JINLE X |

Forum Acusticum 2011 - Aalborg - Denmark

A Comparison of Saxophone Impedances and
their Playing Behaviour

Antoine Lefebvre and Gary Scavone
Computational Acoustic Modeling Laboratory, Centre for Interdisciplinary Research in Music Media
and Technology, Schulich School of Music, McGill University, Montréal, Québec, Canada.

Abstract
Input impedances (and reflectances) of woodwind-like instruments are measured with a system of
six microphones, calibrated with three non-resonant loads, and a least-mean-square signal processing

between objects. The measurements are compared to theoretical impedances calculated using the
Transmission Matrix Method (TMM), from which we discuss the accuracy of the TMM and point out
some discrepancies. From the features of the impedance or reflectance, various properties of woodwind
instruments may be obtained, such as the resonance frequencies, the tonehole cutoff frequency, the
effect of a register hole and the harmonicity of a resonance. These features are compared for a few alto
saxophones with fairly distinct playing behaviours, shedding some light of the relationship between

the geometry of an instrument, its input impedance and the quality of the instrument.

PACS no. 43.75.Ef,43.75.Yy

1. Introduction

The objective of this research is to better understand
the relation between the geometry of alto saxophones,
their input impedance and their playing behavior. The
most important aspects of this study are the tuning
of the instrument, its “response” and its overall tone
quality.

In this paper the specified note names correspond
to the written pitch of an alto saxophone, for which
a written C sounds Eb in concert pitch. The lowest
note is BOb with a frequency of 138.6 Hz. The high-
est note of the first register is D2b with a frequency
of 329.6 Hz and the highest note of the second reg-
ister is F3 or G3b with a frequency of 830.61Hz or
880.00 Hz. The tonehole for the G3b does not exists
on older instruments.

An alto saxophone is composed of three parts, the
mouthpiece, the neck (or crook) on which a register
hole is located, and the body, which is terminated by
a bell. The bore of the instrument is approximately
conical in shape with a number of small deviations, in-
cluding two bends, one on the neck and another just
before the bell of the instrument. The instruments are
equiped with 22 or 23 toneholes, three of which are
used for alternate fingerings, and two register holes.
The farthest three toneholes, located before the bell
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and just after the bent portion of the body (also called
the elbow), are used to play the lowest four notes of
the instrument (B0b, B0, C1 and D1b) and they are
not normally used in the second register. The follow-
ing twelve toneholes (excluding the 3 toneholes used
for alternate fingerings) produce the next twelve notes
by semitone steps (D1 to D2b). These same twelve
toneholes also produce the next twelve notes, one oc-
tave higher, with the aid of the register holes. Four
or five other toneholes are used to support the notes
D3 to F3 or G3b. These are only used in their second
register with the second register hole. They are not
designed to be used in their first register. The first
register hole, located near the top of the body, is used
for the notes D2 to A2b and the second register hole,
located on the neck, is used for the notes A2 to F3 or
G3b. There is only one key to activate both register
holes, with a mechanical system that automatically
opens the proper register hole based on the fingering.
In general, an open tonehole is followed by a series
of more open toneholes. For some notes, the first open
tonehole is followed by one or two closed toneholes be-
fore a row of more open toneholes. This may change
the acoustic behavior of the instrument and usually
requires this first open tonehole to be larger in diam-
eter. There are five fingerings where this occurs. For
D1, E1, G1b and A1, there is one closed tonehole after
the first open tonehole. For C2, there are two closed
toneholes after the first open tonehole. These same
fingerings are used in the second register as well.
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The playing frequencies of an instrument correlate
well with the resonance frequencies of the air column
corrected for the effect of the excitation mechanism.
The “response”, or ease of play, generally correlates
with the magnitude of the resonances and with a
proper alignment of the resonances (Gazengel, 1994;
Dalmont, Gazengel, Gilbert, & Kergomard, 1995).
This is particularly important for the lowest notes
of the instrument, for which the air column supports
many resonance frequencies. When the magnitude of
the second resonance is of the same magnitude or
larger than that of the fundamental, inharmonicity
makes the note difficult to play and/or produces a
multiphonic. If the second resonance is smaller in
magnitude, it mainly affects the tone colour. For the
notes in the second register, the higher resonances are
weak because they are near or above the cutoff fre-
quency of the tonehole lattice, therefore, the proper
alignment of the higher resonances is of little impor-
tance in this case.

