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Abstract

This paper presents a series of approaches for dis-
crete time-domain synthesis of conical bore in-
strument sounds. The generation of steady, self-
sustained oscillations using conical waveguides is
complicated by properties inherent to truncated
conic frusta. Two different physical structures are
discussed which can be characterized by the same
circuit diagram. A more abstract and flexible “vir-
tual” model is presented which is capable of synthe-
sizing half-wave resonators with a rich variety of
timbres. Implementations using digital waveguide
techniques are described.

1 Introduction

Active research in time-domain synthesis of
wind instrument sounds has continued for over
two decades. Many instruments, such as clarinets,
flutes, and trumpets, have been synthesized us-
ing time-domain models with very good sonic re-
sults [Cook, 1992, Verge, 1995, Vergez and Rodet,
1998]. Successful, robust models of conical bore
instruments, however, have been more difficult to
achieve. This paper explores the acoustic proper-
ties of conic frusta and the resulting impediments
to robust synthesis of conical bore sounds. With an
emphasis on model simplicity and efficiency, sev-
eral different approaches are presented.

2 Synthesis Methods

This study makes use of digital waveguide syn-
thesis techniques to model the air column of a con-
ical bore instrument [Smith, 1992]. Digital wave-
guides efficiently implement ideal, lossless, and lin-
ear traveling-wave propagation using digital delay
lines, as depicted in Fig. 1. Linear losses can be
commuted and implemented at discrete locations
within the system.
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Figure 1: Digital waveguide implementation of
plane-wave propagation in a cylindrical pipe, ne-
glecting viscothermal losses.

The primary concern in this paper is the use
of a conic frustum model in the synthesis of wind
instrument sounds. Despite the asymmetries ex-
hibited by real conical wind instrument bodies, we
assume that a single conic section will adequately
approximate the majority of the modeled air col-
umn.

A simple memory-less, non-linear reed function
is used for the realtime implementations discussed
here. The reed-channel volume flow and pressure
difference characteristic, shown in Fig. 2, is solved
in terms of a non-linear traveling-wave reflection
function [Smith, 1986] as:

p+
o = r(p∆)

[

p−o −
pb

2

]

+
pb

2
,

where

r(p∆) =
Zr(p∆) − Zo

Zr(p∆) + Zo

,

po is the pressure at the air column input, pb is
the player’s breath pressure, p∆ = pb − po is the
pressure difference across the reed, Zr is a time-
varying reed “impedance”, and Zo is the real wave
impedance at the air column input.

Good results have been achieved using the sim-
plified reed reflection function shown at the bottom
of Fig. 2 in clarinet synthesis algorithms. While
the behavior of the reed function plays an impor-
tant role in the overall quality of a synthesis model,
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Figure 2: Bernoulli static flow expression (top);
Simplified reed reflection function (bottom).

the memory-less system is adequate for the pur-
poses of evaluating the various air column models
explored here.

3 The Conical Waveguide

Wave propagation along the principal axis of
a duct of uniform cross-section can be solved in
terms of one-dimensional traveling plane waves
with real wave impedance. Propagation along the
principal axis of a conic frustum can be solved in
terms of one-dimensional traveling spherical waves
with complex, location-dependent wave impedance.
In general, expressions describing the interaction of
spherical waves will be frequency-dependent, while
those for plane-wave scattering are often simple
scalar functions.
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Figure 3: A conical waveguide.

3.1 The Equivalent Circuit

The acoustic properties of a conic frustum can
be represented by an equivalent circuit consisting
of a uniform transmission line, two acoustic iner-
tances, and a transformer, as shown in Fig. 4 [Be-
nade, 1988]. This representation suggests that a

conical air column model can be implemented us-
ing a cylindrical waveguide, a scalar “turns ratio”
multiplier, and appropriately designed inertance
components at each end of the waveguide.
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Figure 4: Equivalent circuit of a conical waveguide.

