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Abstract

The aeroacoustics of a whistle have been investigated using a physical model based on the lattice Boltzmann
methods (LBM) in two dimensions. The geometric data has been measured directly from a real whistle and
converted to a straightforward curved boundary in the LBM scheme with a relatively high resolution. A multiple
relaxation time (MRT) technique has been employed to maintain the numerical stability and consequently a more
realistic low viscosity can be used in the simulation. An absorbing boundary condition (ABC) has been used on
the four outside boundaries to simulate an open space. The exciting jet is generated from a rectangular jet channel
attached to the mouth of the whistle, where the velocity boundary is implemented by an ABC scheme with a
non-zero target velocity. The computation has been carried out efficiently using parallel computing based on GPU
devices with a speedup factor of about 20. The vortex motion in the regions around the labium that is essential for
sound production has been qualitatively observed in the simulations. These images are similar to those reported in
previous works based on experimental visualization and numerical simulations. Further, the sound spectrum and
frequency shift phenomenon under various blowing speeds has been presented.

1 Introduction

The sound production of aerodynamic whistles and
air-reed instruments, or the phenomenon of flow-excited
acoustic resonance in general, is subject to the interaction of
two closely integrated systems: the aerodynamic generator,
which includes an air jet impinging on a sharp edge (the
labium) acting as an acoustic dipole, and the ancillary
structure functioning as an acoustic resonator.

Depending on the sound generating mechanisms,
Chanaud [1] categorized aerodynamic whistles into three
classes. Class I whistles only consist of purely hydrodynamic
oscillations such as aeolian tones. Class II whistles involve
direct acoustic feedback but without any ancillary structures.
Examples of this type of whistle include edge tones, hole
tones, ring tones and human whistling, etc. Class III whistles
are those featured by a resonant or reflecting structure
controlling the frequency of the tone.

The musical instruments of Class III include the ocarina,
Chinese Xun, Japanese tsuchibue, etc., and the flute-like
instruments, such as flute, organ pipe, recorder, etc. The
ocarina-type instruments are distinguished by a Helmbholtz
resonator. On the other hand, the resonator of a flute-like
instrument consists of a pipe-like air column. We consider
the sport whistle as a special ocarina-type instruments
characterized by a Helmholtz resonator excited by the edge
tone.

The edge tone phenomenon, produced by blowing a jet
of air that impinges on a sharp edge, has been investigated
by a number of authors but its mechanics are still not
completely understood. Since some decades ago, the theory
and empirical formulas for edge tones have been presented
by a number of authors ([2], [3], [4], [5], [6], [7]). Brown
[2] might be the pioneer who experimentally investigated
the edge tone. In his apparatus, both the velocity of the
air exiting a brass slit and the distance of wedge-to-orifice
can be adjusted. Using a setting of constant jet velocity, he
found the threshold of distances for the onset and extinction
of an edge tone. Then using a setting of constant distance,
he demonstrated four stable stages of edge tone related to
different velocities. The dependence of the frequency f of
the edge tone on the distance / and the jet velocity U for a
specific slit width of 1.0 mm is described by an empirical
formula:

f = 0.466k(U — 40.0)(1/h — 0.07) (1)

where k = 1,2.3,3.8 and 5.4 are coefficients related to
the four different stages corresponding to the fundamental
frequency and other overtones. In the same stage, the
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frequency of oscillation is in proportion to the jet velocity
U, but it jumps to another stage hysteretically if U exceeds
a threshold value. In another paper [8], Brown provided
valuable discussion regarding the interaction between edge
tones and pipe tones.

The objective of this paper is to investigate the
aeroacoustic behavior of a whistle using numerical
simulations. This paper is structured as follows: In Section
2, we discuss the previous studies of numerical simulations
of musical instruments. Section 3 describes the numerical
technique used in this study. In Section 4, we first present
the visualization of the jet formation and oscillation obtained
in the simulation of a whistle. Then we show the frequency
change phenomenon as the jet speed increases. Section
5 provides a discussion of the results and suggestions for
further investigations.

