. Players can extend the

range of the instrument into the second and third octaves by

overblowing. The commonly used keys for the dizi are C, D,
E, F, and G. Dizi in the keys1 of C, D, and E are longer and

thicker, making them more demanding in terms of breath

control, and are referred to as qudi (曲笛). In contrast, dizi
in F and G keys, known as bangdi (梆笛), are shorter, thin-

ner, and require less breath to play.

The physical principles that govern the production and

radiation of sound by western musical instruments have

been explained in detail in Benade (1990), Rossing and

Fletcher (1991), and Chaigne and Kergomard (2016).

However, there have been only a few scientific studies of

Chinese musical instruments, with most of those coming in

the last few decades. Some noteworthy contributions related

to the dizi are as follows: Tsai (2003) made importanta)Email: xinmeng.luan@mail.mcgill.ca
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contributions to the study of the dizi from both physics and

perception perspectives. He explained the importance of the

tension and wrinkles in the membrane in producing a beauti-

ful, bright dizi timbre. The non-linear behavior of the mem-

brane was studied by modeling it as a Duffing oscillator.

Tsai (2003) focused on a C-key qudi for this study. In

another study, Ng et al. (2021) measured and analyzed the

input impedance of a G-key bangdi. They investigated the

influence of a membrane on the dizi’s resonances, finding

that it has minimal effect, with only slight deviations for cer-

tain notes. They also compared different alternate fingerings

for the same note, such as cross-fingering and half-holing,

and discussed how the observation of impedance descriptors

can impact playability from the musician’s perspective.

A common approach to study the resonator of wind instru-

ments, particularly the flute, involves one-dimensional model-

ing of the air column to obtain the input admittance, a linear

acoustic frequency-domain characterization relating pressure

and volume velocity at the embouchure hole. The input admit-

tance can be computed by the transfer matrix method (TMM)

(Causs�e et al., 1984; Keefe, 1990) and the finite element

method (FEM) (Ernoult et al., 2023). The transfer matrix

method with external interactions (TMMI) was proposed to

incorporate the mutual radiation effect among openings based

on the TMM (Lefebvre et al., 2013), which has been used to

model saxophones (Lefebvre et al., 2013) and clarinets

(Lefebvre et al., 2013; Petersen et al., 2020b).
Employing input admittance as a tool for woodwind

instrument analysis holds potential, as it provides informa-

tion about both the magnitudes and harmonicity of resonan-

ces. Moreover, leveraging input admittance analysis aids in

evaluating the influence of subtle alterations in hole and

bore geometries across different fingerings, which can be

used for instrument geometry optimization (Ernoult et al.,
2020). The input admittance can also be used for wind

instrument sound synthesis (Taillard et al., 2018).
Toneholes are the distinguishing feature of woodwind

instruments. The air column inside the main bore, along

with the air in the toneholes, is referred to as the tonehole

lattice. In most contexts, the tonehole lattice refers to the

open tonehole group, excluding the first upstream open hole,

which predominantly determines the playing frequency. The

remaining toneholes, namely the open tonehole lattice

(oTHL) (Petersen et al., 2021), serve a secondary function

by providing an effective length correction. The cutoff fre-

quency of an oTHL is a feature associated with wave propa-

gation in periodic media, which produces passbands and

stop bands for a wave entering the lattice (Benade and

Kouzoupis, 1988; Benade and Lutgen, 1988). This cutoff

frequency is related to the tone color of the instrument,

which can be reflected in the spectral characteristics of the

radiated sound (Benade and Kouzoupis, 1988; Benade and

Lutgen, 1988).

Selecting a high-quality dizi is a challenge for professional
musicians. Due to the organic nature of bamboo, craftsmen are

constrained by the inherent characteristics of each bamboo

blank, such as its internal and external dimensions, taper, uni-

formity, surface conditions, stiffness, and density, all of which

vary from one piece to another (Ng et al., 2021). This variabil-
ity makes it difficult for craftsmen to achieve precise intonation

when crafting a dizi. The process of shaping the bamboo blank

within design parameters to ensure consistent performance and

reliable interaction with the player relies heavily on experience

and ear training. There is a lack of scientific guidelines for the

instrument making.

The first objective of this paper is to present an acoustic

transfer matrix (TM) model for calculating the input admit-

tance of the dizi based on its geometry parameters. This

model offers instrument makers a quick and scientific means

to gain insights into the acoustics of the dizi, facilitating the

design process. The proposed model is validated against

measurement results, demonstrating strong agreement with

the TMMI model. Furthermore, the second goal is to per-

form a linear acoustic analysis of the dizi through both mea-

surements and modeling, considering both the instrument as

a whole and its individual components. This analysis pro-

vides valuable insights into the tuning and playability char-

acteristics of the instrument. Note that half-holing, which

involves partially covering a tonehole based on the musi-

cian’s auditory judgment, is excluded from this study due to

its inherent variability.

The paper is structured as follows. First, the measure-

ment system and process are discussed in Sec. II. Then, the

modeling details are extensively elaborated in Sec. III.

Section IV presents the discussion of the analysis of the

measurement and modeling results. Finally, Sec. V draws

some final conclusions.

