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Abstract

The clarinet tonehole model developed by Keefe [1981] is parametrized as the cascade of a series
reactance, a shunt complex impedance, and another series reactance. The transmission matrix description
of this two-port tonehole model is given by the product of the transmission matrices for each of the
three impedances. For implementation in a digital waveguide model, these ”lumped” parameters of the
Keefe tonehole model must be converted to traveling-wave scattering parameters. Such formulations
have recently appeared in the literature [Välimäki et al., 1993] based on a three-port digital waveguide
junction loaded by an inertance as described in Fletcher and Rossing [1991]. The scattering parameters
of any high quality tonehole model are frequency dependent and therefore require a filter-design problem
to be solved. This paper investigates a ”four-filter” form for the Keefe tonehole scattering junction, as
well as an improved one-multiply, one-filter three-port digital waveguide junction implementation.

1 THE TWO-PORT TONEHOLE MODEL

Keefe [1981, 1990] presents a model of a single woodwind tonehole unit in terms of a symmetric T section
transmission matrix of series and shunt impedance parameters, as shown in Fig. 1. The series impedance
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Figure 1: T section transmission-matrix representation of the tonehole.

terms, Za, result from an analysis of anti-symmetric pressure distribution, or a pressure node, at the tonehole
junction. In this case, volume flow is symmetric and equal across the junction. The shunt impedance term,
Zs, results from an analysis of symmetric pressure distribution, or a pressure anti-node, at the tonehole, so
that pressure is equal across the junction. The transmission matrix which results under this analysis is given
by [
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Based on the approximation that |Za/Zs| � 1, Eq. (1) can be reduced to the form[
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which is the basic tonehole unit cell given by Keefe for transmission-matrix calculations. The values of Za

and Zs vary according to whether the tonehole is open (o) or closed (c) as

Z(o)
s = Z0(a/b)2 (jkte + ξe) , (3a)

Z(c)
s = −jZ0(a/b)2 cot(kt), (3b)

Z(o)
a = −jZ0(a/b)2kt(o)

a , (3c)
Z(c)

a = −jZ0(a/b)2kt(c)a . (3d)

Definitions and descriptions of the various parameters in Eqs. (3a) – (3d) can be found in [Keefe, 1990]. The
series impedance terms are characterized as negative inertances, which imply negative length corrections on
both sides of the tonehole. If adjacent tonehole interactions are negligible, the single tonehole unit can be
used to model an entire tonehole lattice as well. Internal tonehole interactions, which in general are much
greater than external interactions, can be considered insignificant if the holes are separated by more than
two times the main bore diameter [Keefe, 1983].

To render these relationships in terms of traveling-wave scattering parameters, it is necessary to transform
the plane-wave physical variables of pressure and volume velocity to traveling-wave variables as[
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where Z0 is the characteristic impedance of the cylindrical bore, which is equal on both sides of the tonehole.
Waveguide pressure variables on both sides of the tonehole are then related by[
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where
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calculated using Eqs. (1) and (4) and then making appropriate simplifications for |Za/Zs| � 1. Figure 2
depicts the waveguide tonehole two-port scattering junction in terms of these reflectances and transmittances.
This is a “four-filter” structure [Scavone and Smith, 1997]. A one-filter form is also possible [Smith and
Scavone, 1997].
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Figure 2: Digital waveguide tonehole two-port scattering junction in four-filter form.

The two-port waveguide tonehole scattering junction of Fig. 2 can be efficiently implemented using
digital waveguide techniques [Smith, 1992]. For such an implementation, it is necessary to convert the
continuous-time reflectances and transmittances to appropriate discrete-time filter representations. In this
study, use is made of an equation-error minimization technique [Smith, 1983, p. 47] which matches both
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frequency response magnitude and phase. This technique is implemented in MATLAB by the function
invfreqz. Figure 3 plots the responses of second-order discrete-time filters designed to approximate the
continuous-time magnitude and phase characteristics of the reflectance for closed and open toneholes. The
closed-hole reflectance is essentially a highpass filter with a single “resonance” at the first closed-tonehole
cavity resonance frequency. Thus, low-frequency wave components are only slightly affected by the presence
of the closed hole. High-frequency components near this resonance, however, may be significantly reflected
in the presence of the closed hole. The open-hole reflectance has a lowpass characteristic, with its single
“anti-resonance” corresponding to the first open-tonehole branch resonance frequency. Low-frequency wave
components are thus strongly reflected at an open tonehole. The open-hole discrete-time filter was designed
using Kopec’s method [Smith, 1983, p. 46], in conjunctionwith the equation-error method. That is, a one-pole
model Ĥ1(z) was first fit to the continuous-time response, H(ejΩ). Subsequently, the inverse error spectrum,
Ĥ1(ejΩ)/H(ejΩ) was modeled with a two-pole digital filter, Ĥ2(z). The discrete-time approximation to
H(ejΩ) was then given by Ĥ1(z)/Ĥ2(z). The first step of this design process captures the peaks of the
spectral envelope, while the second step models the “dips” in the spectrum. These particular calculations
were performed for a tonehole of radius b = 4.765 mm, minimum tonehole height tw = 3.4 mm, tonehole
radius of curvature rc = 0.5 mm, and air column radius a = 9.45 mm. The results of Keefe [1981] were
experimentally calibrated for frequencies less than about 5 kHz, so that the continuous-time responses evident
in the figures are purely theoretical above this limit. Therefore, the discrete-time filter design process was
weighted to produce better matching at low frequencies.
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Figure 3: Two-port tonehole junction closed-hole and open-hole reflectances, derived from Keefe [1981] shunt
and series impedance parameters. (top) Reflectance magnitude; (bottom) Reflectance phase.