2 Previous Numerical Modeling

In the last two decades, there has been growing interest
in the use of computational fluid dynamic (CFD) tools
or computational aeroacoustic (CAA) techniques based
on the Navier-Stokes equations to investigate the aero-
acoustic behaviors of edge tones and the more complicated
phenomenon related to acoustical feedback from an ancillary
resonator. However, the direct numerical simulation (DNS)
of aero-acoustic problem is still expensive and limited to
simple geometries and short time scales (typically 10 to 20
ms), due to the huge consumption of computing resources.

Dougherty et al. [9] numerically replicated Brown’s
experiments of edge tone including all four stages by using
a compressible full Navier-Stokes flow solver based on a
finite-volume scheme and obtained excellent agreement
on frequency results compared with Brown’s data. The
direct simulation of flute-like instruments can be found
in more recent literature by Obikane et al. and Giordano
[10], [11], [12], [13], [14]. Giordano simulated a recorder
using a two-dimensional and then a three-dimensional
Navier-Stokes solver based on a finite difference scheme
and presented both qualitative results concerning dynamics
of the density and air jet, and quantitative results for the
sound spectrum and its dependence on blowing speed. On
the other hand, the numerical simulation of ocarina-type
instruments is less commonly found in literature. Kobayashi
et al. [15] reproduced the sound vibration of an ocarina
and investigated the relationship between the oscillation
frequencies and the blowing speed using compressible large-
eddy simulations (LES). Miyamoto et al. [16] simulated a



recorder-like instrument using the LES method and showed
interesting results including spatial distributions of air
density, flow velocity, vorticity and Lighthill’s aeroacoustic
source. They also compared the changes of frequencies with
jet velocity to both edge tone and resonance frequencies
of the pipe. Liu [17] simulated a pea-less whistle using a
hybrid CFD scheme and compared the frequencies with the
experimentally measured results. But as Kobayashi pointed
out [15], the hybrid model consisting of separate stages of
fluid mechanics and sound propagation is not well suited for
simulating a Helmholtz resonance subjected to the elastic
property of air.

Compared to conventional continuum-based DNS
techniques, the lattice Boltzmann method (LBM) seems
a promising alternative. The LBM directly simulates the
propagation and collision involving the space-time evolution
of the fluid particles in a mesoscopic level in a single
step. The numerical solution of the Boltzmann equation is
relatively simple compared to the Navier-Stokes equations,
and can be easily implemented in a parallel computation
scheme. This is advantageous for simulating problems
involving complicated boundary conditions.

The LBM modeling of flue instruments was pioneered
by Skordo’s work on recorders and organ pipes [18]. He
simulated the interaction between fluid flow and the acoustic
waves within the instruments at different blowing speeds
based on a two-dimensional model. Kiihnelt [19], [20],
[21], [22], simulated several flute-like instruments including
organ pipe and square flue pipe using three-dimensional
LB models and obtained interesting results including the
visualization of jet formation and vortex motion, the time
history of fluctuating density and the steady state spectra at
different jet speeds. Unfortunately, due to the restriction of
computer resources, Kiihnelt’s models are based on rather
simplified geometries with a large lattice spacing (in the
range from 6x = 0.175 to 0.3 mm). Also, he had to increase
the viscosity by 10 times higher than air to maintain the
numerical stability, and consequently increase the jet speed
by the same factor to get an identical Reynolds number.