II. MEASUREMENT

A custom-build multi-microphone system based on a

least-squares signal processing technique (Lefebvre and

Scavone, 2011; Wang et al., 2021) is used to measure the

input admittance of the dizi (see Fig. 2). Six microphones are

spaced along the impedance tube, and three non-resonant loads

are used to calibrate the apparatus, including a quasi-infinite

impedance, an almost purely resistive impedance, and an

unflanged pipe radiation load, similar to that described in

Dickens et al. (2007) and Kemp et al. (2010).
The input admittance of each fingering is measured

sequentially with and without the membrane. Blu-Tack

(Bostik, Puteaux, France) is used to seal the toneholes and

membrane hole (if the membrane is absent). When the mem-

brane is present, it is attached in a wrinkled state, as it would

be during a performance. Seven different fingerings were

FIG. 1. Image of the F-key bangdi and labeled parts.
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measured, specified as XXXXXX, XXXXXO, XXXXOO,

XXXOOO, XXOOOO, XOOOOO, OOOOOO, where O

stands for open and X for closed, and the corresponding

finger-hole sequence starts from the upstream end of the

dizi, corresponding to the notes C5 (523.25Hz)/C6, D5/D6,

E5/E6, F5/F6, G5/G6, A6/A7, B6/B7, respectively.

The embouchure hole is connected to the reference

plane of the measurement system by a three-dimensional

(3D)-printed coupler (see the bottom left corner of Fig. 2).

The dimensions of the dizi are listed in Appendix A. Note

that only the linear behavior of the dizi is captured due to

the assumptions of the measurement approach and the use

of a small-amplitude sound source excitation. For the case

of large jet flow in actual performance, nonlinear character-

istics will likely be present, though such behaviour is not

considered in this study.

III. MODELING

A. Theory of TMM and TMMI

The air column of a wind instrument can be modeled by

approximating its geometry as a series of segments. These

segments can take the form of cylinders, cones, and tone-

holes (either closed or open). Each segment is characterized

by a TM that establishes the relationship between the input

and output frequency-domain parameters, specifically pres-

sure and volume velocity. The overall response of the entire

structure is then determined by multiplying the individual

TMs in cascade. The impact of the bore’s surface condition

on the impedance spectra was investigated by Boutin et al.
(2017); however, this aspect is not considered in our study.

Using Ti to represent the TM of the ith element, the sys-

tem containing M elements can be expressed as

pinðxÞ
uinðxÞ
� �

¼
YM
i¼1

TiðxÞ
 !

poutðxÞ
uoutðxÞ
� �

; (1)

with pinðxÞ, uinðxÞ and poutðxÞ, uoutðxÞ denoting input and

output pressure and volume velocity as functions of the

radian frequency x. For simplicity, the frequency variable

will be omitted in the following notation. Yin ¼ uin=pin rep-

resents the input admittance.

For a cylindrical duct, the TM is

Tcyl ¼ coshðCLÞ ZcsinhðCLÞ
Z�1
c sinhðCLÞ coshðCLÞ

� �
; (2)

where L is the length of the duct, Zc ¼ qc=s is the characteris-
tic impedance,2 c is the speed of sound, s is the cross-sectional
area, and C is a complex propagation constant. Zc and C
depend on the acoustical constants of the gas and the duct

diameter. C can be written as (Van Walstijn et al., 2005)

C ¼ j
x
c
þ ax

� �
þ ðax þ ac þ amÞ; (3)

where ax; ac; am are the attenuation coefficients associated

with viscous drag and heat conduction at the tube wall, clas-

sical effects, and molecular effects, respectively. (The

detailed expressions are shown in Sec. 1 in Appendix B).

The elements of the TM of a short conical duct, Tcone,

are (Chaigne and Kergomard, 2016; Lefebvre et al., 2013)

T11
cone ¼

r2
r1
cosðkcLÞ � sinðkcLÞ

kcx1
;

T12
cone ¼ jZc sinðkcLÞ;

T21
cone ¼

1

Zc
j sinðkcLÞ 1þ 1

k2cx1x2

� ��

þ cosðkcLÞ
jkc

1

x1
� 1

x2

� ��
;

T22
cone ¼

r1
r2
cosðkcLÞ þ sinðkcLÞ

kcx2
; (4)

where r1 and r2 are the radii at the input and output planes,

respectively, and x1 and x2 are the distances between the

apex of the cone and the input and output planes,

Zc ¼ qc=ðpr1r2Þ, and kc ¼ �jC is the complex wavenum-

ber. In this case, losses are evaluated at the equivalent radius

(Chaigne and Kergomard, 2016):

req ¼ L
r1
x1

1

ln ð1þ L=x1Þ : (5)

The TM of a woodwind instrument’s tonehole (Fig. 3)

is written as (Keefe, 1982)

Thole ¼
1 Za=2

0 1

" #
1 0

1=Zs 1

" #
1 Za=2

0 1

" #

¼
1þ Za

2Zs
Za 1þ Za

4Zs

� �

1=Zs 1þ Za
2Zs

2
6664

3
7775: (6)

The series and shunt impedances, Za and Zs, can be

expressed in terms of equivalent lengths and are provided in

Appendix B. Dubos et al. (1999) provided an alternative

expression for the shunt term, suggesting that Zs can be

expressed as Zs � Za=4. However, in this study, we utilize

the model proposed by Keefe (1982) in Eq. (6).FIG. 2. Image of the dizi attached to the impedance measurement probe.
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For woodwind instruments, there are often open holes

in close proximity to one another. The TMM does not

account for possible external sound interactions between

holes. The TMMI was proposed to incorporate the mutual

radiation effect among openings, including open holes and

the open end (Lefebvre et al., 2013). The routine for the

TMMI involves dividing the bore into two portions at the

most upstream open hole. The impedance of the downstream

portion with open holes is calculated as described below and

then used as the load impedance for the upstream section,

the impedance of which is calculated using the TMM.