An ideal open end, represented by a load
impedance of zero, will “short-circuit” an in-
put/output inertance. The equivalent circuit for
an open-open conic frustum then reduces to a uni-
form transmission line and a scalar transformer
term. This confirms the fact that a cylindrical
pipe open at both ends and an open-open conic
section, each of length L, have equivalent longitu-
dinal mode frequencies given by fn = nc/2L, n =
1, 2, 3, . . ., where c is the speed of wave propagation
within the structures.

A pressure-controlled wind instrument exci-
tation mechanism, such as a saxophone reed-
mouthpiece or trumpet player lip-reed, functions
as a nearly rigid, time-varying termination at an
air column input. When attached to the input of
a conical waveguide, the parallel driver impedance
and input inertance (Mo) combination plays a sig-
nificant role in determining the overall behavior of
the air column.

3.2 Properties of Conic Frusta

It is generally agreed that harmonically aligned
air column mode ratios better support a stable
“regime of oscillation” via mode cooperation [Wor-
man, 1971]. It is thus expected that a synthesis
model incorporating a nonlinear excitation mech-
anism will likewise benefit from such mode coop-
eration in attempting to produce a robust, stable
oscillatory regime.

Ayers et al. [1985] presents an exploration of
the properties of conic frusta. Of particular note,
the mode ratios for truncated closed-open frusta of
length L are shown to vary with respect to the pa-
rameter β as depicted in Fig. 5. β can be defined
in terms of the ratio of input to output end radii,
ro/re, or in terms of the ratio xo/(xo + L), where
xo is the length of the missing, truncated apical
section (see Fig. 3). A complete cone is given by
β = 0, while a closed-open cylinder is given by
β = 1. It should be obvious from Fig. 5 that any
closed-open truncated conical section will have in-
harmonic mode ratios and that the extent of this
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inharmonicity is dependent on the dimensions of
the frustum. Attempts at robust synthesis using a
model which correctly simulates the behavior of a
truncated conical section may in turn be hindered.
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Figure 5: Modal frequencies for a closed-open conic
frustum normalized by the fundamental frequency
of an open pipe of the same length as the frustum.
The dotted curves indicate integer relationships to
the first mode.

Benade [1976] reports that the effects of trunca-
tion can be reduced by utilizing a reed/mouthpiece
cavity with an equivalent volume equal to that
of the missing conical section. This constraint
is based on a lumped characterization of the
reed/mouthpiece cavity, which is only appropri-
ate for low-frequency modes whose wavelengths are
large in comparison to the dimensions of the cavity.
Higher-frequency modes are less likely to benefit
from such a change because they are more directly
affected by changes in waveguide shape.

Figure 6 plots the mode ratios for a cylinder-
cone compound horn designed so that the cylindri-
cal section volume is equal to the truncated conic
section volume. For β = 1, the structure is of infi-
nite length and all its modes converge to zero. In
comparison with Fig. 5, the compound horn dis-
plays nearly harmonic mode ratios out to values of
β in the range 0.2–0.3.

Another property of conic frusta can be di-
rectly attributed to the input inertance element,
Mo, in the equivalent circuit (Fig. 4). The iner-
tance, whose magnitude varies with the parameter
β, tends to “shunt” low-frequency wave compo-
nents, thus imposing a “high-pass” characteristic
on the resulting air column mode structure. For
longer conic sections, the lowest modes can be sig-
nificantly attenuated, which in turn destabilizes os-
cillatory regimes dependent on these modes. This
behavior is often apparent in the lowest notes of
saxophones, which tend to be difficult to control
under soft playing conditions. Figure 7 shows an
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Figure 6: Modal frequencies for a closed-open,
cylinder-cone compound horn in which the cylin-
drical section volume is equivalent to the missing
conic section volume. The dotted curves indicate
integer relationships to the first mode.

example conic section input impedance in which
this effect is demonstrated. The smooth curve in-
dicates the combined influence of the conicity in-
ertance and the open-end load impedance.
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Figure 7: An example conic frustum input
impedance.