In this study, we carried out the simulation of pea-less
sport whistles using the two-dimensional LBM. On one
hand, the relatively simple implementation of boundary
conditions of the LBM allows us to handle the complicated
curved boundary measured from a real whistle. On the other
hand, the efficiency of our computation is greatly improved
by using a parallel computing technique based on a low-cost
Nvidia GPU graphic card installed on a personal computer.
We used the multiple relaxation time (MRT) scheme to
maintain the numerical stability and consequently we were
able to use a more realistic, lower viscosity appropriate
for air in our simulations. This is essential for modeling a
whistle since the single relaxation time (SRT) scheme is not
numerically stable for conditions involving the low viscosity
of the air and the relatively high jet speeds found in normal
playing condition of a whistle. However, we should keep
in mind that the LBM is only compressible in the Mach
number lower than about 0.15. In our simulations, therefore,
the blowing speeds are restricted to relatively low values.
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3 Numerical Procedure

Figure 1 shows pea-less whistles of different size and
color which can be found at many convenient stores. The
structure of a whistle consists of a narrow flue channel
and a cavity resembling a Helmholtz resonator. The cross-
sectional area of the opening at the end of the flue channel,
or the flue exit, is smaller than the inlet, such that the jet
flow is accelerated before it leaves the flue exit. It is known
that the sound of a whistle combines both edge tone and
Helmholtz resonance sounds [1]. As the jet impinges upon
the edge of aperture of the cavity, the force exerted by the
edge on the flow acts as an acoustic dipole which creates
sound oscillations. Part of the sound field propagates back
towards the orifice where the flow is more sensitive to
disturbances.

In this way, the oscillation is reinforced and maintained
and the feedback cycle is completed. This is how the edge
tone is established. Meanwhile, the edge tone excites the
Helmholtz resonator such that sound energy is reinforced for
the preferred resonance frequency.
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Figure 1: The whistles.

The purpose of the LBM scheme presented here is to
reproduce the sound oscillation of a whistle in the presence
of a low Mach flow. General descriptions of the lattice
Boltzmann method can be found in books by Succi [23],
Gladrow [24] and Guo and Shu [25].

The LBM scheme is described by thin walls resembling
the cross section of a whistle immersed in a fluid domain
surrounded by open boundaries. The fluid domain is
represented by a rectangular D2QO structure [26]. The left,
right, top and bottom boundaries of the radiation domain are
implemented by absorbing boundary conditions prescribed
with a zero velocity, as proposed by Kam et al. [27].

We generated 2D thin curved boundaries based on the
geometry profile measured from the clear whistle (Whistle I)
and the red whistle (Whistle II) shown in Fig. 1. The curved
boundaries were then imported into the 2D LB model by a
custom Python script, as shown in Fig. 2. The height H and
the width W of the open mouth of the resonance cavity of the
two whistles are given in Table 1. Whistle I features a smaller
ratio of W/H and a smooth wall inside the wind channel.
The walls are treated by a simple bounce-back scheme [23],
which creates a no-slip condition at the wall and simulates a
viscous boundary layer.

The size of the LB model representing the two whistle
is given in Table 2, where nX and nY are the number of
lattice cells along the x- and y-axis, respectively. The space
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H (mm) W(mm)
Whistle I 1.245 12.7
Whistle I 0.45 13.15

Table 1: Height and width of the two whistles

NX=1760, nY=1472, dx=
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Figure 2: The B.C. of the whistles. (a) Whistle I (b) Whistle
I

resolution dx representing the unit length of one lattice
cell is decided by both the available computing resources
and the smallest geometrical length of the boundary,
which is the height H measured at the exit of the flue
channel for our specific case. The number of lattice cells
representing the height A is 40 for Whistle T and 18 for
Whistle II, respectively, which is sufficient in consideration
of both stability and accuracy, according to our previous
experiences.

nX nY dx (mm)
WhistleI 1760 1472 0.037
Whistle I 2624 2176  0.025

Table 2: Size of the two LB models

Skordos and Kiihnelt ([18], [19], [20], [21], [22])
used unrealistic higher viscosities in their LBM scheme to
maintain numerical stability. This was most likely due to
the restriction of the Single Relaxation Time (SRT) scheme,
which is prone to be unstable in conditions of very low
viscosities. In order to improve computational stability and
allow the use of a viscosity more representative of air, we
chose to use the Multiple Relaxation Time (MRT) scheme
[28], [25]. The MRT lattice Boltzmann equation (LBE)
evolves the collision step in the velocity space and the
streaming step in moment space:

f(x, 7+ Af) = £(x,1) - M~'S(m — m%), )

where f is the distribution function, M is the relaxation
matrix related to numerical viscosity, S = MAM™! is
a diagonal matrix, and m = MIf is the equilibria in the
moment space. The MRT greatly improves the stability of
the system at very low viscosity with a cost of an additional
computation time of about 20%.