To better understand the relation between an in-
strument’s acoustic properties, quality and geome-
try, we make use of measurements and Transmission-
Matrix Method (TMM) calculations of its input
impedance. We measured the input impedance for
each fingering of three alto saxophones with distinct
playing bahaviors and different geometries: a Selmer
Model 26 (M26) (serial 8821, made in 1928), a Selmer
Super Series (SS) (serial 12249, made in 1930) and a
Selmer Super Action Series IT (SAS2) (serial 438024,
made in 1989). From these measurements, the in-
struments are evaluated using the criteria mentioned
above. This is compared with the results of TMM cal-
culations of the geometry of the SAS2, as measured
by the authors, and with a subjective evaluation of
the playing behavior of the instruments.

Using physical measurements as well as a bore re-
construction algorithm (Sharp, 1996), we identified
some important differences in the geometry of these
instruments. First, the SS has a significantly larger
bore than the other two instruments. The internal di-
ameter of the neck at its larger end is 0.5 mm wider
than for the other two instruments. The rest of the in-
strument is larger by the same amount up to the bell.
The M26 and the SAS2 have very similar geometries
but the neck volume of the M26 is larger, this extra
volume being located near the bend in the neck.

From the impedance measurements, we can com-
pare a number of features: the resonance frequen-
cies, the magnitude of the resonances and the har-
monicity of the resonances. The resonance frequen-
cies are obtained from the zeros of the imaginary part
of the reflectance, using linear interpolation between
the measurement data points. The magnitude of the
impedance at resonance is also calculated from the
interpolated reflectance, converted to an impedance
with Z/Zy = (1+ R)/(1 — R), where Zy = pc/S. The
harmonicity is calculated as the frequency deviation

Saxophone Impedance

in cents of the second resonance relative to twice the
fundamental resonance frequency.

2. Measurement System and Method

The impedances were measured with a multi-
microphone measurement system based on a
least-mean-square signal processing technique. The
impedance tube is excited with a JBL 2426 horn
driver. Six PCB Piezotronics condenser microphones
(model 377B10) with preamplifiers (model 426B03)
are flush mouted with the inner wall of the tube
at 30mm, 60mm, 100mm, 150mm, 210mm and
330mm from the input plane of the object. The
microphones are connected with a PCB Piezotronic
signal conditioner (model 483C30) and then to
the computer through a RME FireFace 800 audio
interface. The signals are sampled at 48 kHz. The
system ig excited with a looping logarithmic swept
sine tone. The length of one period of this looping
sound is equal to the length of the Fourier transform.
The responses to each repetition of the swept sine
are averaged together in the time domain before
any processing is performed and the first response
is dropped. The spectral analysis uses 38768 points,
giving a frequency resolution of 1.46 Hz If any
harmonic distortion was present in the system, it
is removed using the method presented by Farina
(2000).

Using the pressure spectra at each microphone, an
algorithm making use of the Moore-Penrose Pseudo
Inverse is solved for the forward and backward trav-
eling waves (Jang & Ih, 1998), thus effectively mea-
suring the reflectance of the object, which is easily
converted to an impedance if desired.

The apparatus is calibrated with three non-
resonant loads with the procedure described by
Dickens, Smith, and Wolfe (2007) but the pipe of in-
finite length is replaced by a 2 meter long pipe and a
procedure to time-window the first impulse from the
reflections, thus simulating an infinitely long pipe, as
described by Kemp, Walstijn, Campbell, Chick, and
Smith (2010).

The input impedances were measured at the input
of the saxophone neck. This ensures that we measure
the properties of the saxophones without the pertur-
bations of the mouthpiece, which may vary signifi-
cantly in shape for different models. A cylindrical seg-
ment is artificially added to each measurements to
simulate the presence of a mouthpiece.