The pressure and volume velocity within the N open-

ings (open holes and end) of the downstream portion where

TMMI is applied, under the assumption that the height of

the tonehole is smaller than the wavelength, can be

expressed as

p ¼ prad þ Bu ¼ Zurad þ Bu ¼ ðZþ BÞu; (7)

where the vectors are defined as p ¼ ½p1;…; pN�, u ¼ ½u1;…;
uN�, prad ¼ ½prad1 ;…; pradN �, and urad ¼ ½urad1 ;…; uradN �. The

matrices B and Z have elements Bij and Zij, where i 2 ½1;N�
and j 2 ½1;N�. p, u, prad, and urad represent the internal and

external pressures and volume velocity rates at the openings,

respectively. For a tonehole, they refer to the pressure and

volume velocity inside the air column and chimney radiation

surface, respectively, as shown on the left in Fig. 3. B is a

diagonal matrix that represents the impedance of the acoustic

mass of the open holes, as seen in Sec. 3 of Appendix B. Z is

the radiation impedance matrix, where the diagonal elements

are self-impedances and the off diagonal elements are mutual

impedances.

The volume velocity can be calculated by

u ¼ Iþ YðZþ BÞ½ ��1us; (8)

where I is the identity matrix and Y is the admittance matrix,

as seen in Sec. 3 of Appendix B. Both I and Y have the same

size as B and Z. A flow-source vector, us ¼ ½us1;…; usN�, is
introduced at each open hole for the calculation, which can be

regarded as a virtual source. When we are only concerned with

the input admittance calculation, the virtual source is just a

choice of reference. One solution is to apply only a reference

volume velocity to the left of the uppermost open hole. A pres-

sure source is also a viable option.

The difference between the results of the TMM and

TMMI becomes apparent as the number and size of open

holes increase and the frequency becomes higher.

Therefore, using TMMI can provide more accurate results,

especially when considering frequency ranges above the

cutoff frequency of the tonehole lattice. The modeling of the

dizi using TMM and TMMI in this work is performed using

the MATLAB toolbox acmt (Scavone, 2024).3

B. Matching volume length correction for the drilled
toneholes

The matching volume length correction in Eq. (B13) is

derived from the holes that extend beyond the wall of the

bore, as in flutes and saxophones. However, the toneholes of

the dizi are directly drilled into a thick wall, referred to as

“drilled holes” below, similar to recorders. Thus, the match-

ing volume is slightly different (Lefebvre, 2011; Rucz et al.,
2015). Lefebvre (2011) calculated the total equivalent

length of the closed drilled hole, including the modified

matching volume length correction, which is merged with

the other length corrections and cannot be separated.

Figure 4 is a section view of the drilled hole. There are

two volumes that need to be properly accounted for in defin-

ing the drilled tonehole parameters, including the addition

of a region marked with a red þ and the subtraction of a

region indicated by a red � in the figure. In contrast, only

the þ region is considered for extended holes (Nederveen

et al., 1998). Note that a further volume correction term

could be taken into account during performance, as the fin-

ger penetrates some distance into the hole. According to the

geometric illustration of the drilled hole in Fig. 4, the match-

ing volume can be calculated by integrating as

Vþ
m ¼

ðþb

�b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � y2

p
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � y2

p� �
dy (9)

and

V�
m ¼

ðþb

�b

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2� y2

p
aþ t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ tÞ2� y2

q� �
dy; (10)

where a is the bore radius, b is the tonehole radius, and t is
the tonehole height or wall thickness. Then the total match-

ing volume length correction can be expressed as

tðo=cÞm ¼ 1

pb2
ðVþ

m � V�
m Þ: (11)

Through numerical integration, it can be transformed into

tðo=cÞm ¼ tb2

8aðaþ tÞ þ oðb5Þ; (12)

where oðb5Þ indicates that the approximation is accurate to

an order smaller than b5.

FIG. 3. (Left) Single tonehole. (Right) Back-end hole. FIG. 4. Profile of a tonehole drilled in the thick wall.
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C. Back end-holes

The back end-holes refer to two holes distributed radi-

ally along the dizi, as shown on the right in Fig. 3. These

holes present a challenge when developing a one-

dimensional model, as they are co-located along the dimen-

sion of interest. A similar structure could also be found on

the Xiao, another Chinese air-jet driven woodwind instru-

ment. When using TMM to model the Xiao in Lan and

Waltham (2016), the end-holes and the open end were

treated together as a radiation impedance, which was

obtained through measurement instead of modeling. The

drawback of this approach is that it requires a measurement

for each new instrument geometry.

Instead, the back end-holes can be approximated using

an equivalent acoustic lumped model with a TM. As the

dimensions of the two holes are nearly identical, they can be

modeled as two parallel toneholes with the same parameters,

which means doubling the series impedance and halving the

shunt impedance. However, from a comparison of the mea-

surement and modeling results, an empirical factor of 1/2.2

for the shunt impedance was found to produce a better fit.

The use of this factor is substantiated given the lack of any

precise analysis of this hole configuration and also because

mutual radiation between the two holes, which is taken into

account, will likely be lower for this hole configuration

compared to two axially adjacent holes.

D. Membrane hole

The equations of motion and the acoustic impedance

for the dizi membrane are derived by Tsai (2003). The wrin-

kled membrane sealing on the tonehole can be modeled as a

mass-spring system, and its impedance can be expressed as

Zmem ¼ 1

S2m
Rm þ jmðx2 � x2

mÞ
x

� �
; (13)

where m is the membrane mass, Rm is its mechanical damp-

ing coefficient, and xm ¼ 2pfm is the resonant radian fre-

quency. Then the membrane hole can be modeled using a

closed-hole TM. In this model, the closed-hole shunt imped-

ance is considered in series with the membrane impedance,

which captures the acoustic behavior of the membrane with-

out accounting for mutual radiation interactions between the

membrane hole and other openings.