4 Model Approaches

In order to implement the equivalent circuit
of a conical waveguide using digital waveguide
techniques, it is necessary to express the lumped
impedance elements of Fig. 4 in terms of traveling-
wave parameters and then convert these expres-
sions to discrete-time filters. The impedance of
the input inertance, given in terms of a Laplace
transform, is Mo(s) = (ρxo/Ao) s, where ρ is the
mass density of air, Ao is the area of the spher-
ical wavefront at the waveguide input, and s is
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Laplace transform frequency variable. The effec-
tive impedance at the waveguide input is deter-
mined as the parallel combination of Mo and an
input load impedance. If the input is rigidly ter-
minated, the input load is infinite and the pressure-
wave reflectance is given by:

Ro(s)
∆
=

P−

o (s)

P+
o (s)

=
Mo(s) − Zo

Mo(s) + Zo

=
xos − c

xos + c
,

where Zo = ρc/Ao is a real, locally defined char-
acteristic impedance parameter. The reflectance
filter, discretized with the bilinear transform, is

Ro(z) =
−a1 − z−1

1 + a1z−1
, where a1 =

c − αxo

c + αxo

,

and α is the bilinear transform constant which con-
trols frequency warping. This first-order allpass
filter accurately accounts for the phase delay expe-
rienced by pressure traveling-wave components re-
flecting from a rigid input termination in a conical
waveguide. The output inertance, Me, tends to be
less significant than that at the input, particularly
in the presence of an open-end load impedance. In
general, a single output reflectance filter can be
designed based on the parallel combination of Me

and an appropriate open-end impedance charac-
terization.

Figure 8 shows a truncated conic structure
and the corresponding digital waveguide block di-
agram, using input and output reflectance filters
as discussed above.

Delay Line

Delay Line

ReRo

Figure 8: A closed-open conic structure (top) and
its digital waveguide block diagram (bottom).

The goal here is to model a conical bore in-
strument system by attaching a simple, memory-
less, non-linear excitation mechanism to a con-
ical air column representation. The traditional
reed function/air column coupling, however, is de-
rived for an input cylindrical section using a real
wave impedance. It is not a simple process to re-
derive the reed function using the complex wave
impedance of a conic frustum. Even if we ignored
this complication, direct coupling of the reed func-
tion to the allpass inertance element at the input

to the conical “circuit” would produce a delay-
free loop in the digital waveguide implementation.
These constraints lead to the modeling approach
discussed first in this section.

All of the models to be presented have been
implemented using the Synthesis ToolKit in C++
(STK) [Cook and Scavone, 1999], allowing control
and exploration with the model parameters in re-
altime.

4.1 The “Cyclone”

The “cyclone” conical bore model is based on a
compound cylindrical-conical segment air column
model as illustrated at the top of Fig. 9. The input
cylindrical section roughly models the instrument
mouthpiece cavity and its use avoids the complica-
tions previously discussed with respect to the non-
linear driver. In addition, the cylindrical section
can be designed to have an equivalent volume equal
to the missing conic section volume. Assuming no
diameter discontinuity at the cylinder-cone junc-
tion, this constraint is met using a cylindrical sec-
tion length equal to xo/3. It should be noted that
Benade distinguishes between a cavity’s physical
and equivalent volumes under playing conditions,
which are typically not the same. For the sim-
plified reed function used in this implementation,
however, it is reasonable to ignore this difference.

Delay Line

Delay Line

Delay Line

Delay Line

Re

Rj

Frpb

Figure 9: “Cyclone” physical structure (top) and
digital waveguide block diagram (bottom).

The cylinder-cone junction filter is derived as-
suming continuity of pressure and conservation of
volume velocity and then discretized using the bi-
linear transform as:

R−

j (z) = R+
j (z) = −

γ

α + γ

(

1 + z−1

1 − a1z−1

)

,

where α is the bilinear transform constant,

γ =
c

2xo

, a1 =
α − γ

α + γ
,

c is the speed of wave propagation in the struc-
ture, and x0 is the length of the truncated conic
section. This expression could just as well have
been derived from the parallel combination of the
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input inertance Mo and the wave impedance of the
input cylindrical section.