The dimensionless kinematic viscosity v can be
calculated from the physical kinematic viscosity of air v*
and the space resolution dx by the relation v* = 5% where
c; is the physical speed of the sound and ¢ is the speed of
sound in lattice unit. The undisturbed fluid density was set
as po = 1.0 kg/m? for convenience.

The source flow is implemented by a source buffer
attached at the left end of the flue channel using absorbing
boundary conditions with a non-zero target velocity
prescribed by the source signal. The jet speed is measured at
the center of the flue exit.

s
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The time histories of fluid density are probed above
the open mouth at a sampling rate of 80 kHz, where the
coordinates of the probing point is (x=1000, y=800) for
Whistle I and (x=1400, y=1100) for Whistle II. A zero-phase
DC-blocking filter must be used in the post-processing to
remove the fluctuation caused by the fluid flow.

The LB model is implemented by a custom parallel
computing code written in Pycuda [29], and runs on a
desktop PC equipped with a Nvidia GeForce GTX 670
graphics card. A simple test using a lattice of 1000 by 1000
cells running on the GPU indicated a speed-up factor of
approximately 20 (0.053 vs. 1.06 seconds per iteration)
compared to the same model running on the CPU in serial
mode.

4 Results

4.1 Jet Formation and Oscillation

(@

Figure 3: The formation of the jet during start-up. The
colors represent the absolute value of velocity ( ,/u2 + uf).

The red color corresponds to the highest speed and the dark
blue to the lowest speed. For the simulation the jet speed at
the center of the flue exitis Uj,; = 30 m/s.

Figure 3 shows how the jet is formed at the start-up stage.
The formation of the first vortex is demonstrated in Fig. 3(a)
- 3(c). The vortex shedding above and below the flue exit are
also clearly visible, as shown in Fig. 3(c) - 3(f).

Figure 4 shows motion of the jet around the labium
during the course of one cycle for Whistle I at Uj, = 30
m/s. The air jet oscillates mainly above the labium. This
behavior is qualitatively similar to that found in a 2D DNS of
a recorder by Giordano [13], but different from that observed
in a 3D DNS carried out by the same author [14]. According
to Miyamoto [30], this phenomenon is due to differences
in energy dissipation and vortex motion in two and three
dimensions.

4.2 Sound Oscillation

The time histories of the acoustic density in numerical
units for four different jet speeds (U, = 10, 20, 30 and 40
m/s) are shown in Fig. 5. The amplitude of the signal at the
start-up stage is almost in linear proportion to the jet speed, as
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Figure 4: Images of the air speed near the flue channel exit
and labium of Whistle I during one cycle. The colors

represent the absolute value of velocity ( \/u? + u2). The red

color corresponds to the highest speed and the dark blue to
the lowest speed. For the simulation the jet speed at the
center of the flue channel is U ., = 30 m/s.
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Figure 6: Normalized spectrum of whistle I with various jet
speeds: (a), Ujer = 20 m/s. (b), Uj,; = 30 m/s. (c), Uj,; = 40

m/s.

A transition is observed in the range of

Figure 5: Numerical density of whistle I with various jet
speed. Jet speed: (a), Uj,; = 10 m/s. (b), Uje, = 20 m/s. (),
Ujer = 30m/s. (d), Uje; = 40 m/s.

we will find later. The oscillation is not visible for Uj., = 10,
though it is visible for the other three higher jet speeds.