Tsai (2003) emphasizes that both the resonance fre-

quency and damping coefficient of the membrane undergo

changes before and after impedance measurement. Due to

fluctuations in membrane tension over time, the measured

resonance frequency could exhibit variations of up to 15%

between the initial and subsequent measurements. This vari-

ability has implications for accurately assessing the mem-

brane’s influence, revealing its inherent instability. Musicians

playing the dizi can distinctly perceive the instability in the

membrane’s condition during their performances. Therefore,

the membrane parameters were empirically derived by com-

paring the measurements made with the membrane attached

to the corresponding TMMI model results, with the best fit

achieved using fm ¼ 4 kHz, m ¼ 8� 10�7 kg, and

R ¼ 3:5� 10�3kgs�1. These values fall within the mem-

brane parameter ranges reported in Tsai (2003).

In subsequent analyses, the membrane hole without

membrane (WOM) is treated as a standard closed hole

(closed with Blu-Tack during measurements). When the

membrane is attached [referred to as “with membrane”

(WM)], the closed-hole shunt impedance is considered in

series with the membrane impedance, assuming no mutual

radiation between the membrane hole and other openings.

E. Embouchure hole refinements

The embouchure hole of the dizi serves as the input,

with the short duct between the cork and the embouchure

hole and the downstream main duct connected in parallel. In

addition, the measurement system imposes a discontinuity at

the flute headjoint and alters the measured input admittance,

as noted by Dickens (2007). Therefore, a small length cor-

rection of te ¼ � 1.7mm (associated with the impedance Ze
shown in Fig. 5) is applied to the embouchure hole to

achieve closer fitting of admittance maxima. Apart from

that, a series resistance, Remb ¼ ð1� 10�5 Hz�1ÞfZc, and a

shunt conductance, Gemb ¼ ð1� 10�4 Hz�1Þf=Zc, are added
at the input to achieve more accurate depth and height of

admittance maxima and minima, respectively. Similar

empirical refinements were employed by Dickens (2007),

assuming that the turbulence effects near discontinuities can

be described as a dissipative process. Figure 5 provides an

equivalent circuit representation for the refined model of the

embouchure hole and the small duct coupled with the

impedance of the downstream system. Together, we refer to

the embouchure hole and the small duct as the upstream

branch. Zb is the impedance of the small duct. Zw is the cork

terminal impedance, which is approximated as being infi-

nite, corresponding to a rigid wall. Zd is the impedance of

the downstream main duct. Zt, Zm, and Zi represent the

impedances associated with the actual tonehole height t,
matching volume length correction tm, and inner length cor-

rection ti, respectively (see details in Sec. 2 in Appendix B).

F. Metrics

In this section, we define several metrics that can be

determined from admittances and used to help evaluate an

instrument’s response or the performance of modeling by

TMM and TMMI.

FIG. 5. Equivalent circuit representations for the refined model of the

upstream branch coupled with the downstream branch.
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The frequencies that contribute to the sounding pitch of

jet-blown instruments correspond to the maxima of the input

admittance magnitude characteristics. Here, the frequency-

dependent normalized admittance is defined in terms of admit-

tance as Yin. The frequencies of the admittance peaks influence

the tuning, while their magnitudes are a factor that influences

playability. The harmonicity of the resonator is related to the

frequency difference between the peak frequencies, given by

Df ¼ 1200� log2
fn
nf1

� �
; (14)

where fn is the evaluated peak frequency, f1 is the first peak
frequency, and Df is measured in musical cents, with 1200

cents representing the value of 1 octave. The expected har-

monicity for the ideal case is Df ¼ 0.

The cutoff frequency of the oTHL can be estimated

according to the reflection function (Petersen et al., 2020a).
The reflection function can be seen as the transfer function

between incident and reflected waves observed at the input

of the resonator, which for admittance is defined as

R ¼ Yin � 1

Yin þ 1
: (15)

Then the cutoff frequency is defined as the lowest frequency

at which (Petersen et al., 2020a)

jRcutoff j
jRjmax

¼ 0:5: (16)

Additionally, we utilize the normalized mean square error

(NMSE), expressed in dB, to assess the difference in admit-

tance, along with the normalized cross correlation (NCC) to

evaluate the similarity of admittance. They are expressed by

NMSEðŶ in; YinÞ ¼ 20 log10
eH � e
YH
in � Yin

 !
(17)

and

NCCðŶin; YinÞ ¼
jŶH

in � Yinj
jjŶ injj2 � jjYinjj2

; (18)

where Yin are the measured data, Ŷ in are the simulated data,

and e ¼ Ŷ in � Yin denote the error. Additionally, the metrics

are computed with a column-vector representation of the

data, and NCC reaches 1 when the two quantities match per-

fectly. Note that both metrics operate on complex numbers,

but their final results are real, and the superscript H denotes

the Hermitian transpose operator.

IV. RESULTS

A. Comparison of measurements and models

The main bore of the studied F-key bangdi is not a perfect
cylinder but has a slightly conical shape, with the downstream

cross section being slightly smaller than the upstream one (see

Table I). The geometry of the dizi varies between instruments,

as they are naturally crafted from bamboo. We model the F-

key bangdi, both with and without the membrane, using the

same fingerings as in the measurements.

Figure 6 shows an example result of normalized input

admittance magnitude and phase for the fingering

XXXXOO for both WM and WOM, obtained through mea-

surement, TMM, and TMMI. From the observation, TMMI

provides a more accurate representation of the peak shape

around 2.5 kHz compared to TMM, indicating that the inclu-

sion of mutual radiation impedance in TMMI is a valid

enhancement.

A quantitative comparison of TMM and TMMI with the

measurement results for all fingerings, both WM and WOM,

based on the NMSE and NCC, is presented in Fig. 7. The

frequency band used for analysis is [100, 6000] Hz. As

expected, TMMI generally achieves higher accuracy in

cases with more open holes, which is reflected in the results.