The junction transmittance magnitude re-
sponse (|1 + R|) is shown in Fig. 10 for various
values of xo. The “high-pass” filter characteristic
associated with the conical waveguide input iner-
tance term can vary significantly depending on the
frustum dimensions. Shorter values of xo corre-
spond to steeper flare rates, which produce greater
wave discontinuity at the junction and greater low-
frequency attenuation. While this might appear to
imply a preference for less steeply flared conic sec-
tions, it should be remembered that larger values
of x0 correspond to larger values of β in Fig. 5
and thus greater mode inharmonicity. The result
is a design conflict between junction discontinuity,
which destabilizes the lower air column modes, and
mode harmonicity.

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

M
ag

ni
tu

de
 G

ai
n

Transmittance

    5 mm
   15 mm
   25 mm
   35 mm
   45 mm
   55 mm

Figure 10: The cylinder-cone junction transmit-
tance for various values of truncation xo.

The cylinder-cone junction can be implemented
using a single first-order digital filter, as discussed
by Smith [1991], Välimäki and Karjalainen [1994]
and others. A block diagram of the resulting digi-
tal waveguide model is shown in Fig. 9.

Figure 11 displays the input impedance and
sound spectrum produced by an example “cyclone”
waveguide model. Despite significant inharmonic-
ity of the input impedance peaks, the resulting
synthesis spectrum is harmonic and exhibits con-
tributions from “misaligned” peaks as a result of
the non-linear regenerative process.

The sounds produced by the “cyclone” model
have a distinctive saxophone quality, though the
instabilities associated with truncated conic frusta
as outlined in earlier sections are present and the
functional parameter space can be difficult to as-
sess.
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Figure 11: Example “cyclone” model input
impedance and synthesized sound spectrum.

4.2 The Cylindrical Saxophone

With the help of Fig. 4, we can develop an alter-
native interpretation of the “cyclone” model as two
uniform transmission-line elements separated by a
shunt inertance component. If the inertance is im-
plemented as a small, mass-like “register hole”, we
have the physical structure shown in Fig. 12 and a
model which is equivalent to Benade’s “cylindrical
saxophone” [Benade, 1988].

Figure 12: The “cylindrical saxophone” model.

The impedance of an open-hole shunt iner-
tance, given in terms of a Laplace transform, is:

Z(s) =
ρt

Ah

s,

where t is the effective height of the hole and Ah

is its cross-sectional area.
The junction filter derived for the register hole

is [Scavone and Cook, 1998]

R−

j (z) = R+
j (z) = −

γ

α + γ

(

1 + z−1

1 − a1z−1

)

,

where α is the bilinear transform constant,

γ =
cAh

2tAo

, a1 =
α − γ

α + γ
,

and Ao is the cross-sectional area of the cylindrical
pipe.

The “cyclone” and “cylindrical” circuits are
equivalent with parameters related by:

xo =
Aot

Ah

or t =
xoAh

Ao

.
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It is interesting to compare the corresponding conic
frustum and register hole parameters. We see that
the length of the truncated conic section is propor-
tional to register hole height and inversely propor-
tional to register hole radius.

The “cylindrical” model parametrization
scheme has the added benefit of allowing synthesis
of either a clarinet or a saxophone-like system via
control of the filter gain parameter γ. The register
hole is effectively closed when its radius is zero,
which results in γ = 0 and Rj(z) = 0 ∀ z. Since
there is no junction discontinuity, the system
reduces to a single continuous cylindrical section.
The “cylindrical saxophone” model presents a
slightly more complex parameter space (parame-
ters t and Ah versus xo), though its response is
similar to the “cyclone” model.

4.3 The Virtual “Blowed String”

The “cyclone” and “cylindrical saxophone”
models offer acoustically accurate representations
of their corresponding physical manifestations. In
addition, they inherit the various potential disad-
vantages previously discussed for these structures,
including modal inharmonicity and weak low fre-
quency mode support. An accurate physical model
does not always make the best musical instrument.