3. Results and Discussion

From the measured or calculated input impedances,
indicators of the intonation, ease of play and tone
colour are proposed and discussed in relation with in-
formal playing experiments. The results of the TMM
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Figure 1. Frequency deviation in cents of the resonance frequencies supporting each note relative to their equal-tempered
frequencies. Measurements: M26 in red, SS in green and SAS2 in blue. TMM of SAS2 in cyan.
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Figure 2. Comparison of the magnitude of the fundamental impedance resonance for the three measured saxophones:
M26 in red, SS in green and SAS2 in blue.
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Figure 3. Magnitudes of the first five impedance resonances of the Selmer Super Action Series II saxophone

calculations are discussed after the analysis of the of the air column. For each instrument, the mouth-
measurements. piece and excitation mechanism are simulated by a

straight cylinder, the length of which was adjusted dif-
3.1. Intonation ferently for each instrument in order to minimize the

pitch deviations in the extremes of the instrument, as

The intonation of the instruments (playing frequen-
was done by (Nederveen, 1969/1998). The lengths are

cies) were estimated from the resonance frequencies
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62 mm for the SAS2, 67 mm for the SS and 70 mm for
the M26.

Figure 1 displays the frequency deviations for each
of the three measured instruments and the TMM cal-
culations. The fundamental resonances for the lowest
four notes of all three instruments are sharp, with
the M26 being the worst. For the next twelve notes,
the most modern instrument (SAS2) provides accu-
rate resonances within =+5 cents, apart for the D2b,
which is 20cents flat. Some resonances of the other
two instruments are sharp by up to 30 cents, though
the others are relatively well tuned. The D2b reso-
nance is flat on all instruments except the SS.

The second register of the instruments starts on
the D2 and is played with register keys. Once again,
the SAS2 presents the smallest deviations of all three
instruments, even though the first 4 notes (D2 to F2)
are sharp by about 10cents (as well as the D3b). In
the second register, the M26 has resonances that are
sharp by 15 to 25 cents for all notes. The SS has very
sharp resonances (+25cents) on D2 and E2b, and is
flat (-20cents) on C3.

Results of our informal playing experiments gener-
ally agree with these observations: the lowest 4 notes
of all instruments are indeed sharp, the D2b is flat, the
first 4 notes of the second register are sharp relative
to the first register and D3b is sharp.

3.2. Response

The first indicator that we propose to use for the “re-
sponse”, or “ease of play”, of the instruments is the
magnitude of the impedance at the fundamental reso-
nance frequency of each note. Figure 2 compares these
magnitudes for the three saxophones. For the lowest
& notes, the M26 presents significantly smaller res-
onance magnitudes, suggesting that this instrument
should be more difficult to play. For notes D1 to
A1, the SAS2 also has weaker resonances, suggest-
ing that it should also be somewhat more difficult to
play (but not as much as the M26). According to this
analysis, the SS should be the easiest instrument to
play. In the second register, the M26 has significantly
weaker resonance of all saxophones. The SAS2 has
lower impedance magnitudes from D2 to A2. Again,
the SS should respond better.

Figure 3 displays impedance magnitudes of the first
five resonances for the SAS2. For the first four notes,
the air column provides support up to the fourth har-
monic of the fundamental. For the next twelve notes
of the first register, the fundamental and the first har-
monic are well supported by the air-column and there
is a significant amount of third resonance for D1 to
A1l. Then, for the second register, only the fundamen-
tal is supported by a resonance of the air-column. For
all notes below Al, the second resonance is stronger
than the fundamental resonance, which is typical of
the saxophone and often causes the playing frequency
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Figure 4. Frequency deviation in cents of the second reso-
nance frequencies for each note of the first register of the
saxophones. Measurements: M26 in red, SS in green and
SAS2 in blue. TMM of SAS2 in cyan.

to jump to a higher partial. A proper embouchure set-
ting is of primary importance to play the lower notes
of the instrument.

Another indicator of the “response” is the harmonic-
ity of the resonances of the air column. This is par-
ticularly important for the notes in the first regis-
ter, because upper resonances are strong; if they are
mis-aligned, it renders the notes unstable, with a ten-
dency to produce a multiphonic tone. Furthermore,
the notes of the second register are based on the sec-
ond resonance of notes in the first register, therefore,
the proper tuning of the second register is tightly re-
lated to the harmonicity of the first resonance. The
harmonicity for all notes of the first register is dis-
played in Fig. 4. All instruments present deviations
from perfect harmonicity for some of their notes. We
observe that the SS has the strongest resonances of
all three instruments but quite a bit of inharmonicity,
and this likely reduces the quality of its response. For
the second register, the harmonicity of the resonances
is of little importance, because these resonances are
weak (see Fig. 3).

The playing experiments confirm that the M26 is
more difficult to play. The lowest note of the instru-
ment has a tendency to produce multiphonic tones
and only with embouchure manipulation we can pro-
duce the normal notes. The SS and SAS2 are quite
similar in terms of response.