For both WM and WOM, TMMI consistently shows lower

NMSE and higher NCC values than TMM, except for the

fingering XXXXXX. This exception may be attributed to an

insufficient representation of the end-holes’ model, as the

only open holes in this fingering are the end-holes.

Moreover, the improvement is more pronounced in the

absence of the membrane, indicating that the simplified

membrane model may be insufficient.

B. Membrane influence

As a particular component of the dizi, the wrinkled

membrane that covers the membrane hole is believed to

contribute to the unique sound character of the dizi. To study
the influence of the membrane from a linear perspective, the

measured input admittance curves with and without the

membrane are compared, as shown in Fig. 8, corresponding

to the XXXXXX fingering.

FIG. 6. Normalized input admittance magnitude and phase of fingering

XXXXOO for WOM and WM.

J. Acoust. Soc. Am. 157 (5), May 2025 Luan et al. 3841

https://doi.org/10.1121/10.0036742

 20 M
ay 2025 17:48:35

https://doi.org/10.1121/10.0036742


It can be seen that the maximum admittance peak values

and their frequencies decrease for the first octave when the

membrane is attached, which are referred to as “admittance

reductions” and “resonance shifts” (Tsai, 2003). The degree of

the resonance shift and admittance reduction is related to the

standing-wave pressure profile at the membrane hole location.

Using a reference volume velocity value of 1 at the input

(embouchure hole), the TMM is used to generate the pressure

standing wave patterns to verify this relationship. Some results

from this analysis are presented in Fig. 9. By dividing the dizi
into several small segments (the length interval is less than

1.2 cm for each segment), the relative pressure of each position

can be calculated.

Figure 9 provides four different characteristics that can

be used to assess the resonance shifts and admittance reduc-

tion effects due to the membrane. [A similar plot to Fig. 9

can be found in Fig. 9 of Luan et al. (2022). However, the
legend labels for the second graph in Fig. 9 of Luan et al.
(2022) are reversed; please refer to the corrected legend pro-

vided in this paper.] The frequencies and magnitudes of the

first two maxima in the admittance curve are extracted for

all fingerings for both WM and WOM. From the overall

comparison and analysis in Fig. 9, the curves for C5-B6 (the

first peaks) show an upward trend in resonance shift (top

left) and admittance reduction (bottom left), while the

curves for C6-B7 (the second peaks) exhibit a downward

trend in both. When examining the pressure levels at the

membrane in the bottom right plot (with the pressure nor-

malized by the maximum pressure along the bore for the

corresponding frequency, on a logarithmic scale, so that the

value of 0 represents the maximum pressure), it is observed

that the first peaks consistently show high pressure levels,

with a slight increase in pressure as more finger-holes are

opened. This is due to the fact that the first resonance peak

generally features a pressure antinode at the center, position-

ing the membrane close to this region of maximum pressure.

In contrast, the second peaks typically feature a pressure

node at the center. As more finger-holes are opened, the

membrane position shifts closer to this node, resulting in a

noticeable reduction in pressure levels. Based on the obser-

vations from the top left, bottom left, and bottom right plots,

there is revealed a positive correlation between the sound

pressure level at the membrane hole and the extent of

resonance shift and admittance reduction. Additionally, from

the top left plot, we observe that the membrane can shift the

peak frequencies by 20–70 cents compared to when the mem-

brane hole is sealed with Blu-Tack. Note that Ng et al. (2021)
reported that a shift of less than 5 cents was found when they

compared the membrane-attached hole to one sealed with stiff

adhesive tape, and this range falls within the just noticeable

difference. On the other hand, it can be found from the top

right plot that the octave harmonicity (expected value of

1200 cents) shifts more for fingerings with more openings.

Moreover, the peaks in the input admittance become more har-

monically aligned when the membrane is attached, which sug-

gests a potential improvement in tuning precision. It is worth

mentioning that those trends observed in Fig. 9 could poten-

tially impact playing behavior. However, further experiments

with the dizi being played would be necessary to gain a deeper

understanding of the effects.

C. Upstream branch and cutoff frequencies

The input admittance of the flute exhibits a sudden

weakening around a specific frequency, attributed to the

influence of the upstream branch as outlined in Smith et al.
(2003). This phenomenon, known as the Helmholtz shunt,

similarly occurs in the dizi. In order to study the influence of

the upstream branch, Fig. 10 compares the input admittance

and reflection function curves modeled by TMMI, distin-

guishing between cases with the upstream branch (WUB)

and without the upstream branch (WOUB) for the fingering

XXXOOO, with no membrane attached. Looking at the

region highlighted in pink, the upstream branch leads to a

FIG. 7. The NMSE (top) and NCC (bottom) of the input admittance for all

fingerings, comparing TMM and TMMI with measurement results for both

WOM (left) and WM (right).

FIG. 8. Measured normalized admittance magnitude for XXXXXX.

FIG. 9. (Top left) Frequency offset for the first two peaks due to the mem-

brane. (Top right) Frequency intervals of the peaks for WM and WOM.

(Bottom left) Admittance magnitude shifts due to the membrane for the first

two peaks. (Bottom right) Normalized sound pressure at the membrane hole

center for the first two peaks. The first three graphs use measured data; the

last graph is calculated using TMM.
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decrease in magnitude after 5 kHz, which is the Helmholtz

shunt effect.

The cutoff frequencies for the two cases, as determined

from Eq. (16), are shown by dotted lines in the reflection func-

tion curves. It can be seen that the upstream branch in flute

instruments results in a more complex reflectance characteris-

tic, which makes it harder to identify the cutoff frequency. To

better understand the pressure distribution along the bore, we

compute pðx; f Þ, the pressure response along the main bore

(with x ¼ 0 at the embouchure hole), to a unit volume velocity

excitation at the embouchure hole, uð0; f Þ ¼ 1, using the

TMM, based on the same algorithm as used for the bottom

right plot in Fig. 9. This representation in the frequency

domain can be interpreted as the impulse response in the time

domain. The spectrum maps of WOM, for fingerings

XOOOOO and XXXXXO, are shown as examples in Fig. 11.