It is an interesting exercise to throw physical
reality aside and to consider a more abstract ap-
proach to the design of an acoustic air column or
resonator. In order to synthesize conical bore in-
strument sounds using a pressure-controlled driv-
ing mechanism, we desire a stable structure with
the following features:

• resonance frequencies given by nc/2L, for n =
1, 2, 3, . . .

• an input point with sufficient pressure fluctu-
ation to drive a reed function.

An open-open cylinder possesses the desired modal
characteristic. However, air pressure variations are
constrained to zero at an open pipe end, or pres-
sure node.

Another system possessing the desired reso-
nance structure is a stretched string, fixed at both
its ends. The string and open pipe share a va-
riety of analogous properties via an exchange of
mechanical and acoustic variables. Likewise, there
are similarities in the way that each system can
be driven. A string can be bowed, plucked, or
struck at any point along its length except near
either of its ends, where the mechanical velocity is
constrained to zero. By analogy, it should be pos-
sible to drive an open pipe by applying a pressure-
controlled excitation at any point along its length
other than near an open end. This possibility has

not been realized because no appropriate pressure-
controlled device has been developed which can
be positioned inside a pipe without modifying its
acoustic properties.

Digital synthesis systems, however, are not lim-
ited by the physical constraints of reality. Inspired
by the bowed string, the “blowed string” model
incorporates an open-open cylindrical air column
structure and a non-linear reed function, applied
at a “blowing” point which can be varied along
the length of the pipe. The “blowed string” digital
waveguide block diagram is shown in Fig. 13. One
end of the pipe is modeled with a lossy reflectance
filter Re, while the other end is represented by an
ideal impedance of zero (which corresponds to the
pressure wave multiplier −1). The internal pres-
sure at any point within the air column is calcu-
lated by summing the two traveling-wave compo-
nents. The reed function uses the internal pressure
value, together with the current “blowing” pres-
sure, to determine an appropriate function output.

Delay Line

Delay Line

Delay Line

Delay Line

−1 Re

Fr

pb

Figure 13: “Blowed string” block diagram.

The actual “blowed string” implementation can
be simplified with respect to the block diagram of
Fig. 13. In practice, each delay-line pair can be
combined into a single unit and the scalar multi-
plier can be commuted to a more convenient imple-
mentation point. Thus, the entire system can be
implemented using two interpolating delay lines,
a simple first-order lowpass filter, an adder, and a
non-linear reed reflection function. It is even possi-
ble to use just a single delay line with a fractional-
delay tap output.

Variation of the blow point can provide a wide
range of timbres. The relationship between bow
position and harmonic content of a bowed-string
sound applies to this structure as well. When
“blowed” at 1/nth the distance from a pipe end,
modes at integer multiples of n are not excited. By
positioning the “blow point” at the center of the
air column, the characteristic timbre of a clarinet
is achieved. In addition to being the most com-
putationally efficient model discussed, the “blowed
string” displays exceptionally robust behavior over
a wide parameter space.

Figure 14 displays the input impedance and
sound spectrum produced by the “blowed string”
waveguide model with a “blow” point positioned at
1/5 the distance from an open end. The attenua-
tion of the 5th harmonic is clearly evident. In gen-
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eral, there is significantly more harmonic content
in this sound than was present in the previously
discussed models.
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Figure 14: Example “blowed string” model input
impedance and synthesized sound spectrum.

5 Summary

The “cyclone” and ”cylindrical saxophone” ap-
proaches to conical bore modeling provide acous-
tically accurate representations of their respec-
tive physical systems. For the purposes of acous-
tic study and further explorations regarding the
properties of conic frusta, these models offer effi-
cient structures for discrete-time implementation.
In addition, the two equivalent parameterization
schemes provide an interesting duality and per-
spective on the acoustic behavior of conical wave-
guides. With respect to synthesis, these mod-
els produce good sonic results within a somewhat
complex parameter space.

The virtual “blowed string”, though potentially
less appealing to acoustic purists, provides a robust
and flexible synthesis model capable of generating
a wide range of possible timbres, including both
cylindrical and conical bore sounds. This model
suggests an interesting analogy to the bowed string
based on an abstract or “physically informed” view
of air column acoustics.
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