3.3. Tone colour (timbre)

There are subtle variations in tone colour among
the instruments and among each note of an instru-
ment. The possible causes of such variations are
many: geometry of each individual tonehole, height of
the keys, slight inharmonicity of the resonances due
to the shape of the bore, extra damping added by
small leaks, etc. Each of these factors would produce
changes in the input impedance curves of the instru-
ments. Therefore, it is desirable to be able to compare
the tone colour of two fingerings of a single instrument
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Figure 5. Normalized spectral centroids

or different instruments. Such a criteria would be use-
ful while designing an instrument, in order to have an
instrument with an even timbre and to control the
overall brightness of the tone.

As a potential method to compare the tone colour
of two instruments, we investigated a spectral centroid
calculation performed on the input impedance as:

. 1> Apfe
centroid = — =——, 1
where fj is the frequency of each peak (fi, = kfo)

based on multiples of the fundamental resonance fre-
quencies and where Ay is the amplitude of the res-
onance at fr. The result for each note of the three
saxophones is displayed in Fig. 5. The differences are
quite subtle, despite a fairly strong variation of tim-
bre when the instruments are played. It is not clear
that an adequate estimate of timbre can be calcu-
lated from the input impedance, since this measure
refers to the internal pressure spectrum rather than
the radiated spectrum. That is, the input impedance
containg very little energy above the tonehole lattice
cutoff frequency and our perception of timbre is likely
strongly influenced by frequencies above this limit.
Further consideration is necessary on this topic.

3.4. Measured vs. Calculated Impedances

Figures 6 to 9 compare input impedances measured
using the approach described in Sec. 2 with those com-
puted using the TMM for the SAS2 geometry. Figure
6 displays the results when all toneholes are closed.
The number of resonances supported by the air col-
umn is large. For this fingering, it is important that
the resonances are well aligned. In the case of the
M26, the fundamental resonance frequency is sharp
but all upper resonances are well aligned, which may
explain the seeming difficulty in producing this note.
The TMM calculation for this geometry produces rea-
sonable agreement in terms of impedance peak fre-
quencies, but it appears to significantly underestimate
the damping in the system.
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Figure 7 corresponds to the note C2. This fingering
has one open tonehole followed by two closed tone-
holes and as a consequence, the third resonance is
very weak. This is not the case for the D2b, one semi-
tone above, displayed in Fig. 8. The second resonance
is well aligned for C2 and 25 cents sharp for D2b (see
Fig. 4). These two factors may explain the differences
in response of these two notes.

Figure 9 corresponds to the note A2, which is based
on the second resonance of A1l. The TMM calculation
does not accurately predict the displacement of the
fundamental resonance caused by the register hole,
most likely because the standard tonehole model is
inadequate when used to model a register hole.

In general, the TMM predicts stronger resonances
for all fingerings compared to the measurements. This
is particularly obvious near and above 1kHz where
resonances are often mostly absent from the measure-
ment but are still strong in the calculation (see Fig 7
for instance). This is possibly a consequence of tone-
hole interactions, which are neglected in the TMM.

It should be noted that the results of the TMM cal-
culations are very sensitive to the description of the
geometry, particularly the diameter of the bore as a
function of the distance along its spine. Errors as small
as 0.05 mm may change significantly the resonance fre-
quencies, particularly in the neck of the instrument.

The TMM calculations were based on the SAS2 ge-
ometry but the results differ significantly from the
corresponding measurements. It is possible that the
geometry was not measured with a sufficient accu-
racy due to the difficulty in obtaining the dimensions
of the bore from measurements made on the outside
of the instrument. It ig also likely that the theory does
not always provide correct results, such as for register
holes or in bent portions of the instrument.

4. Conclusion

This paper presents preliminary results toward a bet-
ter understanding of the relations between the input
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because the discrepancies between the measurement
and the calculations are still significant.

A rigorous playing experiment with a larger num-
ber of subjects is required for an evaluation of the
playing frequencies, ease of play and timber of the
instruments.

Furthermore, due to the difficulty in measuring ac-
curately the dimensions of existing instruments, we
are planning to fabricate the instruments using a
molding process that would ensure great dimensional
accuracy of the prototypes.
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impedance of alto saxophones, their playing behaviors
and their geometries. More work is required in calcu-
lating the properties of an instrument using the TMM
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