The cutoff frequencies that are found using Eq. (16) are also

marked in the figure. We know that the oTHL exhibits high-

pass behavior, meaning that below the cutoff frequency, most

sound cannot propagate to the downstream end (Benade and

Kouzoupis, 1988; Benade and Lutgen, 1988). The pressure

propagation behavior can be observed through the color

changes in Fig. 11, which correspond to pressure levels in dB.

Between the cutoff frequencies estimated from WUB and

WOUB, all pressure components appear to decay significantly,

by at least 15 dB, before the end of the air column. On the

other hand, all pressure components above the cutoff frequen-

cies estimated from WOUB have significant levels extending

all the way to the end of the instrument. These analyses suggest

that when evaluating the cutoff frequency of flute instruments,

it is useful to remove the upstream branch so as to isolate the

influence of the tonehole lattice.

We then extract the cutoff frequencies for all fingerings

under both WOM and WOUB conditions, as shown in

Fig. 12. Notably, the cutoff frequencies for the first two

fingerings are significantly higher than for the others. We sus-

pect that this distinction in cutoff frequency behavior results

from the interaction between the four always-open end-holes,

or end-hole lattice (EHL), and the finger-hole lattice (FHL).

Examining Fig. 11, we observe that for the XOOOOO finger-

ing (many open finger-holes), the pressure components below

the WOUB cutoff frequency are primarily influenced by the

FHL, whereas for the XXXXXO fingering (most finger-holes

closed), the pressure components below the WOUB cutoff fre-

quency propagate up to and into the EHL. Given the different

hole spacings in the two lattices, as well as the distance

between the EHL and FHL, it is reasonable to expect the

observed difference in cutoff frequencies shown in Fig. 12. We

also expect that the difference in cutoff frequencies will influ-

ence the dizi’s radiation and tonal characteristics, or timbre,

though the extent of this impact and its perceptual significance

remain topics for future investigations.

D. Input admittance analysis

In order to analyze the overall characteristics of the

dizi, the measured input admittance magnitudes, as well as

the extracted peak frequencies, magnitudes, and harmonic-

ities for all fingerings, both WM and WOM, are shown in

Fig. 13. Looking at the left panels of Fig. 13, the F-key

FIG. 10. Normalized admittance magnitude and reflection coefficient mag-

nitude for fingering XXXOOO (WOM).

FIG. 12. The cutoff frequency from WOM and WOUB for all fingerings.

FIG. 11. Pressure frequency response to a unit impulse of volume velocity

for WOM for fingering XXXXXO (top) and XOOOOO (bottom). The fre-

quency axis is in logarithmic scale. The cutoff frequencies extracted from

WUB and WOUB using Eq. (16) are indicated by dashed lines. Tonehole

positions are marked by circles on the right, with gray for open holes.
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bangdi can be divided into three frequency bands according

to the characteristics of the input admittance curve: less than

2.3 kHz, 2.3–5 kHz, and greater than 5 kHz. In the first band

below 2.3 kHz, the envelope of the input admittance curve

drops relatively slowly. The frequency of the second band is

2.3–5 kHz, and the peak values of the admittance are rela-

tively reduced, which can be explained as the effect of the

cutoff frequency of the oTHL and agrees well with the cut-

off frequency results in Fig. 12. The irregularity around

3.5 kHz is due to the resonant frequency of the membrane,

as explained in Sec. IVB. In the third band above 5 kHz, the

input admittance curve suddenly becomes flat for each fin-

gering. This behavior is characteristic of flute instruments

and is related to the Helmholtz shunt effect, as explained in

Sec. IVC. The admittance peak frequencies are depicted in

the middle panels, while the harmonicity between the first

and second peaks and the second and third peaks, computed

according to Eq. (14), is presented in the right panels. The

results indicate that the membrane affects the height of the

admittance peak that sustains the oscillation for the fingering

OOOOOO, as its frequency is near the resonance frequency

of the wrinkled membrane. Additionally, the membrane

appears to affect the harmonicity of A7/A8 and B7/B8,

which also lie near the membrane’s resonance frequency.

Overall, however, the presence of the membrane generally

improves harmonicity (see the right panels).

V. CONCLUSION

In this study, we investigate the linear acoustical behav-

ior of the dizi resonator. An acoustical model of each com-

ponent, including the drilled toneholes, back end-holes (two

radially positioned holes), membrane hole, and the coupling

with the upstream branch of the dizi, is presented. The input
admittance of the dizi is measured and modeled using TMM

and TMMI, cascading the acoustical models of each compo-

nent. The comparison between TMMI, TMM, and the mea-

sured data indicates reasonable modeling accuracy. TMMI

outperforms TMM in both NMSE and NCC, due to its

consideration of external radiation interactions. Since the

geometry of each dizi varies, this acoustical modeling can

serve as a useful tool for dizi makers, allowing them to

assess the tuning of each instrument by inputting its specific

geometric parameters.

Acoustical analyses of the dizi resonator are then con-

ducted, considering each individual component and the

entire instrument as a whole. The F-key bangdi can be

divided into three frequency bands according to the char-

acteristics of the input admittance curve: less than 2.3

kHz, 2.3–5 kHz, and greater than 5 kHz. Attaching the

membrane to the dizi shifts the admittance curve peaks to

lower frequencies and reduces their magnitude. The mem-

brane’s influence on tuning and harmonicity varies,

depending on the fingering. In general, its presence

enhances harmonicity; however, when the frequency

approaches the resonance of the wrinkled membrane, the

resulting interaction can lead to deviations in both har-

monicity and tuning accuracy. It is possible that instru-

ment makers are aware of this effect and take it into

consideration when designing and positioning the tone

holes, potentially leveraging the membrane’s impact to

enhance tuning accuracy and harmonicity.