The normalized spectrum of the simulation for three
different jet speeds are depicted in Fig. 6. For U,; = 20 m/s,
there is almost no harmonics found in the result, suggesting
the typical behavior of a Helmholtz resonance. For U ,; = 30
and 40 m/s, harmonics emerge in the results. The simulation
results show a relatively high level of noise compared to the
peak frequency, which is probably due to the rather short
simulation time which is insufficient for the build-up of a
steady oscillation.

4.3 Change of Frequency and Amplitude with
Jet Speed

Figure 7(a) shows the change of peak frequency with
increase of jet speed Uj,; in the simulation of Whistle I. The
edge tone frequencies of the four stages given by Brown’s
empirical equation (Eq. 1) are also depicted (fbl, fb2, b3
and fb4). No overtone is observed, which is typical for
Helmholtz-type resonators. In the range of 13 < Uy, < 18,
the simulation results are close to the curve of fb4, the
fourth stage of Brown’s edge tone, but this might be only
a coincidence, because the oscillation is not stable for

20 < Uje < 25. For jet speeds beyond 25, the simulation
results are very close to the edge tone curve.
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Figure 7: Peak frequency and normalized magnitude of
whistle I for various jet speeds. 7(a): peak frequency and
frequency of edge tone (fbl, b2, fb3 and fb4, see Eq. 1), (b)
normalized magnitude.

The same comparison of the change of peak frequency
with increase of jet speed is made for Whistle I, as depicted
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Figure 8: Peak frequency and normalized magnitude of
whistle II for various jet speeds. (a): peak frequency and
frequencies of edge tone (fbl, b2, fb3 and fb4, see Eq. 1),
(b) normalized magnitude.

in Fig. 8(a). We notice fluctuations of the frequencies for jet
speeds higher than 20 m/s, which is not surprising because
the simulation is terminated before the steady acoustic
oscillation can be developed.

The magnitudes of the peak frequency of simulation are
depicted in Fig. 7(b) for Whistle I and Fig. 8(b) for Whistle
II. The curve is normalized to 0 dB for jet speed at U, =
36 for Whistle I and U, = 25 for Whistle II. Overall, the
amplitude increases almost linearly for jet speeds less than
10 m/s. We can observe some fluctuations and slight drops in
the range of 20 < U}, < 25 for Whistle I and 15 < Uj,; < 20
and 20 < Uje < 25 for Whistle II.

The results reported above are in partial agreement with
measured data known to the authors but not available for
publication at this time. In particular, the peak frequencies
in the spectrum of the simulation are close to those of the
measured results, and similarities have been found in the
change of frequency with the increasing jet speed. The
measured results display a general increase of oscillation
frequency with jet speed, except for a transition zone found
in the mid-range of jet speeds (20 < Uj, < 25). The
frequency curves of both simulations and measured results
of Whistle I are close to the edge tone curve for higher jet
speeds (Uje; > 25). On the other hand, the measured results
show a dip in the magnitude of the peak frequencies in the
mid-range of jet speeds (in the transition zone) that was not
observed in the LBM results.

5 Conclusions

We have presented results from a two dimensional
LBM simulation of whistles, including 1) the qualitative
visualization of the jet formation and vortex shedding, and
2) the quantitative results of the spectrum and the change
of peak frequencies for various jet speeds. We are able to
use a low viscosity thanks to the MRT technique. Also, the
simulation speed is greatly improved by the parallel GPU
computing, which makes it feasible for more simulations,
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longer simulation time, larger fluid domain and higher space
resolutions.

However, the actual simulation time is still restricted by
some factors. The fluid vorticity is not well absorbed by
the absorbing boundary conditions, which results in spurious
reflections from the open boundaries after a certain amount
of iterations. Even with the help of MRT, the numerical
stability for conditions of relatively high jet speeds is not
well maintained after a certain amount of iterations. The
Mach number in LBM is limited to about 0.15, or even lower
for low viscosity cases, so it is not capable of handling all
possible jet speeds found in a typical whistle. Nonetheless,
for flute-like instruments with relatively low jet speeds, such
as the recorder and organ pipes, the LBM can be a good
simulation tool.
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