Figure 4 plots the reflection function calculated for a six-hole flute bore, as described in [Keefe, 1990].
The upper plot was calculated using Keefe’s frequency-domain transmission matrices, such that the reflec-
tion function was determined as the inverse Fourier transform of the corresponding reflection coefficient.
This response is equivalent to that provided by Keefe [1990], though scale factor discrepancies exist due to
differences in open-end reflection models and lowpass filter responses. The lower plot was calculated from a
digital waveguide model using two-port tonehole scattering junctions. Differences between the continuous-
and discrete-time results are most apparent in early, high-frequency, closed-hole reflections. The continuous-
time reflection function was low-pass filtered to remove time-domain aliasing effects incurred by the inverse
Fourier transform operation and to better correspond with the plots of [Keefe, 1990]. By trial and error,
a lowpass filter with a cutoff frequency around 4 kHz was found to produce the best match to Keefe’s re-
sults. The digital waveguide result was obtained at a sampling rate of 44.1 kHz and then lowpass filtered
to a 10 kHz bandwidth, corresponding to that of [Keefe, 1990]. Further lowpass filtering is inherent from
the first-order Lagrangian, delay-line length interpolation technique used in this model [Välimäki, 1995].
Because such filtering is applied at different locations along the “bore,” a cumulative effect is difficult to
accurately determine. The first tonehole reflection is affected by only two interpolation filters, while the
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Figure 4: Reflection functions for note G (three finger holes closed, three finger holes open) on a simple
flute (see [Keefe, 1990]). (top) Transmission-line calculation; (bottom) Digital waveguide two-port tonehole
implementation.

second tonehole reflection is affected by four of these filtering operations. This effect is most responsible for
the minor discrepancies apparent in the plots.

2 THE THREE-PORT TONEHOLE MODEL

A tonehole junction may also be represented in the digital waveguide context by a lossless three-port junction.
The three-port junction models sound wave interaction at the intersection of the air column and tonehole, as
determined by conservation of volume flow and continuity of pressure. Wave propagation within the tonehole
itself can subsequently be modeled by another waveguide and the reflection/transmission characteristics at
its end by an appropriate digital filter. This tonehole model is then attached to the appropriate branch of the
three-port junction. The bore characteristic admittance Y0 is equal on either side of the junction, while the
real tonehole characteristic admittance is Y0th. Because pressure is assumed constant across the three-port
junction, this model neglects the series impedances of Fig. 1.

The three-port scattering junction equations for pressure traveling-wave components can be determined
as

p−a (t) = r0p
+
a (t) + [1 + r0] p−b (t)− 2r0p

−
th(t) (7a)

p+
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−
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=
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. (8)

A one-multiply form of the three-port scattering equations is given by

p−a (t) = p−b (t) + w (9a)
p+

b (t) = p+
a (t) + w (9b)

p+
th(t) = p+

a (t) + p−b (t)− p−th(t) + w, (9c)

where
w = r0

[
p+

a (t) + p−b (t)− 2p−th(t)
]
. (10)

An implementation of these equations in shown in Fig. 5.
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Figure 5: Tonehole three-port scattering junction implementation in one-multiply form.

To complete the digital waveguide three-port tonehole implementation, it is necessary to determine
an appropriate model for the tonehole section itself, and then attach this model to the junction. It is
possible to implement the tonehole structure as a short, fractional delay, digital waveguide and apply an
appropriate reflectance at its end. Depending on the tonehole geometry, the reflectance at the end of an
open tonehole may be determined from either a flanged or unflanged [Levine and Schwinger, 1948] pipe
approximation. The far end of a closed tonehole is appropriately modeled by an infinite impedance (or a
pressure reflection without inversion). Given typical tonehole heights, however, a lumped reflectance model
of the tonehole, which accounts for both the propagation delay and end reflection is more appropriate and
easily implemented with a single low-order digital filter. In this sense, incoming tonehole pressure p−th(t)
is calculated from the outgoing tonehole pressure p+

th(t) and the lumped tonehole driving point reflectance,
while the corresponding pressure radiated from the open tonehole is given by convolution of p+

th(t) with
the lumped tonehole section transmittance. Figure 6 plots the reflection function obtained for the six-
hole flute bore implemented using digital waveguide three-port tonehole junctions. The lumped open-hole
reflectance incorporates an unflanged characteristic, while the closed-hole reflectance which best matches the
Keefe [1990] data includes no propagation delay within the side branch. Alternatively, the lumped tonehole
reflectance filters can be designed from the shunt impedance parameters of Eqs. (3a) and (3b), thus taking
advantage of the data of Keefe [1981]. The digital waveguide three-port tonehole junction implementation
presented here corresponds to the two-port model when series impedance terms are neglected. In general,
the series impedance terms are much less critical to the model performance than the shunt impedance, which
is demonstrated by the similarity of the results for both implementations. Further, the series terms have
more influence on closed-hole results than those for open holes [Keefe, 1981].
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Figure 6: Reflection function for note G (three finger holes closed, three finger holes open) on a simple flute
(see [Keefe, 1990]), determined using a digital waveguide three-port junction tonehole implementation.
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3 CONCLUSIONS

Current theoretical models of woodwind finger holes can be accurately implemented in the digital waveguide
domain. The two-port tonehole waveguide implementation requires four second-order filtering operations
per tonehole (details regarding a one-filter form are to be published in the proceedings of the 1997 IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics, Mohonk Mountain House, New
Paltz, NY). The three-port implementation requires one multiply and one filtering operation. The results
for both implementations are very similar, despite the fact that the three-port model neglects the series
impedance terms. A more complete and detailed analysis of this topic can be found in [Scavone, 1997].
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