When evaluating the cutoff frequency of flute instru-

ments, the upstream branch can be removed in order to

more clearly understand the influence of the tonehole lattice.

The cutoff frequencies exhibit two distinct groups across

different fingerings, with the first two fingerings being sig-

nificantly higher than the others. This is likely due to the

presence of two oTHLs: the FHL and EHL. Additionally,

we suggest that greater attention may need to be given to the

acoustic function of the end-holes, as they may influence the

dizi’s radiation pattern and timbre.

Future work could focus on developing more accurate

numerical models for cylindrical mutual radiation and back-

end holes. Additionally, a geometry optimization algorithm

based on input admittance could assist in instrument design

and manufacturing. The current acoustical model may also

be applied to physics-informed sound synthesis of the dizi.

FIG. 13. (Left) Normalized input admittance (linear scale) for all fingerings. (Middle) Frequency and magnitude (in dB) of the first three peaks of the nor-

malized input admittance. (Right) Harmonicity between the first three peaks. (Top) WOM. (Bottom) WM. All results are based on measurement data.
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Furthermore, a quantitative analysis of tone color through

radiated sound across different fingerings could enhance our

understanding of the FHL and EHL. Another interesting

direction is to study the nonlinear dynamics of the mem-

brane, which is a distinctive feature of the dizi and plays a

crucial role in shaping its characteristic timbre.
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APPENDIX A

A. Dimensions of the bangdi in F

Table I provides the dimensions of the F-key bangdi
used in this study, for the bore and toneholes, respectively.

The center of the embouchure hole is regarded as the origin

of the axial position, with the direction from upstream to

downstream as the positive direction. The sequence of the

toneholes is embouchure hole, membrane hole, six finger-

holes, back end-holes, and two front end-holes. It is worth

noting that the dimensions for the back end-holes are for a

single hole, as the shapes of the two holes are identical with

the same axial position. The bore radii are determined from

their diameters. Since the tonehole surfaces are not perfect

circles, we measure the lengths of the semi-major axis (mul-

tiplied by 2) and the semi-minor axis (multiplied by 2) of

the ellipse and calculate the equivalent radius of a circle by

ensuring that the areas are equal.

APPENDIX B

1. Propagation constant in a cylindrical tube

The following thermodynamic constants are given

(Keefe, 1984) for wave propagation in air:

q ¼ 1:179ð1� 0:003 35DTÞ kgm�3;

l ¼ 1:846 � 10�5ð1þ 0:0025DTÞ kg s�1 m�3;

c ¼ 1:4017ð1� 0:000 02DTÞ;
Pr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:8410ð1� 0:000 02DTÞ

p
;

c ¼ 3:4723 � 102ð1� 0:000 166DTÞ ms�1: (B1)

Here, l is the coefficient of viscosity, c is the ratio of spe-

cific heats, Pr is the Prandtl number, and c is the wave

velocity. These values are evaluated at T0 ¼ 300K

(26.85 �C) and are accurate within 610K of that tempera-

ture. The temperature difference relative to T0 is DT.
The expressions of the attenuation coefficients shown in

Eq. (3) are

ax ¼ 1

a

ffiffiffiffiffiffiffiffiffiffi
xl
1qc2

r
1þ c� 1ffiffiffiffiffi

Pr

p
� �

; (B2)

ac ¼ x2l
2qc3

4

3
þ lB

l
þ c� 1

Pr

� �
; (B3)

am ¼
X
�

ða�kÞm
k

2xs�
1þ ðxs�Þ2

; (B4)

where lB is the bulk viscosity, k is the wavelength, s� is the
relaxation times (� indicates the type of gas molecule,

dependent on humidity), and ða�kÞm is the maximum

absorption per wavelength associated with the �-type relaxa-
tion process. The expressions of these terms can be found in

Van Walstijn et al. (2005).
The following default physical parameters are used in the

modeling: The room temperature is 20 �C, the relative room

humidity is 40%, and the atmospheric pressure is 1013hPa.

2. Various impedances in TMM

The series impedance Za of the open and closed tone-

holes can be regarded as a small negative acoustic mass,

Zðc=oÞ
a ¼ j tanðktðc=oÞa ÞZc � jktðc=oÞa Zc; (B5)

where the superscripts c and o stand for closed and open,

respectively, k ¼ 2pf=c is the lossless wavenumber, f is the
frequency, Zc ¼ qc=pa2 is the characteristic impedance of

the bore radius a, and q and c represent the density and the

velocity of sound in air.

The calculation of the shunt impedance Zs can be rela-

tively complicated. For the closed hole, it is mainly repre-

sented by the acoustic compliance (Nederveen, 1969), given

by Nederveen et al. (1998),

TABLE I. Bore and tonehole dimensions: x is the axial coordinate, a the bore radii, and b the tonehole radii. The height of all tone holes, t, is 4 mm.

Bore

(mm)

x �10.6 0 17.4 42.5 57.3 82.5 98.2 120.3 163.9 187.4 232.0 257.8 330.4 334.3 334.3 344.8

a 7.2 7.2 7.2 7.3 7.3 7.1 7.1 7.1 7.0 7.0 6.8 6.6 5.8 6.2 5.8 5.9

Tonehole

(mm)

x 0 74.4 132.1 150.5 173.5 200.1 217.3 242.5 287.6 299.0 314.9

b 4.7 3.9 4.4 4.4 4.4 4.3 4.5 4.3 4.4 4.3 4.4
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ZðcÞ
s ¼ j kti � cot kðtþ tmÞ½ �	 


Zc; (B6)

where ti and tm are the inner length and matching volume

length correction, respectively.

Compared with the closed hole, Z
ðoÞ
s includes the radia-

tion impedance, which can be expressed by the radiation

length correction tr (Dalmont et al., 2002):

ZðoÞ
s ¼ j kti þ tan kðtþ tm þ trÞ½ �	 


Zc: (B7)

The expression of ta; ti is given from (Lefebvre and

Scavone, 2012)

tðcÞa ¼ �0:12� 0:17tanhð2:4t=bÞ½ �bd2; (B8)

tðoÞa ¼ �0:35þ 0:06tanhð2:7t=bÞ½ �bd2; (B9)

with d ¼ b=a and b the tonehole radius. The variable ti
can be expressed with a multiplicative factor, Gðd; kaÞ
¼ ½1þ HðdÞIðkaÞ�, to account for frequency dependence,

t
ðc=oÞ
i ¼ ð0:822� 0:095d� 1:566d2 þ 2:138d3

� 1:640d4 þ 0:502d5ÞbGðd; kaÞ; (B10)

where

HðdÞ ¼ 1� 4:56dþ 6:55d2 (B11)

and

IðkaÞ ¼ 0:17kaþ 0:92ðkaÞ2 þ 0:16ðkaÞ3 � 0:29ðkaÞ4:
(B12)

The matching volume length correction of the

unflanged hole is shown here (Nederveen et al., 1998),

tðo=cÞm ¼ bd

1þ 0:207d3
; (B13)

while the tm used in the modeling of the dizi in this paper

follows Eq. (12).

The radiation length correction of cylindrical flanges is given

in Dalmont et al. (2001) and Lefebvre and Scavone (2012), which
could be used for toneholes drilled through a thick wall:

tr ¼ 0:8216b� 0:47b b=ðaþ tÞ½ �0:8: (B14)

Since the wall thickness of the dizi is non-negligible, the
end correction ZL

r for a tube with an infinite flange is derived

in Norris and Sheng (1989) and Dalmont et al. (2001):

ZL
r ¼ ð1þ RcÞ=ð1� RcÞ½ �Zc;

Rc ¼ �jR1je�2jkd1 ;

d1 ¼ 0:8216a 1þ ð0:77kaÞ2
1þ 0:77ka

" #�1

;

jR1j ¼ 1þ 0:323ka� 0:077ðkaÞ2
1þ 0:323kaþ ð1� 0:077ÞðkaÞ2 : (B15)

3. Matrices B, Z, and Y in TMMI

B stands for the acoustic mass of the open holes, which is a

diagonal matrix, corresponding to the impedance with the length

t and length corrections ti and tm. Its ith diagonal element is

Bii ¼ j kti;ii þ tan kðtii þ tm;iiÞ
� �	 


Zc;ii: (B16)

The radiation matrix Z includes both the self-radiation

and mutual radiation impedance, with the diagonal elements

representing self-radiation and the off-diagonal elements

representing mutual radiation.

The self-radiation impedance of the ith opening for a

tonehole is

Zii ¼ j tanðktr;iiÞZc;ii: (B17)

The self-radiation impedance of the end (i ¼ N) follows Eq.
(B15): Zii ¼ ZL

r .

By assuming the open ends radiate as monopoles, the

mutual radiation impedance Zij (when i 6¼ j) is (Pritchard, 1960)

Zij ¼ jkqc
e�jkdij

�pdij
; (B18)

where dij is the distance between open ends i and j, � is a factor
corresponding to the radiation space, � ¼ 2 for a half space,

and � ¼ 4 for a complete space. As mentioned in Lefebvre

et al. (2013), empirically it is difficult to determine the best

approximation for the radiation impedance. They suggest to

use � ¼ 2 when the effect of interaction is especially impor-

tant. In this paper, we use � ¼ 2 between all axially distributed

holes and � ¼ 4 between axially distributed holes and the end.

However, given the unique structure of the dizi with two

radially distributed back end-holes, we need to define the

mutual radiation impedance differently. We treat the back end-

holes as a single component, as discussed in Sec. IIIC. In this

scenario, the mutual radiation impedance between these holes

and other openings is increased due to the double radiation

area; hence, we assume � ¼ 1. Additionally, the mutual radia-

tion between them is not taken into account because their

mutual radiation effects have already been effectively consid-

ered through self-radiation. This implies that, from a physical

standpoint, the shunt impedance includes contributions from

both self-radiation and mutual radiation.

The admittance matrix Y is related to the TM between

two openings, corresponding to all the cascaded components

between the two holes’ shunt impedance Zs or the end radia-

tion impedance ZL
r ,

pi
ui

� �
¼ Ai Bi

Ci Di

� �
piþ1

uiþ1

� �
; (B19)

which can be written in the form of an admittance matrix,

ui
uiþ1

� �
¼ Yi Yl;i

Yl;i Y
0
i

� �
pi
piþ1

� �
; (B20)
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where the relationship between the parameters is given by

Yi ¼ Di=Bi, Y
0
i ¼ Ai=Bi, and Yl;i ¼ �1=Bi, which assumes

that AiDi � BiCi ¼ 1, the condition for reciprocity.

1The naming convention for the key of a dizi is such that the note produced
with all finger-holes covered corresponds to the dominant or major fifth

of the key. Thus, for a dizi in the key of F, a C5 (523.25Hz) sounds when

all finger-holes are covered.
2Strictly speaking, the expression for Zc is an approximation, but it is suffi-

ciently accurate for our modeling purposes.
3Available at https://github.com/garyscavone/acmt.
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